Recent Progress in Multifunctional Gas Sensors Based on 2D Materials
Abstract
:1. Introduction
2. Multifunctional Gas Sensors Based on Different 2D Materials
2.1. Graphene and Its Derivatives
2.2. Transition Metal Dichalcogenides (TMDs)
2.3. MXenes
2.4. Other 2D Materials
Sensing Materials | Target Gas | Other Functions | Ref. |
---|---|---|---|
BPNS-PEI-TPPS | HCl, NH3 |
| [84] |
2D M3HHTP2 | NH3, NO, H2S |
| [85] |
2D Ni3HHTP22D Ni3HITP2 | NO, H2S |
| [86] |
MoSi2As4 | NH3, NO2 |
| [94] |
Au-InSe | NH3, NO2 |
| [95] |
g-C3N4-Fe-Cu | Methane |
| [88] |
Au–TiO2-g-C3N4 | VOAs |
| [89] |
Nb-doped g-C3N4 | NH3 |
| [90] |
ZnO/Ag/g-C3N4 | NO2 |
| [91] |
CeO2/g-C3N4 | Humidity |
| [92] |
g-C3N4/GaN | NO2 |
| [87] |
3. Smart Gas Sensors for Artificial Intelligence
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Majhi, S.M.; Mirzaei, A.; Kim, H.W.; Kim, S.S.; Kim, T.W. Recent advances in energy-saving chemiresistive gas sensors: A review. Nano Energy 2021, 79, 105369. [Google Scholar] [CrossRef]
- Bag, A.; Lee, N.-E. Gas sensing with heterostructures based on two-dimensional nanostructured materials: A review. J. Mater. Chem. C 2019, 7, 13367–13383. [Google Scholar] [CrossRef]
- Dai, J.; Ogbeide, O.; Macadam, N.; Sun, Q.; Yu, W.; Li, Y.; Su, B.-L.; Hasan, T.; Huang, X.; Huang, W. Printed gas sensors. Chem. Soc. Rev. 2020, 49, 1756–1789. [Google Scholar] [CrossRef]
- Majder-Łopatka, M.; Węsierski, T.; Dmochowska, A.; Salamonowicz, Z.; Polańczyk, A. The influence of hydrogen on the indications of the electrochemical carbon monoxide sensors. Sustainability 2020, 12, 14. [Google Scholar] [CrossRef]
- Kim, Y.; Goo, S.-G.; Lim, J.S. Multi-Gas analyzer based on tunable filter non-dispersive infrared sensor: Application to the monitoring of eco-friendly gas insulated switchgears. Sensors 2022, 22, 8662. [Google Scholar] [CrossRef]
- Wang, X.; Qin, J.; Hu, Q.; Das, P.; Wen, P.; Zheng, S.; Zhou, F.; Feng, L.; Wu, Z.S. Multifunctional mesoporous polyaniline/graphene nanosheets for flexible planar integrated microsystem of zinc ion microbattery and gas sensor. Small 2022, 18, 2200678. [Google Scholar] [CrossRef]
- Wang, L.; Lou, Z.; Jiang, K.; Shen, G. Bio-multifunctional smart wearable sensors for medical devices. Adv. Intell. Syst. 2019, 1, 1900040. [Google Scholar] [CrossRef]
- Tai, H.; Wang, S.; Duan, Z.; Jiang, Y. Evolution of breath analysis based on humidity and gas sensors: Potential and challenges. Sens. Actuators B Chem. 2020, 318, 128104. [Google Scholar] [CrossRef]
- Yang, Z.; Lv, S.; Zhang, Y.; Wang, J.; Jiang, L.; Jia, X.; Wang, C.; Yan, X.; Sun, P.; Duan, Y.; et al. Self-assembly 3D porous crumpled MXene spheres as efficient gas and pressure sensing material for transient all-MXene sensors. Nano-Micro Lett. 2022, 14, 56. [Google Scholar] [CrossRef]
- Bag, A.; Lee, N.-E. Recent advancements in development of wearable gas sensors. Adv. Mater. Technol. 2021, 6, 2000883. [Google Scholar] [CrossRef]
- Guo, Y.; Wei, X.; Gao, S.; Yue, W.; Li, Y.; Shen, G. Recent advances in carbon material-based multifunctional sensors and their applications in electronic skin systems. Adv. Funct. Mater. 2021, 31, 2104288. [Google Scholar] [CrossRef]
- Cao, X.; Xiong, Y.; Sun, J.; Zhu, X.; Sun, Q.; Wang, Z.L. Piezoelectric nanogenerators derived self-powered sensors for multifunctional applications and artificial intelligence. Adv. Funct. Mater. 2021, 31, 2102983. [Google Scholar] [CrossRef]
- Varghese, S.S.; Lonkar, S.; Singh, K.K.; Swaminathan, S.; Abdala, A. Recent advances in graphene based gas sensors. Sens. Actuators B Chem. 2015, 218, 160–183. [Google Scholar] [CrossRef]
- Chakraborthy, A.; Nuthalapati, S.; Nag, A.; Afsarimanesh, N.; Alahi, M.E.E.; Altinsoy, M.E. A critical review of the use of graphene-based gas sensors. Chemosensors 2022, 10, 355. [Google Scholar] [CrossRef]
- Pei, Y.; Zhang, X.; Hui, Z.; Zhou, J.; Huang, X.; Sun, G.; Huang, W. Ti3C2TX MXene for sensing applications: Recent progress, design principles, and future perspectives. ACS Nano 2021, 15, 3996–4017. [Google Scholar] [CrossRef]
