Mass Spectrometry-Based Biosensing and Biopsy Technology
Abstract
:1. Introduction
2. Biochip and Mass Tag-Based Mass Spectrometry Sensing Technology
3. Probe/Pen-Based Mass Spectrometry Sensing Technology
3.1. In Vivo Probe Mass Spectrometry
3.2. Pen/knife-Like Mass Spectrometry Sensing Technology
4. Integration of Mass Spectrometry with Other Biosensors
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kulkarni, M.B.; Ayachit, N.H.; Aminabhavi, T.M. Biosensors and Microfluidic Biosensors: From Fabrication to Application. Biosensors 2022, 12, 543. [Google Scholar] [CrossRef]
- Naresh, V.; Nohyun, L. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors 2021, 21, 1109. [Google Scholar] [CrossRef]
- You, M.; Li, Z.; Feng, S.; Gao, B.; Yao, C.; Hu, J. Ultrafast Photonic PCR Based on Photothermal Nanomaterials. Trends Biotechnol. 2019, 38, 637–649. [Google Scholar] [CrossRef]
- Yang, Z.; Ren, Z.; Cheng, Y.; Sun, W.; Xi, Z.; Jia, W.; Li, G.; Wang, Y.; Guo, M.; Li, D. Review and Prospect on Portable Mass Spectrometer for Recent Applications. Vacuum 2022, 199, 110889. [Google Scholar] [CrossRef]
- Feider, C.L.; Krieger, A.; Dehoog, R.J.; Eberlin, L.S. Ambient Ionization Mass Spectrometry: Recent Developments and Applications. Anal. Chem. 2019, 91, 4266–4290. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Liu, F.; Chen, Y.; Shangguan, G.; Ju, H. Mass Spectrometric Biosensing: A Powerful Approach for Multiplexed Analysis of Clinical Biomolecules. ACS Sens. 2021, 6, 3517–3535. [Google Scholar] [CrossRef]
- Wiseman, J.M.; Gologan, B.; Cooks, R.G. Mass Spectrometry Sampling Under Ambient Conditions with Desorption Electrospray Ionization. Science 2004, 306, 471–474. [Google Scholar]
- Shi, L.; Habib, A.; Bi, L.; Hong, H.; Begum, R. Ambient Ionization Mass Spectrometry: Application and Prospective. Crit. Rev. Anal. Chem. 2022, 1–50. [Google Scholar] [CrossRef]
- Chu, F.; Zhao, G.; Li, W.; Wei, W.; Chen, W.; Ma, Z.; Gao, Z.; Shuaibu, N.S.; Luo, J.; Yu, B.; et al. Catalyst-Free Oxidation Reactions in a Microwave Plasma Torch-Based Ion/Molecular Reactor: An Approach for Predicting the Atmospheric Oxidation of Pollutants. Anal. Chem. 2022, 95, 2004–2010. [Google Scholar] [CrossRef]
- Su, J.; Mrksich, M. Using Mass Spectrometry to Characterize Self- Assembled Monolayers Presenting Peptides, Proteins, and Carbohydrates. Angew. Chem. 2002, 114, 4909–4912. [Google Scholar] [CrossRef]
- Kou, X.; Chen, G.; Huang, S.; Ye, Y.; Ouyang, G.; Gan, J.; Zhu, F. In Vivo Sampling: A Promising Technique for Detecting and Pro Fi Ling Endogenous Substances in Living Systems. J. Agric. Food Chem. 2019, 67, 2120–2126. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Liu, H. Surface Plasmon Resonance Coupled to Mass Spectrometry in Bioanalysis. Compr. Anal. Chem. 2021, 95, 89–106. [Google Scholar] [CrossRef]
- Wang, R.; Chait, B.T.; Kent, S.B.H. Protein Ladder Sequencing: Towards Automation. Tech. Protein Chem. 1994, 5, 19–26. [Google Scholar] [CrossRef]
- Tong, Y.; Guo, C.; Liu, Z.; Shi, K.; Zhang, H.; Liu, Y.; Wu, G.; Feng, H.; Pan, Y. In Situ Localization of Tris(2,3-Dibromopropyl) Isocyanurate in Mouse Organs by MALDI-IMS with Auxiliary Matrix Strategy. Talanta 2021, 235, 122723. [Google Scholar] [CrossRef]
- Wang, H.; Gao, Y.; He, Q.; Liao, J.; Zhou, S.; Liu, Y.; Guo, C.; Li, X.; Zhao, X.; Pan, Y. 2-Hydrazinoterephthalic Acid as a Novel Negative-Ion Matrix-Assisted Laser Desorption/Ionization Matrix for Qualitative and Quantitative Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry Analysis of N-Glycans in Peach Allergy Research. J. Agric. Food Chem. 2023, 71, 952–962. [Google Scholar] [CrossRef]