- Lee, E.; Yoon, Y.S.; Kim, D.-J. Two-dimensional transition metal dichalcogenides and metal oxide hybrids for gas sensing. ACS Sens. 2018, 3, 2045–2060. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.N.; Liu, B.; Chen, L.; Ma, Y.; Cong, S.; Aroonyadet, N.; Köpf, M.; Nilges, T.; Zhou, C. Black phosphorus gas sensors. ACS Nano 2015, 9, 5618–5624. [Google Scholar] [CrossRef] [PubMed]
- Bhargava Reddy, M.S.; Kailasa, S.; Marupalli, B.C.; Sadasivuni, K.K.; Aich, S. A family of 2D-MXenes: Synthesis, properties, and gas sensing applications. ACS Sens. 2022, 7, 2132–2163. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Chen, Y.-J.; Huang, X.; Dong, L.-Z.; Lu, M.; Guo, C.; Yuan, D.; Chen, Y.; Xu, G.; Li, S.-L.; et al. Porphyrin-Based COF 2D Materials: Variable Modification of Sensing Performances by Post-Metallization. Angew. Chem. Int. Ed. 2022, 61, e202115308. [Google Scholar] [CrossRef]
- Wang, C.; Xia, K.; Wang, H.; Liang, X.; Yin, Z.; Zhang, Y. Advanced carbon for flexible and wearable electronics. Adv. Mater. 2019, 31, 1801072. [Google Scholar] [CrossRef]
- Nag, A.; Mitra, A.; Mukhopadhyay, S.C. Graphene and its sensor-based applications: A review. Sens. Actuators A Phys. 2018, 270, 177–194. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, J.; Wang, Y. Strategies for the performance enhancement of graphene-based gas sensors: A review. Talanta 2021, 235, 122745. [Google Scholar] [CrossRef] [PubMed]
- Katsnelson, M.I.; Novoselov, K.S.; Geim, A.K. Chiral tunnelling and the Klein paradox in graphene. Nat. Phys. 2006, 2, 620–625. [Google Scholar] [CrossRef]
- Meng, Z.; Stolz, R.M.; Mendecki, L.; Mirica, K.A. Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem. Rev. 2019, 119, 478–598. [Google Scholar] [CrossRef] [PubMed]
- Reddeppa, M.; Mitta, S.B.; Chandrakalavathi, T.; Park, B.-G.; Murali, G.; Jeyalakshmi, R.; Kim, S.-G.; Park, S.H.; Kim, M.-D. Solution-processed Au@ rGO/GaN nanorods hybrid-structure for self-powered UV, visible photodetector and CO gas sensors. Curr. Appl. Phys. 2019, 19, 938–945. [Google Scholar] [CrossRef]
- Cui, G.; Cheng, Y.; Liu, C.; Huang, K.; Li, J.; Wang, P.; Duan, X.; Chen, K.; Liu, K.; Liu, Z. Massive growth of graphene quartz fiber as a multifunctional electrode. ACS Nano 2020, 14, 5938–5945. [Google Scholar] [CrossRef]
- Wu, J.; Wu, Z.; Ding, H.; Wei, Y.; Yang, X.; Li, Z.; Yang, B.-R.; Liu, C.; Qiu, L.; Wang, X. Multifunctional and high-sensitive sensor capable of detecting humidity, temperature, and flow stimuli using an integrated microheater. ACS Appl. Mater. Interfaces 2019, 11, 43383–43392. [Google Scholar] [CrossRef]
- Lu, L.; Yang, B.; Liu, J. Flexible multifunctional graphite nanosheet/electrospun-polyamide 66 nanocomposite sensor for ECG, strain, temperature and gas measurements. Chem. Eng. J. 2020, 400, 125928. [Google Scholar] [CrossRef]
- Yang, L.; Zheng, G.; Cao, Y.; Meng, C.; Li, Y.; Ji, H.; Chen, X.; Niu, G.; Yan, J.; Xue, Y.; et al. Moisture-resistant, stretchable NOx gas sensors based on laser-induced graphene for environmental monitoring and breath analysis. Microsyst. Nanoeng. 2022, 8, 78. [Google Scholar] [CrossRef]
- Mehta, S.S.; Nadargi, D.Y.; Tamboli, M.S.; Alshahrani, T.; Minnam Reddy, V.R.; Kim, E.S.; Mulla, I.S.; Park, C.; Suryavanshi, S.S. RGO/WO3 hierarchical architectures for improved H2S sensing and highly efficient solar-driving photo-degradation of RhB dye. Sci. Rep. 2021, 11, 5023. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Liang, X.; Wang, H.; Lu, H.; Zhu, M.; Wang, H.; Zhang, M.; Qiu, X.; Song, Y.; et al. Humidity-sensitive chemoelectric flexible sensors based on metal-air redox reaction for health management. Nat. Commun. 2022, 13, 5416. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Ning, J.; Wang, B.; Guo, H.; Feng, X.; Shen, X.; Jia, Y.; Dong, J.; Wang, D.; Zhang, J.; et al. Hybridized 1T/2H-MoS2/graphene fishnet tube for high-performance on-chip integrated micro-systems comprising supercapacitors and gas sensors. Nano Res. 2021, 14, 114–121. [Google Scholar] [CrossRef]