- Tong, Y.; Liu, Z.Z.; Lu, J.F.; Zhang, H.Y.; Shi, K.Q.; Chen, G.R.; Liu, Y.Q.; Feng, H.R.; Pan, Y.J. Detection and Quantification of Water-Soluble Inorganic Chlorine, Bromine and Iodine by MALDI-MS. J. Anal. Test. 2022, 6, 419–423. [Google Scholar] [CrossRef]
- Beloqui, A.; Sanchez-Ruiz, A.; Martin-Lomas, M.; Reichardt, N.C. A Surface-Based Mass Spectrometry Method for Screening Glycosidase Specificity in Environmental Samples. Chem. Commun. 2012, 48, 1701–1703. [Google Scholar] [CrossRef]
- Balog, J.; Sasi-Szabó, L.; Kinross, J.; Lewis, M.R.; Muirhead, L.J.; Veselkov, K.; Mirnezami, R.; Dezso, B.; Damjanovich, L.; Darzi, A.; et al. Intraoperative Tissue Identification Using Rapid Evaporative Ionization Mass Spectrometry. Sci. Transl. Med. 2013, 5, 194ra93. [Google Scholar] [CrossRef]
- Mendes, T.P.P.; Lobón, G.S.; Lima, L.A.S.; Guerra, N.K.M.; Carvalho, G.A.; Freitas, E.M.M.; Pinto, M.C.X.; Pereira, I.; Vaz, B.G. Mass Spectrometry-Based Biosensing Using Pencil Graphite Rods. Microchem. J. 2021, 164, 106077. [Google Scholar] [CrossRef]
- Kelly, R.T.; Page, J.S.; Marginean, I.; Tang, K.; Smith, R.D. Dilution-Free Analysis from Picoliter Droplets by Nano-Electrospray Ionization Mass Spectrometry. Angew. Chem.-Int. Ed. 2009, 48, 6832–6835. [Google Scholar] [CrossRef] [Green Version]
- Yoshimura, K.; Chen, L.C.; Yu, Z.; Hiraoka, K.; Takeda, S. Real-Time Analysis of Living Animals by Electrospray Ionization Mass Spectrometry. Anal. Biochem. 2011, 417, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Min, D.-H.; Su, J.; Mrksich, M. Profiling Kinase Activities by Using a Peptide Chip and Mass Spectrometry. Angew. Chem. 2004, 116, 6099–6103. [Google Scholar] [CrossRef]
- Becker, C.F.W.; Wacker, R.; Bouschen, W.; Seidel, R.; Kolaric, B.; Lang, P.; Schroeder, H.; Müller, O.; Niemeyer, C.M.; Spengler, B.; et al. Direkter Nachweis von Protein-Protein-Wechselwirkungen Durch Massenspektrometrie an Protein-DNA-Mikroarrays. Angew. Chem.-Int. Ed. 2005, 117, 7808–7812. [Google Scholar] [CrossRef]
- Marin, V.L.; Bayburt, T.H.; Sligar, S.G.; Mrksich, M. Functional Assays of Membrane-Bound Proteins with SAMDI-TOF Mass Spectrometry. Angew. Chem.-Int. Ed. 2007, 119, 8952–8954. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.R.; Lee, J.; Kim, S.K.; Kim, K.P.; Park, H.S.; Yeo, W.-S. Mass Spectrometry Signal Amplification Method for Attomolar Detection of Antigens Using Small-Molecule-Tagged Gold Microparticles. Angew. Chem.-Int. Ed. 2008, 120, 9660–9663. [Google Scholar] [CrossRef]
- Kim, Y.-K.; Ryoo, S.-R.; Kwack, S.-J.; Min, D.-H. Mass Spectrometry Assisted Lithography for the Patterning of Cell Adhesion Ligands on Self-Assembled Monolayers. Angew. Chem.-Int. Ed. 2009, 121, 3559–3563. [Google Scholar] [CrossRef]
- Beloqui, A.; Calvo, J.; Serna, S.; Yan, S.; Wilson, I.B.H.; Martin-Lomas, M.; Reichardt, N.C. Analysis of Microarrays by MALDI-TOF MS. Angew. Chem.-Int. Ed. 2013, 52, 7477–7481. [Google Scholar] [CrossRef]
- Kuo, H.Y.; Deluca, T.A.; Miller, W.M.; Mrksich, M. Profiling Deacetylase Activities in Cell Lysates with Peptide Arrays and SAMDI Mass Spectrometry. Anal. Chem. 2013, 85, 10635–10642. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Lipson, R.H. Assays Using a NIMS Chip: Loosely Bound but Highly Selective. Anal. Chem. 2013, 85, 6860–6865. [Google Scholar] [CrossRef]
- Hong, S.H.; Kim, J., II; Kang, H.; Yoon, S.; Kim, D.E.; Jung, W.; Yeo, W.S. Detection and Quantification of the Bcr/Abl Chimeric Protein on Biochips Using LDI-TOF MS. Chem. Commun. 2014, 50, 4831–4834. [Google Scholar] [CrossRef] [Green Version]
- Both, P.; Green, A.P.; Gray, C.J.; Šardzík, R.; Voglmeir, J.; Fontana, C.; Austeri, M.; Rejzek, M.; Richardson, D.; Field, R.A.; et al. Discrimination of Epimeric Glycans and Glycopeptides Using IM-MS and Its Potential for Carbohydrate Sequencing. Nat. Chem. 2014, 6, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Liu, F.; Ju, H. Peptide Code-on-a-Microplate for Protease Activity Analysis via MALDI-TOF Mass Spectrometric Quantitation. Anal. Chem. 2015, 87, 4409–4414. [Google Scholar] [CrossRef] [PubMed]
- Lorey, M.; Adler, B.; Yan, H.; Soliymani, R.; Ekström, S.; Yli-Kauhaluoma, J.; Laurell, T.; Baumann, M. Mass-Tag Enhanced Immuno-Laser Desorption/Ionization Mass Spectrometry for Sensitive Detection of Intact Protein Antigens. Anal. Chem. 2015, 87, 5255–5262. [Google Scholar] [CrossRef]
- Hu, J.; Liu, F.; Ju, H. MALDI-MS Patterning of Caspase Activities and Its Application in the Assessment of Drug Resistance. Angew. Chem.-Int. Ed. 2016, 55, 6667–6670. [Google Scholar] [CrossRef]
- Feng, N.; Hu, J.; Ma, Q.; Ju, H. Mass Spectrometric Biosensing: Quantitation of Multiplex Enzymes Using Single Mass Probe and Fluorous Affinity Chip. Biosens. Bioelectron. 2020, 157, 112159. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Ma, W.; Bai, Y.; Liu, H. Ultrasensitive Ambient Mass Spectrometry Immunoassays: Multiplexed Detection of Proteins in Serum and on Cell Surfaces. J. Am. Chem. Soc. 2019, 141, 72–75. [Google Scholar] [CrossRef]
- Xu, S.; Liu, M.; Feng, J.; Yan, G.; Bai, Y.; Liu, H. One-Step Hexaplex Immunoassays by on-Line Paper Substrate-Based Electrospray Ionization Mass Spectrometry for Combined Cancer Biomarker Screening. Chem. Sci. 2021, 12, 4916–4924. [Google Scholar] [CrossRef]
- O’Kane, P.T.; Dudley, Q.M.; McMillan, A.K.; Jewett, M.C.; Mrksich, M. High-Throughput Mapping of CoA Metabolites by SAMDI-MS to Optimize the Cell-Free Biosynthesis of HMG-CoA. Sci. Adv. 2019, 5, eaaw9180. [Google Scholar] [CrossRef] [Green Version]
- Techner, J.M.; Kightlinger, W.; Lin, L.; Hershewe, J.; Ramesh, A.; Delisa, M.P.; Jewett, M.C.; Mrksich, M. High-Throughput Synthesis and Analysis of Intact Glycoproteins Using SAMDI-MS. Anal. Chem. 2020, 92, 1963–1971. [Google Scholar] [CrossRef]
- Ma, Q.; Chen, Y.; Feng, N.; Yan, F.; Ju, H. A MALDI-MS Sensing Chip Prepared by Non-Covalent Assembly for Quantitation of Acid Phosphatase. Sci. China Chem. 2021, 64, 151–156. [Google Scholar] [CrossRef]
- Gunnarsson, A.; Sjövall, P.; Höök, F. Liposome-Based Chemical Barcodes for Single Molecule DNA Detection Using Imaging Mass Spectrometry. Nano Lett. 2010, 10, 732–737. [Google Scholar] [CrossRef]
- Tang, W.; Gordon, A.; Wang, H.; Li, P.; Chen, J.; Li, B. Development of MALDI MS Peptide Array for Thrombin Inhibitor Screening. Talanta 2021, 226, 122129. [Google Scholar] [CrossRef] [PubMed]
- Han, G.; Xing, Z.; Dong, Y.; Zhang, S.; Zhang, X. One-Step Homogeneous DNA Assay with Single-Nanoparticle Detection. Angew. Chem.-Int. Ed. 2011, 50, 3462–3465. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, B.; He, M.; Yang, B.; Zhang, J.; Hu, B. Immunomagnetic Separation Combined with Inductively Coupled Plasma Mass Spectrometry for the Detection of Tumor Cells Using Gold Nanoparticle Labeling. Anal. Chem. 2014, 86, 8082–8089. [Google Scholar] [CrossRef]