- Shu, J.; Qiu, Z.; Tang, D. Self-referenced smartphone imaging for visual screening of H2S using CuxO-polypyrrole conductive aerogel doped with graphene oxide framework. Anal. Chem. 2018, 90, 9691–9694. [Google Scholar] [CrossRef]
- He, Q.; Wu, S.; Yin, Z.; Zhang, H. Graphene-based electronic sensors. Chem. Sci. 2012, 3, 1764–1772. [Google Scholar] [CrossRef]
- Yuan, W.; Shi, G. Graphene-based gas sensors. J. Mater. Chem. A 2013, 1, 10078–10091. [Google Scholar] [CrossRef]
- Yu, X.; Cheng, H.; Zhang, M.; Zhao, Y.; Qu, L.; Shi, G. Graphene-based smart materials. Nat. Rev. Mater. 2017, 2, 17046. [Google Scholar] [CrossRef]
- Hu, H.; Yang, X.; Guo, X.; Khaliji, K.; Biswas, S.R.; García de Abajo, F.J.; Low, T.; Sun, Z.; Dai, Q. Gas identification with graphene plasmons. Nat. Commun. 2019, 10, 1131. [Google Scholar] [CrossRef]
- Stanford, M.G.; Yang, K.; Chyan, Y.; Kittrell, C.; Tour, J.M. Laser-induced graphene for flexible and embeddable gas sensors. ACS Nano 2019, 13, 3474–3482. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kang, H.J.; Moerk, C.T.; Lee, B.-T.; Choi, J.S.; Yim, J.-H. Flexible, biocompatible, and electroconductive Polyurethane foam composites coated with graphene oxide for ammonia detection. Sens. Actuators B Chem. 2021, 344, 130269. [Google Scholar] [CrossRef]
- Fang, H.; Lin, J.; Hu, Z.; Liu, H.; Tang, Z.; Shi, T.; Liao, G. Cu(OH)2 nanowires/graphene oxide composites based QCM humidity sensor with fast-response for real-time respiration monitoring. Sens. Actuators B Chem. 2020, 304, 127313. [Google Scholar] [CrossRef]
- Bi, S.; Hou, L.; Lu, Y. Multifunctional sodium alginate fabric based on reduced graphene oxide and polypyrrole for wearable closed-loop point-of-care application. Chem. Eng. J. 2021, 406, 126778. [Google Scholar] [CrossRef]
- Zhang, L.; Tan, Q.; Wang, Y.; Fan, Z.; Lin, L.; Zhang, W.; Xiong, J. Wirelessly powered multi-functional wearable humidity sensor based on RGO-WS2 heterojunctions. Sens. Actuators B Chem. 2021, 329, 129077. [Google Scholar] [CrossRef]
- Xiong, C.; Li, M.; Zhao, W.; Duan, C.; Ni, Y. Flexible N-Doped reduced graphene oxide/carbon Nanotube-MnO2 film as a multifunctional material for high-performance supercapacitors, catalysts and sensors. J. Mater. 2020, 6, 523–531. [Google Scholar] [CrossRef]
- Chen, X.; Wang, T.; Han, Y.; Lv, W.; Li, B.; Su, C.; Zeng, M.; Yang, J.; Hu, N.; Su, Y.; et al. Wearable NO2 sensing and wireless application based on ZnS nanoparticles/nitrogen-doped reduced graphene oxide. Sens. Actuators B Chem. 2021, 345, 130423. [Google Scholar] [CrossRef]
- Allen, M.J.; Tung, V.C.; Kaner, R.B. Honeycomb carbon: A review of graphene. Chem. Rev. 2010, 110, 132–145. [Google Scholar] [CrossRef]
- Majhi, S.M.; Mirzaei, A.; Kim, H.W.; Kim, S.S. Reduced graphene oxide (rGO)-loaded metal-oxide nanofiber gas sensors: An overview. Sensors 2021, 21, 1352. [Google Scholar] [CrossRef]
- Achary, L.S.K.; Kumar, A.; Barik, B.; Nayak, P.S.; Tripathy, N.; Kar, J.P.; Dash, P. Reduced graphene oxide-CuFe2O4 nanocomposite: A highly sensitive room temperature NH3 gas sensor. Sens. Actuators B Chem. 2018, 272, 100–109. [Google Scholar] [CrossRef]
- Ogbeide, O.; Bae, G.; Yu, W.; Morrin, E.; Song, Y.; Song, W.; Li, Y.; Su, B.-L.; An, K.-S.; Hasan, T. Inkjet-printed rGO/binary metal oxide sensor for predictive gas sensing in a mixed environment. Adv. Funct. Mater. 2022, 32, 2113348. [Google Scholar] [CrossRef]
- Chen, Z.; Guo, H.; Zhang, F.; Li, X.; Yu, J.; Chen, X. Porous ZnO/rGO nanosheet-based NO2 gas sensor with high sensitivity and ppb-level detection limit at room temperature. Adv. Mater. Interfaces 2021, 8, 2101511. [Google Scholar] [CrossRef]
- Bie, C.; Yu, H.; Cheng, B.; Ho, W.; Fan, J.; Yu, J. Design, fabrication, and mechanism of nitrogen-doped graphene-based photocatalyst. Adv. Mater. 2021, 33, 2003521. [Google Scholar] [CrossRef]