- Zhang, S.; Han, G.; Xing, Z.; Zhang, S.; Zhang, X. Multiplex DNA Assay Based on Nanoparticle Probes by Single Particle Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2014, 86, 3541–3547. [Google Scholar] [CrossRef]
- Yang, B.; Chen, B.; He, M.; Yin, X.; Xu, C.; Hu, B. Aptamer-Based Dual-Functional Probe for Rapid and Specific Counting and Imaging of MCF-7 Cells. Anal. Chem. 2018, 90, 2355–2361. [Google Scholar] [CrossRef] [PubMed]
- Verkhoturov, D.S.; Crulhas, B.P.; Eller, M.J.; Han, Y.D.; Verkhoturov, S.V.; Bisrat, Y.; Revzin, A.; Schweikert, E.A. Nanoprojectile Secondary Ion Mass Spectrometry for Analysis of Extracellular Vesicles. Anal. Chem. 2021, 93, 7481–7490. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Pang, J.; Xu, S.; He, H.; Ma, Y.; Liu, Z. A Glycoform-Resolved Dual-Modal Ratiometric Immunoassay Improves the Diagnostic Precision for Hepatocellular Carcinoma. Angew. Chem.-Int. Ed. 2022, 61, e202113528. [Google Scholar] [CrossRef]
- Xu, S.; Liu, M.; Bai, Y.; Liu, H. Multi-Dimensional Organic Mass Cytometry: Simultaneous Analysis of Proteins and Metabolites on Single Cells. Angew. Chem.-Int. Ed. 2021, 60, 1806–1812. [Google Scholar] [CrossRef] [PubMed]
- Bodenmiller, B.; Zunder, E.R.; Finck, R.; Chen, T.J.; Savig, E.S.; Bruggner, R.V.; Simonds, E.F.; Bendall, S.C.; Sachs, K.; Krutzik, P.O.; et al. Multiplexed Mass Cytometry Profiling of Cellular States Perturbed by Small-Molecule Regulators. Nat. Biotechnol. 2012, 30, 858–867. [Google Scholar] [CrossRef]
- Newell, E.W.; Davis, M.M. Beyond Model Antigens: High-Dimensional Methods for the Analysis of Antigen-Specific T Cells. Nat. Biotechnol. 2014, 32, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Xu, S.; Nie, H.; Hu, B.; Bai, Y.; Liu, H. Bifunctional Cleavable Probes for in Situ Multiplexed Glycan Detection and Imaging Using Mass Spectrometry. Chem. Sci. 2019, 10, 2320–2325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, H.; Chu, Y.; Wang, W.; Zhang, Z.; Meng, Z.; Min, Q. Mass Tag-Encoded Nanointerfaces for Multiplexed Mass Spectrometric Analysis and Imaging of Biomolecules. Nanoscale 2023, 15, 2529–2540. [Google Scholar] [CrossRef]
- Hiraoka, K.; Nishidate, K.; Mori, K.; Asakawa, D.; Suzuki, S. Development of Probe Electrospray Using a Solid Needle. Rapid Commun. Mass Spectrom. 2007, 21, 3139–3144. [Google Scholar] [CrossRef]
- Yu, Z.; Chen, L.C.; Mandal, M.K.; Nonami, H.; Erra-Balsells, R.; Hiraoka, K. Online Electrospray Ionization Mass Spectrometric Monitoring of Protease-Catalyzed Reactions in Real Time. J. Am. Soc. Mass Spectrom. 2012, 23, 728–735. [Google Scholar] [CrossRef] [Green Version]
- Mandal, M.K.; Yoshimura, K.; Chen, L.C.; Yu, Z.; Nakazawa, T.; Katoh, R.; Fujii, H.; Takeda, S.; Nonami, H.; Hiraoka, K. Application of Probe Electrospray Ionization Mass Spectrometry (PESI-MS) to Clinical Diagnosis: Solvent Effect on Lipid Analysis. J. Am. Soc. Mass Spectrom. 2012, 23, 2043–2047. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.C.; Nishidate, K.; Saito, Y.; Mori, K.; Asakawa, D.; Takeda, S.; Kubota, T.; Terada, N.; Hashimoto, Y.; Hori, H.; et al. Application of Probe Electrospray to Direct Ambient Analysis of Biological Samples. Rapid Commun. Mass Spectrom. 2008, 22, 2366–2374. [Google Scholar] [CrossRef]
- Hsu, C.C.; Elnaggar, M.S.; Peng, Y.; Fang, J.; Sanchez, L.M.; Mascuch, S.J.; Møller, K.A.; Alazzeh, E.K.; Pikula, J.; Quinn, R.A.; et al. Real-Time Metabolomics on Living Microorganisms Using Ambient Electrospray Ionization Flow-Probe. Anal. Chem. 2013, 85, 7014–7018. [Google Scholar] [CrossRef] [Green Version]
- Gong, X.; Zhao, Y.; Cai, S.; Fu, S.; Yang, C.; Zhang, S.; Zhang, X. Single Cell Analysis with Probe ESI-Mass Spectrometry: Detection of Metabolites at Cellular and Subcellular Levels. Anal. Chem. 2014, 86, 3809–3816. [Google Scholar] [CrossRef]
- Deng, J.; Yang, Y.; Xu, M.; Wang, X.; Lin, L.; Yao, Z.P.; Luan, T. Surface-Coated Probe Nanoelectrospray Ionization Mass Spectrometry for Analysis of Target Compounds in Individual Small Organisms. Anal. Chem. 2015, 87, 9923–9930. [Google Scholar] [CrossRef]
- Deng, J.; Li, W.; Yang, Q.; Liu, Y.; Fang, L.; Guo, Y.; Guo, P.; Lin, L.; Yang, Y.; Luan, T. Biocompatible Surface-Coated Probe for in Vivo, in Situ, and Microscale Lipidomics of Small Biological Organisms and Cells Using Mass Spectrometry. Anal. Chem. 2018, 90, 6936–6944. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Chen, C.; Deng, J.; Wu, J.; He, K.; Xiang, Z.; Yang, Y. Analysis of Trace Malachite Green, Crystal Violet, and Their Metabolites in Zebrafish by Surface-Coated Probe Nanoelectrospray Ionization Mass Spectrometry. Talanta 2020, 217, 121064. [Google Scholar] [CrossRef]
- Zaitsu, K.; Hayashi, Y.; Murata, T.; Yokota, K.; Ohara, T.; Kusano, M.; Tsuchihashi, H.; Ishikawa, T.; Ishii, A.; Ogata, K.; et al. In Vivo Real-Time Monitoring System Using Probe Electrospray Ionization/Tandem Mass Spectrometry for Metabolites in Mouse Brain. Anal. Chem. 2018, 90, 4695–4701. [Google Scholar] [CrossRef] [PubMed]
- Zaitsu, K.; Eguchi, S.; Ohara, T.; Kondo, K.; Ishii, A.; Tsuchihashi, H.; Kawamata, T.; Iguchi, A. PiTMaP: A New Analytical Platform for High-Throughput Direct Metabolome Analysis by Probe Electrospray Ionization/Tandem Mass Spectrometry Using an R Software-Based Data Pipeline. Anal. Chem. 2020, 92, 8514–8522. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Xu, Q.; Li, Y.; Xu, W.; Zhai, Y. Coupling Handheld Liquid Microjunction-Surface Sampling Probe (HLMJ-SSP) to the Miniature Mass Spectrometer for Automated and in-Situ Surface Analysis. Talanta 2022, 242, 123090. [Google Scholar] [CrossRef]
- Ngernsutivorakul, T.; Steyer, D.J.; Valenta, A.C.; Kennedy, R.T. In Vivo Chemical Monitoring at High Spatiotemporal Resolution Using Microfabricated Sampling Probes and Droplet-Based Microfluidics Coupled to Mass Spectrometry. Anal. Chem. 2018, 90, 10943–10950. [Google Scholar] [CrossRef]
- Lendor, S.; Hassani, S.A.; Boyaci, E.; Singh, V.; Womelsdorf, T.; Pawliszyn, J. Solid Phase Microextraction-Based Miniaturized Probe and Protocol for Extraction of Neurotransmitters from Brains in Vivo. Anal. Chem. 2019, 91, 4896–4905. [Google Scholar] [CrossRef]
- Deng, J.; Yang, Y.; Liu, Y.; Fang, L.; Lin, L.; Luan, T. Coupling Paternò-Büchi Reaction with Surface-Coated Probe Nanoelectrospray Ionization Mass Spectrometry for in Vivo and Microscale Profiling of Lipid C=C Location Isomers in Complex Biological Tissues. Anal. Chem. 2019, 91, 4592–4599. [Google Scholar] [CrossRef]
- Lu, Q.; Lin, R.; Du, C.; Meng, Y.; Yang, M.; Zenobi, R.; Hang, W. Metal Probe Microextraction Coupled to Dielectric Barrier Discharge Ionization-Mass Spectrometry for Detecting Drug Residues in Organisms. Anal. Chem. 2020, 92, 5921–5928. [Google Scholar] [CrossRef]
- Bogusiewicz, J.; Burlikowska, K.; Łuczykowski, K.; Jaroch, K.; Birski, M.; Furtak, J.; Harat, M.; Pawliszyn, J.; Bojko, B. New Chemical Biopsy Tool for Spatially Resolved Profiling of Human Brain Tissue in Vivo. Sci. Rep. 2021, 11, 19522. [Google Scholar] [CrossRef]