- Mirzaei, A.; Bharath, S.P.; Kim, J.-Y.; Pawar, K.K.; Kim, H.W.; Kim, S.S. N-Doped Graphene and its derivatives as resistive gas sensors: An overview. Chemosensors 2023, 11, 334. [Google Scholar] [CrossRef]
- Ali, M.; Afzal, A.M.; Iqbal, M.W.; Mumtaz, S.; Imran, M.; Ashraf, F.; Ur Rehman, A.; Muhammad, F. 2D-TMDs based electrode material for supercapacitor applications. Int. J. Energy Res. 2022, 46, 22336–22364. [Google Scholar] [CrossRef]
- Zheng, W.; Liu, X.; Xie, J.; Lu, G.; Zhang, J. Emerging van der Waals junctions based on TMDs materials for advanced gas sensors. Coord. Chem. Rev. 2021, 447, 214151. [Google Scholar] [CrossRef]
- Kuc, A.; Zibouche, N.; Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B 2011, 83, 245213. [Google Scholar] [CrossRef]
- Yin, X.; Tang, C.S.; Zheng, Y.; Gao, J.; Wu, J.; Zhang, H.; Chhowalla, M.; Chen, W.; Wee, A.T.S. Recent developments in 2D transition metal dichalcogenides: Phase transition and applications of the (quasi-) metallic phases. Chem. Soc. Rev. 2021, 50, 10087–10115. [Google Scholar] [CrossRef]
- Chhowalla, M.; Liu, Z.; Zhang, H. Two-dimensional transition metal dichalcogenide (TMD) nanosheets. Chem. Soc. Rev. 2015, 44, 2584–2586. [Google Scholar] [CrossRef]
- Zhang, X.; Lai, Z.; Ma, Q.; Zhang, H. Novel structured transition metal dichalcogenide nanosheets. Chem. Soc. Rev. 2018, 47, 3301–3338. [Google Scholar] [CrossRef]
- Qiao, X.-Q.; Zhang, Z.-W.; Hou, D.-F.; Li, D.-S.; Liu, Y.; Lan, Y.-Q.; Zhang, J.; Feng, P.; Bu, X. Tunable MoS2/SnO2 P–N heterojunctions for an efficient trimethylamine gas sensor and 4-nitrophenol reduction catalyst. ACS Sustain. Chem. Eng. 2018, 6, 12375–12384. [Google Scholar] [CrossRef]
- Qin, Z.; Song, X.; Wang, J.; Li, X.; Wu, C.; Wang, X.; Yin, X.; Zeng, D. Development of flexible paper substrate sensor based on 2D WS2 with S defects for room-temperature NH3 gas sensing. Appl. Surf. Sci. 2022, 573, 151535. [Google Scholar] [CrossRef]
- Islam, M.A.; Li, H.; Moon, S.; Han, S.S.; Chung, H.-S.; Ma, J.; Yoo, C.; Ko, T.-J.; Oh, K.H.; Jung, Y.; et al. Vertically aligned 2D MoS2 layers with strain-engineered serpentine patterns for high-performance stretchable gas sensors: Experimental and theoretical demonstration. ACS Appl. Mater. Interfaces 2020, 12, 53174–53183. [Google Scholar] [CrossRef]
- Afzal, A.M.; Iqbal, M.Z.; Dastgeer, G.; Nazir, G.; Mumtaz, S.; Usman, M.; Eom, J. WS2/GeSe/WS2 bipolar transistor-based chemical sensor with fast response and recovery times. ACS Appl. Mater. Interfaces 2020, 12, 39524–39532. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Chen, T.; Liu, G.; Xie, L.; Zhou, G.; Long, M. Multifunctional 2D g-C4N3/MoS2 vdW heterostructure-based nanodevices: Spin filtering and gas sensing properties. ACS Sens. 2022, 7, 3450–3460. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Xie, J.; Lou, C.; Zheng, W.; Liu, X.; Zhang, J. Flexible NO2 sensors based on WSe2 nanosheets with bifunctional selectivity and superior sensitivity under UV activation. Sens. Actuators B Chem. 2021, 333, 129571. [Google Scholar] [CrossRef]
- Huang, Y.; Jiao, W.; Chu, Z.; Nie, X.; Wang, R.; He, X. SnS2 quantum dot-based optoelectronic flexible sensors for ultrasensitive detection of NO2 down to 1 ppb. ACS Appl. Mater. Interfaces 2020, 12, 25178–25188. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Tao, L.-Q.; Zou, S.; Zhu, C.; Wang, G.; Sun, H.; Ren, T.-L. A multi-functional NO2 gas monitor and self-alarm based on laser-induced graphene. Chem. Eng. J. 2022, 428, 131079. [Google Scholar] [CrossRef]
- Wang, B.; Luo, H.; Wang, X.; Wang, E.; Sun, Y.; Tsai, Y.-C.; Dong, J.; Liu, P.; Li, H.; Xu, Y. et, al. Direct laser patterning of two-dimensional lateral transition metal disulfide-oxide-disulfide heterostructures for ultrasensitive sensors. Nano Res. 2020, 13, 2035–2043. [Google Scholar] [CrossRef]
- Wang, Z.; Jing, X.; Duan, S.; Liu, C.; Kang, D.; Xu, X.; Chen, J.; Xia, Y.; Chang, B.; Zhao, C.; et al. 2D PtSe2 enabled wireless wearable gas monitoring circuits with distinctive strain-enhanced performance. ACS Nano 2023, 17, 11557–11566. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, H.; Cao, H.; Xie, D.; Li, C.; Yang, H.; Yao, W.; Cheetham, A.K. Ultratough hydrogen-bond-bridged phosphorene films. Adv. Mater. 2022, 34, 2203332. [Google Scholar] [CrossRef]
- VahidMohammadi, A.; Rosen, J.; Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 2021, 372, eabf1581. [Google Scholar] [CrossRef]
- Chen, H.; Ma, H.; Zhang, P.; Wen, Y.; Qu, L.; Li, C. Pristine titanium carbide MXene hydrogel matrix. ACS Nano 2020, 14, 10471–10479. [Google Scholar] [CrossRef]
- Anasori, B.; Xie, Y.; Beidaghi, M.; Lu, J.; Hosler, B.C.; Hultman, L.; Kent, P.R.; Gogotsi, Y.; Barsoum, M.W. Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 2015, 9, 9507–9516. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhang, D.; Guo, J.; Hu, Y.; Yang, Y.; Sun, T.; Zhang, H.; Liu, X. Multifunctional poly (vinyl alcohol)/Ag nanofibers-based triboelectric nanogenerator for self-powered MXene/tungsten oxide nanohybrid NO2 gas sensor. Nano Energy 2021, 89, 106410. [Google Scholar] [CrossRef]
- Zhou, T.; Zhang, P.; Yu, Z.; Tao, M.; Zhou, D.; Yang, B.; Zhang, T. Light-driven, ultra-sensitive and multifunctional ammonia wireless sensing system by plasmonic-functionalized Nb2CTx MXenes towards smart agriculture. Nano Energy 2023, 108, 108216. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, D.; Yang, Y.; Mi, Q.; Zhang, J.; Yu, L. Multifunctional latex/polytetrafluoroethylene-based triboelectric nanogenerator for self-powered organ-like MXene/metal–organic framework-derived CuO nanohybrid ammonia sensor. ACS Nano 2021, 15, 2911–2919. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, D.; Chen, X.; Zhang, H.; Tang, M.; Wang, J. Multifunctional respiration-driven triboelectric nanogenerator for self-powered detection of formaldehyde in exhaled gas and respiratory behavior. Nano Energy 2022, 102, 107711. [Google Scholar] [CrossRef]
- Wang, X.; Gong, L.; Li, Z.; Yin, Y.; Zhang, D. A room temperature ammonia gas sensor based on cerium oxide/MXene and self-powered by a freestanding-mode triboelectric nanogenerator and its multifunctional monitoring application. J. Mater. Chem. A 2023, 11, 7690–7701. [Google Scholar] [CrossRef]
- Sardana, S.; Kaur, H.; Arora, B.; Aswal, D.K.; Mahajan, A. Self-powered monitoring of ammonia using an MXene/TiO2/cellulose nanofiber heterojunction-based sensor driven by an electrospun triboelectric nanogenerator. ACS Sens. 2022, 7, 312–321. [Google Scholar] [CrossRef]
- Liu, L.-X.; Chen, W.; Zhang, H.-B.; Wang, Q.-W.; Guan, F.; Yu, Z.-Z. Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 2019, 29, 1905197. [Google Scholar] [CrossRef]
- He, S.; Gui, Y.; Wang, Y.; Yang, J. A self-powered β-Ni(OH)2/MXene based ethanol sensor driven by an enhanced triboelectric nanogenerator based on β-Ni(OH)2@PVDF at room temperature. Nano Energy 2023, 107, 108132. [Google Scholar] [CrossRef]
- Jin, X.; Li, L.; Zhao, S.; Li, X.; Jiang, K.; Wang, L.; Shen, G. Assessment of occlusal force and local gas release using degradable bacterial cellulose/Ti3C2Tx MXene bioaerogel for oral healthcare. ACS Nano 2021, 15, 18385–18393. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, L.-Y.; Tang, C.-Y.; Zha, X.-J.; Liu, Y.; Su, B.-H.; Ke, K.; Bao, R.-Y.; Yang, M.-B.; Yang, W. Smart Ti3C2Tx MXene fabric with fast humidity response and joule heating for healthcare and medical therapy applications. ACS Nano 2020, 14, 8793–8805. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.-R.; Tian, Z.-Q.; Wang, Z.L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334. [Google Scholar] [CrossRef]
- Ding, X.; Zhang, Y.; Zhang, Y.; Ding, X.; Zhang, H.; Cao, T.; Qu, Z.-B.; Ren, J.; Li, L.; Guo, Z. Modular assembly of MXene frameworks for noninvasive disease diagnosis via urinary volatiles. ACS Nano 2022, 16, 17376–17388. [Google Scholar] [CrossRef]