- Cheng, H.; Zhao, X.; Zhang, L.; Ma, M.; Ma, X. Surface-Coated Acupuncture Needles as Solid-Phase Microextraction Probes for In Vivo Analysis of Bioactive Molecules in Living Plants by Mass Spectrometry. Metabolites 2023, 13, 220. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, K.C.; Dénes, J.; Albrecht, K.; Szaniszló, T.; Balogh, J.; Skoumal, R.; Katona, M.; Tóth, M.; Balogh, L.; Takáts, Z. In Vivo, in Situ Tissue Analysis Using Rapid Evaporative Ionization Mass Spectrometry. Angew. Chem.-Int. Ed. 2009, 48, 8240–8242. [Google Scholar] [CrossRef]
- Golf, O.; Strittmatter, N.; Karancsi, T.; Pringle, S.D.; Speller, A.V.M.; Mroz, A.; Kinross, J.M.; Abbassi-Ghadi, N.; Jones, E.A.; Takats, Z. Rapid Evaporative Ionization Mass Spectrometry Imaging Platform for Direct Mapping from Bulk Tissue and Bacterial Growth Media. Anal. Chem. 2015, 87, 2527–2534. [Google Scholar] [CrossRef]
- Bolt, F.; Cameron, S.J.S.; Karancsi, T.; Simon, D.; Schaffer, R.; Rickards, T.; Hardiman, K.; Burke, A.; Bodai, Z.; Perdones-Montero, A.; et al. Automated High-Throughput Identification and Characterization of Clinically Important Bacteria and Fungi Using Rapid Evaporative Ionization Mass Spectrometry. Anal. Chem. 2016, 88, 9419–9426. [Google Scholar] [CrossRef]
- Strittmatter, N.; Rebec, M.; Jones, E.A.; Golf, O.; Abdolrasouli, A.; Balog, J.; Behrends, V.; Veselkov, K.A.; Takats, Z. Characterization and Identification of Clinically Relevant Microorganisms Using Rapid Evaporative Ionization Mass Spectrometry. Anal. Chem. 2014, 86, 6555–6562. [Google Scholar] [CrossRef]
- Manoli, E.; Mason, S.; Ford, L.; Adebesin, A.; Bodai, Z.; Darzi, A.; Kinross, J.; Takats, Z. Validation of Ultrasonic Harmonic Scalpel for Real-Time Tissue Identification Using Rapid Evaporative Ionization Mass Spectrometry. Anal. Chem. 2021, 93, 5906–5916. [Google Scholar] [CrossRef]
- Fatou, B.; Saudemont, P.; Leblanc, E.; Vinatier, D.; Mesdag, V.; Wisztorski, M.; Focsa, C.; Salzet, M.; Ziskind, M.; Fournier, I. In Vivo Real-Time Mass Spectrometry for Guided Surgery Application. Sci. Rep. 2016, 6, 25919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fatou, B.; Saudemont, P.; Duhamel, M.; Ziskind, M.; Focsa, C.; Salzet, M.; Fournier, I. Real Time and in Vivo Pharmaceutical and Environmental Studies with SpiderMass Instrument. J. Biotechnol. 2018, 281, 61–66. [Google Scholar] [CrossRef]
- Saudemont, P.; Quanico, J.; Robin, Y.M.; Baud, A.; Balog, J.; Fatou, B.; Tierny, D.; Pascal, Q.; Minier, K.; Pottier, M.; et al. Real-Time Molecular Diagnosis of Tumors Using Water-Assisted Laser Desorption/Ionization Mass Spectrometry Technology. Cancer Cell 2018, 34, 840–851.e4. [Google Scholar] [CrossRef] [Green Version]
- Ogrinc, N.; Saudemont, P.; Balog, J.; Robin, Y.M.; Gimeno, J.P.; Pascal, Q.; Tierny, D.; Takats, Z.; Salzet, M.; Fournier, I. Water-Assisted Laser Desorption/Ionization Mass Spectrometry for Minimally Invasive in Vivo and Real-Time Surface Analysis Using SpiderMass. Nat. Protoc. 2019, 14, 3162–3182. [Google Scholar] [CrossRef]
- Plekhova, V.; Van Meulebroek, L.; De Graeve, M.; Perdones-Montero, A.; De Spiegeleer, M.; De Paepe, E.; Van de Walle, E.; Takats, Z.; Cameron, S.J.S.; Vanhaecke, L. Rapid ex Vivo Molecular Fingerprinting of Biofluids Using Laser-Assisted Rapid Evaporative Ionization Mass Spectrometry. Nat. Protoc. 2021, 16, 4327–4354. [Google Scholar] [CrossRef] [PubMed]
- Katz, L.; Woolman, M.; Kiyota, T.; Pires, L.; Zaidi, M.; Hofer, S.O.P.; Leong, W.; Wouters, B.G.; Ghazarian, D.; Chan, A.W.; et al. Picosecond Infrared Laser Mass Spectrometry Identifies a Metabolite Array for 10 s Diagnosis of Select Skin Cancer Types: A Proof-of-Concept Feasibility Study. Anal. Chem. 2022, 94, 16821–16830. [Google Scholar] [CrossRef]