- Wang, R.; Yan, X.; Ge, B.; Zhou, J.; Wang, M.; Zhang, L.; Jiao, T. Facile preparation of self-assembled black phosphorus-dye composite films for chemical gas sensors and surface-enhanced Raman scattering performances. ACS Sustain. Chem. Eng. 2020, 8, 4521–4536. [Google Scholar] [CrossRef]
- Smith, M.K.; Jensen, K.E.; Pivak, P.A.; Mirica, K.A. Direct self-assembly of conductive nanorods of metal–organic frameworks into chemiresistive devices on shrinkable polymer films. Chem. Mater. 2016, 28, 5264–5268. [Google Scholar] [CrossRef]
- Smith, M.K.; Mirica, K.A. Self-organized frameworks on textiles (SOFT): Conductive fabrics for simultaneous sensing, capture, and filtration of gases. J. Am. Chem. Soc. 2017, 139, 16759–16767. [Google Scholar] [CrossRef]
- Reddeppa, M.; KimPhung, N.T.; Murali, G.; Pasupuleti, K.S.; Park, B.-G.; In, I.; Kim, M.-D. Interaction activated interfacial charge transfer in 2D g-C3N4/GaN nanorods heterostructure for self-powered UV photodetector and room temperature NO2 gas sensor at ppb level. Sens. Actuators B Chem. 2021, 329, 129175. [Google Scholar] [CrossRef]
- Khasim, S.; Pasha, A.; Dastager, S.G.; Panneerselvam, C.; Hamdalla, T.A.; Al-Ghamdi, S.A.; Alfadhli, S.; Makandar, M.B.; Albalawi, J.B.; Darwish, A.A.A. Design and development of multi-functional graphitic carbon nitride heterostructures embedded with copper and iron oxide nanoparticles as versatile sensing platforms for environmental and agricultural applications. Ceram. Int. 2023, 49, 20688–20698. [Google Scholar] [CrossRef]
- Malik, R.; Tomer, V.K.; Joshi, N.; Dankwort, T.; Lin, L.; Kienle, L. Au–TiO2-loaded cubic g-C3N4 nanohybrids for photocatalytic and volatile organic amine sensing applications. ACS Appl. Mater. Interfaces 2018, 10, 34087–34097. [Google Scholar] [CrossRef]
- Sethuraman, S.; Marimuthu, A.; Kattamuthu, R.; Karuppasamy, G. Highly surface active niobium doped g-C3N4/g-C3N4 heterojunction interface towards superior photocatalytic and selective ammonia response. Appl. Surf. Sci. 2021, 561, 150077. [Google Scholar] [CrossRef]
- Li, H.; Sun, Y.; Zhang, Q.; Yuan, H.; Dong, C.; Xu, S.; Xu, M. Facile synthesis of ZnO/Ag/g-C3N4 nanocomposites for multiple applications in photocatalytic degradation and photoactivated NO2 sensing. Appl. Surf. Sci. 2023, 638, 158010. [Google Scholar] [CrossRef]
- Gong, L.; Wang, X.; Zhang, D.; Ma, X.; Yu, S. Flexible wearable humidity sensor based on cerium oxide/graphitic carbon nitride nanocomposite self-powered by motion-driven alternator and its application for human physiological detection. J. Mater. Chem. A 2021, 9, 5619–5629. [Google Scholar] [CrossRef]
- Ko, M.; Mendecki, L.; Mirica, K.A. Conductive two-dimensional metal–organic frameworks as multifunctional materials. Chem. Commun. 2018, 54, 7873–7891. [Google Scholar] [CrossRef]
- Dong, M.-M.; He, H.; Wang, C.-K.; Fu, X.-X. Two-dimensional MoSi2As4-based field-effect transistors integrating switching and gas-sensing functions. Nanoscale 2023, 15, 9106–9115. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, Z.; Yang, J.; Zhou, J.; Zhang, Y.; Zhang, H.; Li, Y. A fully integrated flexible tunable chemical sensor based on gold-modified indium selenide nanosheets. ACS Sens. 2022, 7, 1183–1193. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Jiang, C.; Wei, S.-H. Gas sensing in 2D materials. Appl. Phys. Rev. 2017, 4, 021304. [Google Scholar] [CrossRef]
- Sharma, A.; Rout, C.S. Advances in understanding the gas sensing mechanisms by in situ and operando spectroscopy. J. Mater. Chem. A 2021, 9, 18175–18207. [Google Scholar] [CrossRef]
- Kim, S.; Kwak, D.H.; Choi, I.; Hwang, J.; Kwon, B.; Lee, E.; Ye, J.; Lim, H.; Cho, K.; Chung, H.-J.; et al. Enhanced gas sensing properties of graphene transistor by reduced doping with hydrophobic polymer brush as a surface modification layer. ACS Appl. Mater. Interfaces 2020, 12, 55493–55500. [Google Scholar] [CrossRef]
- Wu, J.; Feng, S.; Li, Z.; Tao, K.; Chu, J.; Miao, J.; Norford, L.K. Boosted sensitivity of graphene gas sensor via nanoporous thin film structures. Sens. Actuators B Chem. 2018, 255, 1805–1813. [Google Scholar] [CrossRef]
- Zhang, D.; Wu, Z.; Zong, X. Flexible and highly sensitive H2S gas sensor based on in-situ polymerized SnO2/rGO/PANI ternary nanocomposite with application in halitosis diagnosis. Sens. Actuators B Chem. 2019, 289, 32–41. [Google Scholar] [CrossRef]
- Wu, T.-Y.; Chen, Y.-Z.; Wang, Y.-C.; Tang, S.-Y.; Shih, Y.-C.; Cheng, F.; Wang, Z.M.; Lin, H.-N.; Chueh, Y.-L. Highly sensitive, selective and stable NO2 gas sensors with a ppb-level detection limit on 2D-platinum diselenide films. J. Mater. Chem. C 2020, 8, 4851–4858. [Google Scholar]
- Long, H.; Harley-Trochimczyk, A.; Pham, T.; Tang, Z.; Shi, T.; Zettl, A.; Carraro, C.; Worsley, M.A.; Maboudian, R. High surface area MoS2/Graphene hybrid aerogel for ultrasensitive NO2 detection. Adv. Funct. Mater. 2016, 26, 5158–5165. [Google Scholar] [CrossRef]
- Chen, W.Y.; Jiang, X.; Lai, S.-N.; Peroulis, D.; Stanciu, L. Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. Nat. Commun. 2020, 11, 1302. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; VahidMohammadi, A.; Yoon, Y.S.; Beidaghi, M.; Kim, D.-J. Two-dimensional vanadium carbide MXene for gas sensors with ultrahigh sensitivity toward nonpolar gases. ACS Sens. 2019, 4, 1603–1611. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Z.; Liu, J.; Peng, Z.; Zhou, J.; Zhang, H.; Li, Y. Optoelectronic gas sensor based on few-layered InSe nanosheets for NO2 detection with ultrahigh antihumidity ability. Anal. Chem. 2020, 92, 11277–11287. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, J.; Wang, Q.; Zhou, J.; Ye, J.; Li, X.; Geng, Y.; Liang, Z.; Du, Y.; Tian, X. Indium oxide-black phosphorus composites for ultrasensitive nitrogen dioxide sensing at room temperature. Sens. Actuators B Chem. 2020, 308, 127650. [Google Scholar] [CrossRef]
- Akhtar, A.; Jiao, C.; Chu, X.; Liang, S.; Dong, Y.; He, L. Acetone sensing properties of the g–C3N4–CuO nanocomposites prepared by hydrothermal method. Mater. Chem. Phys. 2021, 265, 124375. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, Z.; Song, Z.; Ye, W.; Fan, Z. Smart gas sensor arrays powered by artificial intelligence. J. Semicond. 2019, 40, 111601. [Google Scholar] [CrossRef]
- Viejo, C.G.; Fuentes, S.; Godbole, A.; Widdicombe, B.; Unnithan, R.R. Development of a low-cost e-nose to assess aroma profiles: An artificial intelligence application to assess beer quality. Sens. Actuators B Chem. 2020, 308, 127688. [Google Scholar] [CrossRef]
- Choi, K.H.; Oh, S.; Chae, S.; Jeong, B.J.; Kim, B.J.; Jeon, J.; Lee, S.H.; Yoon, S.O.; Woo, C.; Dong, X.; et al. Transition metal thiophosphates Nb4P2S21: New kind of 2D materials for multi-functional sensors. J. Alloys Compd. 2021, 864, 158811. [Google Scholar] [CrossRef]
- Liu, G.; Chen, T.; Li, X.; Xu, Z.; Xiao, X. Electronic transport in biphenylene network monolayer: Proposals for 2D multifunctional carbon-based nanodevices. Appl. Surf. Sci. 2022, 599, 153993. [Google Scholar] [CrossRef]
- Wan, X.; Yu, W.; Wang, A.; Wang, X.; Robertson, J.; Zhang, Z.; Guo, Y. High-throughput screening of gas sensor materials for decomposition products of eco-friendly insulation medium by machine learning. ACS Sens. 2023, 8, 2319–2330. [Google Scholar] [CrossRef] [PubMed]
- Mohammadzadeh, M.R.; Hasani, A.; Jaferzadeh, K.; Fawzy, M.; Silva, T.D.; Abnavi, A.; Ahmadi, R.; Ghanbari, H.; Askar, A.; Kabir, F.; et al. Unique photoactivated time-resolved response in 2D GeS for selective detection of volatile organic compounds. Adv. Sci. 2023, 10, 2205458. [Google Scholar] [CrossRef]
- Huang, S.; Croy, A.; Panes-Ruiz, L.A.; Khavrus, V.; Bezugly, V.; Ibarlucea, B.; Cuniberti, G. Machine learning-enabled smart gas sensing platform for identification of industrial gases. Adv. Intell. Syst. 2022, 4, 2200016. [Google Scholar] [CrossRef]