- Ogrinc, N.; Kruszewski, A.; Chaillou, P.; Saudemont, P.; Lagadec, C.; Salzet, M.; Duriez, C.; Fournier, I. Robot-Assisted SpiderMass ForIn VivoReal-Time Topography Mass Spectrometry Imaging. Anal. Chem. 2021, 93, 14383–14391. [Google Scholar] [CrossRef]
- Zhang, J.; Rector, J.; Lin, J.Q.; Young, J.H.; Sans, M.; Katta, N.; Giese, N.; Yu, W.; Nagi, C.; Suliburk, J.; et al. Nondestructive Tissue Analysis for ex Vivo and in Vivo Cancer Diagnosis Using a Handheld Mass Spectrometry System. Sci. Transl. Med. 2017, 9, eaan3968. [Google Scholar] [CrossRef] [Green Version]
- Sans, M.; Zhang, J.; Lin, J.Q.; Feider, C.L.; Giese, N.; Breen, M.T.; Sebastian, K.; Liu, J.; Sood, A.K.; Eberlin, L.S. Performance of the MasSpec Pen for Rapid Diagnosis of Ovarian Cancer. Clin. Chem. 2019, 65, 674–683. [Google Scholar] [CrossRef] [PubMed]
- Povilaitis, S.C.; Chakraborty, A.; Kirkpatrick, L.M.; Downey, R.D.; Hauger, S.B.; Eberlin, L.S. Identifying Clinically Relevant Bacteria Directly from Culture and Clinical Samples with a Handheld Mass Spectrometry Probe. Clin. Chem. 2022, 68, 1459–1470. [Google Scholar] [CrossRef]
- King, M.E.; Zhang, J.; Lin, J.Q.; Garza, K.Y.; DeHoog, R.J.; Feider, C.L.; Bensussan, A.; Sans, M.; Krieger, A.; Badal, S.; et al. Rapid Diagnosis and Tumor Margin Assessment during Pancreatic Cancer Surgery with the MasSpec Pen Technology. Proc. Natl. Acad. Sci. USA 2021, 118, e2104411118. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Xu, B.F.; Lei, C.Y.; Nie, Z. Advances in the Integration of Nucleic Acid Nanotechnology into CRISPR-Cas System. J. Anal. Test. 2021, 5, 130–141. [Google Scholar] [CrossRef]
- Hamaloğlu, K.Ö.; Çelikbıçak, Ö.; Salih, B.; Pişkin, E. Performances of Protein Array Platforms Prepared by Soft Lithography and Self-Assemblying Monolayers-Approach by Using SPR, Ellipsometry and MALDI-MS. J. Mol. Struct. 2019, 1198, 126856. [Google Scholar] [CrossRef]
- Yang, L.; Hou, A.; Wang, S.; Zhang, J.; Man, W.; Guo, X.; Yang, B.; Wang, Q.; Jiang, H.; Kuang, H. Screening and Quantification of TNF-α Ligand from Angelicae Pubescentis Radix by Biosensor and UPLC-MS/MS. Anal. Biochem. 2020, 596, 113643. [Google Scholar] [CrossRef]
- Jiménez-Castells, C.; Defaus, S.; Moise, A.; Przbylski, M.; Andreu, D.; Gutiérrez-Gallego, R. Surface-Based and Mass Spectrometric Approaches to Deciphering Sugar-Protein Interactions in a Galactose-Specific Agglutinin. Anal. Chem. 2012, 84, 6515–6520. [Google Scholar] [CrossRef] [PubMed]
- Marchesini, G.R.; Buijs, J.; Haasnoot, W.; Hooijerink, D.; Jansson, O.; Nielen, M.W.F. Nanoscale Affinity Chip Interface for Coupling Inhibition SPR Immunosensor Screening with Nano-LC TOF MS. Anal. Chem. 2008, 80, 1159–1168. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, X.; Nie, H.; Yang, L.; Li, Z.; Bai, Y.; Niu, L.; Song, D.; Liu, H. Interface for Online Coupling of Surface Plasmon Resonance to Direct Analysis in Real Time Mass Spectrometry. Anal. Chem. 2015, 87, 6505–6509. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, S.; Wen, L.; Bai, Y.; Niu, L.; Song, D.; Liu, H. A Dielectric Barrier Discharge Ionization Based Interface for Online Coupling Surface Plasmon Resonance with Mass Spectrometry. Analyst 2016, 141, 3343–3348. [Google Scholar] [CrossRef]
- Mihoc, D.; Lupu, L.M.; Wiegand, P.; Kleinekofort, W.; Müller, O.; Völklein, F.; Glocker, M.O.; Barka, F.; Barka, G.; Przybylski, M. Antibody Epitope and Affinity Determination of the Myocardial Infarction Marker Myoglobin by SPR-Biosensor Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2021, 32, 106–113. [Google Scholar] [CrossRef]
- Joshi, S.; Zuilhof, H.; Van Beek, T.A.; Nielen, M.W.F. Biochip Spray: Simplified Coupling of Surface Plasmon Resonance Biosensing and Mass Spectrometry. Anal. Chem. 2017, 89, 1427–1432. [Google Scholar] [CrossRef] [PubMed]
- Piendl, S.K.; Schönfelder, T.; Polack, M.; Weigelt, L.; van der Zwaag, T.; Teutenberg, T.; Beckert, E.; Belder, D. Integration of Segmented Microflow Chemistry and Online HPLC/MS Analysis on a Microfluidic Chip System Enabling Enantioselective Analyses at the Nanoliter Scale. Lab Chip 2021, 21, 2614–2624. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Weise, C.; Polack, M.; Urban, R.D.; Krafft, B.; Hasan, S.; Westphal, H.; Warias, R.; Schmidt, S.; Gulder, T.; et al. On-the-Fly Mass Spectrometry in Digital Microfluidics Enabled by a Microspray Hole: Toward Multidimensional Reaction Monitoring in Automated Synthesis Platforms. J. Am. Chem. Soc. 2022, 144, 10353–10360. [Google Scholar] [CrossRef]
- Takagi, Y.; Kazoe, Y.; Morikawa, K.; Kitamori, T. Femtoliter-Droplet Mass Spectrometry Interface Utilizing Nanofluidics for Ultrasmall and High-Sensitivity Analysis. Anal. Chem. 2022, 94, 10074–10081. [Google Scholar] [CrossRef]
- Li, X.; Yin, R.; Hu, H.; Li, Y.; Sun, X.; Dey, S.K.; Laskin, J. An Integrated Microfluidic Probe for Mass Spectrometry Imaging of Biological Samples**. Angew. Chem.-Int. Ed. 2020, 59, 22388–22391. [Google Scholar] [CrossRef]
- Ho, J.; Tan, M.K.; Go, D.B.; Yeo, L.Y.; Friend, J.R.; Chang, H.C. Paper-Based Microfluidic Surface Acoustic Wave Sample Delivery and Ionization Source for Rapid and Sensitive Ambient Mass Spectrometry. Anal. Chem. 2011, 83, 3260–3266. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.H.; Liang, T.; Schneider, T.; Oyler, B.L.; Chandler, C.E.; Ernst, R.K.; Yen, G.S.; Huang, Y.; Nilsson, E.; Goodlett, D.R. Rapid Lipid a Structure Determination via Surface Acoustic Wave Nebulization and Hierarchical Tandem Mass Spectrometry Algorithm. Rapid Commun. Mass Spectrom. 2016, 30, 2555–2560. [Google Scholar] [CrossRef]
- Silina, Y.E.; Morgan, B. LDI-MS Scanner: Laser Desorption Ionization Mass Spectrometry-Based Biosensor Standardization. Talanta 2021, 223, 121688. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, F.; Siddiqui, M.A.; Babalola, O.O.; Wu, H.F. Biofunctionalization of Nanoparticle Assisted Mass Spectrometry as Biosensors for Rapid Detection of Plant Associated Bacteria. Biosens. Bioelectron. 2012, 35, 235–242. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, F.; Wei, W.; Shuaibu, N.S.; Feng, H.; Wang, X.; Pan, Y. Mass Spectrometry-Based Biosensing and Biopsy Technology. Chemosensors 2023, 11, 419. https://doi.org/10.3390/chemosensors11080419
Chu F, Wei W, Shuaibu NS, Feng H, Wang X, Pan Y. Mass Spectrometry-Based Biosensing and Biopsy Technology. Chemosensors. 2023; 11(8):419. https://doi.org/10.3390/chemosensors11080419
Chicago/Turabian StyleChu, Fengjian, Wei Wei, Nazifi Sani Shuaibu, Hongru Feng, Xiaozhi Wang, and Yuanjiang Pan. 2023. "Mass Spectrometry-Based Biosensing and Biopsy Technology" Chemosensors 11, no. 8: 419. https://doi.org/10.3390/chemosensors11080419
APA StyleChu, F., Wei, W., Shuaibu, N. S., Feng, H., Wang, X., & Pan, Y. (2023). Mass Spectrometry-Based Biosensing and Biopsy Technology. Chemosensors, 11(8), 419. https://doi.org/10.3390/chemosensors11080419