- Yaqoob, U.; Younis, M.I. Chemical gas sensors: Recent developments, challenges, and the potential of machine learning—A review. Sensors 2021, 21, 2877. [Google Scholar] [CrossRef]
- Ye, Z.; Liu, Y.; Li, Q. Recent progress in smart electronic nose technologies enabled with machine learning methods. Sensors 2021, 21, 7620. [Google Scholar] [CrossRef]
Sensing Materials | Target Gas | Functions | Ref. |
---|---|---|---|
Au@rGO/GaN | CO |
| [25] |
Graphene quartz fiber | Acetone, ethanol, etc. |
| [26] |
GO | Humidity |
| [27] |
GN/PA66 | Formic acid, DMF, etc. |
| [28] |
Laser-induced graphene | NOx |
| [29] |
rGO/WO3 | H2S |
| [30] |
GO/silk fibroin | Humidity |
| [31] |
mPANI/G | NH3 |
| [6] |
MoS2/graphene | NH3 |
| [32] |
CuxO-PPy@GO | H2S |
| [33] |
Sensing Materials | Target Gas | Other Functions | Ref. |
---|---|---|---|
MoS2/SnO2 | Trimethylamine |
| [58] |
Li-2D WS2 | NH3 |
| [59] |
VA-2D MoS2 | NO2 |
| [60] |
n-WS2/p-GeSe/n-WS2 | NH3, O2 |
| [61] |
g-C4N3/MoS2 | NO, etc. |
| [62] |
WSe2 nanosheets | Triethylamine, NO2 |
| [63] |
SnS2 quantum dot | NO2 |
| [64] |
LIG/MoS2 | NO2 |
| [65] |
NbS2-Nb2O5-NbS2 | Humidity |
| [66] |
PtSe2 | NH3 |
| [67] |
Sensing Materials | Target Gas | Other Functions | Ref. |
---|---|---|---|
MXene/WO3 | NO2 |
| [72] |
Au/HT-Nb2CTx | NH3 |
| [73] |
MXene/CuO | NH3 |
| [74] |
Ti3C2Tx/NH2-MWCNTs | Formaldehyde |
| [75] |
Porous crumpled MXene spheres | NO2 |
| [9] |
CeO2/V2C | NH3 |
| [76] |
MXene/TiO2/cellulose | NH3 |
| [77] |
MXene/silver nanowire/silk textiles | Humidity |
| [78] |
β-Ni(OH)2/MXene | Ethanol |
| [79] |
Cellulose/Ti3C2Tx | NH3 |
| [80] |
Ti3C2Tx fabric | Humidity |
| [81] |
Sensing Materials | Target Gas | LOD | Response (∆R/Ra) | Mechanism | Ref. |
---|---|---|---|---|---|
PS/graphene | 50 ppm NO2 | 4.8 ppb | 45.1% | Charge transfer | [98] |
GO | 800 ppm CO2 | 4.75 ppm | 75.4% | Charge transfer | [99] |
SnO2/rGO/PANI | 0.1 ppm H2S | 0.05 ppm | 9.1% | Surface-adsorbed oxygen ions Charge transfer | [100] |
PtSe2 | 1 ppm NO2 | 0.2 ppb | 600% | Charge transfer | [101] |
PtSe2 | NH3 | 50 ppb | 29.98% | Charge transfer | [67] |
MoS2/graphene | NO2 | 14 ppb | 90% | Charge transfer | [102] |
Ti3C2Tx/WSe2 | 40 ppm ethanol | - | 9.2% | Surface-adsorbed oxygen ions Charge transfer | [103] |
V2CTx | 100 ppm H2 | 2 ppm | 0.22 | Charge transfer | [104] |
Cellulose/Ti3C2Tx | NH3 | - | 6.0% | Charge transfer | [80] |
InSe | 1 ppm NO2 | 0.98 ppb | 100% | Charge carrier transfer Schottky barrier modulation | [105] |
BP–In2O3 | 100 ppb NO2 | 10 ppb | 12 | Surface-adsorbed oxygen ions Charge transfer | [106] |
g-C3N4/CuO | Acetone | 10 ppb | 143.7 (Rg/Ra) | Surface-adsorbed oxygen ions Charge transfer | [107] |
Sensing Materials | Target Gas | Features | Data | Model | Ref. |
---|---|---|---|---|---|
TM/g-C3N4 | CF3SO2F | TM atoms (radius, relative mass, electron number of the outmost d orbital, etc.) Adsorption atoms Gas molecules (Total 21 features) | 28 random models | 8 different algorithms | [112] |
GeS | VOCs | Current changes Time difference (Total 3 features) | 10 measurements for each VOC | Bayes classifier | [113] |
Graphene-CuPc | NH3 | a1, b1, c1, kmax, area, etc. (Total 11 features) | 24 individual measurement profiles | L2 norm | [114] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Qiao, Z.; Li, C.-Y.; Sun, Y. Recent Progress in Multifunctional Gas Sensors Based on 2D Materials. Chemosensors 2023, 11, 483. https://doi.org/10.3390/chemosensors11090483
Liu Z, Qiao Z, Li C-Y, Sun Y. Recent Progress in Multifunctional Gas Sensors Based on 2D Materials. Chemosensors. 2023; 11(9):483. https://doi.org/10.3390/chemosensors11090483
Chicago/Turabian StyleLiu, Zhifang, Zirui Qiao, Chen-Yuan Li, and Yilin Sun. 2023. "Recent Progress in Multifunctional Gas Sensors Based on 2D Materials" Chemosensors 11, no. 9: 483. https://doi.org/10.3390/chemosensors11090483
APA StyleLiu, Z., Qiao, Z., Li, C. -Y., & Sun, Y. (2023). Recent Progress in Multifunctional Gas Sensors Based on 2D Materials. Chemosensors, 11(9), 483. https://doi.org/10.3390/chemosensors11090483