Modern Analytical Techniques for Berry Authentication
Abstract
:1. Introduction
2. Chemical Approaches
2.1. High-Performance Liquid Chromatography (HPLC)
2.2. High-Performance Thin-Layer Chromatography (HPTLC)
2.3. Gas Chromatography (GC)
2.4. Nuclear Magnetic Resonance (NMR) Spectroscopy
2.5. Near-Infrared (NIR) Spectroscopy
2.6. Raman Spectroscopy
2.7. Inductively Coupled Plasma (ICP)
3. Biomolecular Approaches
4. Isotopic Approaches
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vega-Galvez, A.; Rodríguez, A.; Stucken, K. Antioxidant, functional properties and health-promoting potential of native South American berries: A review. J. Sci. Food Agric. 2021, 101, 364–378. [Google Scholar] [CrossRef] [PubMed]
- Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef] [PubMed]
- Zoubiri, L.; Bakir, S.; Barkat, M.; Carrillo, C.; Capanoglu, E. Changes in the phenolic profile, antioxidant capacity and in vitro bioaccessibility of two Algerian grape varieties, Cardinal and Dabouki (Sabel), during the production of traditional sun-dried raisins and homemade jam. J. Berry Res. 2019, 9, 563–574. [Google Scholar] [CrossRef]
- Carrillo, C.; Kamiloglu, S.; Grootaert, C.; Van Camp, J.; Hendrickx, M. Co-ingestion of black carrot and strawberry. Effects on anthocyanin stability, bioaccessibility and uptake. Foods 2020, 9, 1595. [Google Scholar] [CrossRef] [PubMed]
- Granato, D.; de Magalhães Carrapeiro, M.; Fogliano, V.; van Ruth, S.M. Effects of geographical origin, varietal and farming system on the chemical composition and functional properties of purple grape juices: A review. Trends Food Sci. Technol. 2016, 52, 31–48. [Google Scholar] [CrossRef]
- Cordella, C.; Moussa, I.; Martel, A.C.; Sbirrazzouli, N.; Lizzani-Cuvelier, L. Recent developments in food characterization and adulteration detection: Technique-oriented perspectives. J. Agric. Food Chem. 2002, 50, 1751–1764. [Google Scholar] [CrossRef]
- Penman, K.G.; Halstead, C.W.; Matthias, A.; De Voss, J.J.; Stuthe, J.M.U.; Bone, K.M.; Lehmann, R.P. Bilberry adulteration using the food dye amaranth. J. Agric. Food Chem. 2006, 54, 7378–7382. [Google Scholar] [CrossRef]
- Fanelli, V.; Mascio, I.; Miazzi, M.M.; Savoia, M.A.; De Giovanni, C.; Montemurro, C. Molecular approaches to agri-food traceability and authentication: An updated review. Foods 2021, 10, 1644. [Google Scholar] [CrossRef]
- Yao, R.; Heinrich, M.; Zou, Y.; Reich, E.; Zhang, X.; Chen, Y.; Weckerle, C.S. Quality variation of Goji (Fruits of Lycium spp.) in China: A comparative morphological and metabolomic analysis. Front. Pharmacol. 2018, 9, 151. [Google Scholar] [CrossRef]
- Luykx, D.M.A.M.; van Ruth, S.M. An overview of analytical methods for determining the geographical origin of food products. Food Chem. 2008, 107, 897–911. [Google Scholar] [CrossRef]
- González-Domínguez, R.; Sayago, A.; Fernández-Recamales, Á. An overview on the application of chemometrics tools in food authenticity and traceability. Foods 2022, 11, 3940. [Google Scholar] [CrossRef] [PubMed]
- Trygg, J.; Gullberg, J.; Johansson, A.I.; Jonsson, P.; Moritz, T. Chemometrics in metabolomics—An introduction. Biotechnol. Agric. For. 2006, 57, 117–128. [Google Scholar] [CrossRef]
- Cubero-Leon, E.; Peñalver, R.; Maquet, A. Review on metabolomics for food authentication. Food Res. Int. 2014, 60, 95–107. [Google Scholar] [CrossRef]
- Kamiloglu, S. Authenticity and traceability in beverages. Food Chem. 2019, 277, 12–24. [Google Scholar] [CrossRef]
- Primetta, A.K.; Jaakola, L.; Ayaz, F.A.; Inceer, H.; Riihinen, K.R. Anthocyanin fingerprinting for authenticity studies of bilberry (Vaccinium myrtillus L.). Food Control 2013, 30, 662–667. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, Q.; Cheng, H.; Ge, Y.; Liu, H.; Ye, X.; Chen, Y. Metabolomic Approach for the Authentication of Berry Fruit Juice by Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry Coupled to Chemometrics. J. Agric. Food Chem. 2018, 66, 8199–8208. [Google Scholar] [CrossRef]
- Hurkova, K.; Uttl, L.; Rubert, J.; Navratilova, K.; Kocourek, V.; Stranska-Zachariasova, M.; Paprstein, F.; Hajslova, J. Cranberries versus lingonberries: A challenging authentication of similar Vaccinium fruit. Food Chem. 2019, 284, 162–170. [Google Scholar] [CrossRef]
- Viapiana, A.; Wesolowski, M. HPLC fingerprint combined with quantitation of phenolic compounds and chemometrics as an efficient strategy for quality consistency evaluation of sambucus nigra berries. Nat. Prod. Commun. 2016, 11, 1449–1454. [Google Scholar] [CrossRef]
- Yoon, D.; Choi, B.R.; Kim, Y.C.; Oh, S.M.; Kim, H.G.; Kim, J.U.; Baek, N.I.; Kim, S.; Lee, D.Y. Comparative analysis of panax ginseng berries from seven cultivars using UPLC-QTOF/MS and nmr-based metabolic profiling. Biomolecules 2019, 9, 424. [Google Scholar] [CrossRef]
- Bondia-Pons, I.; Savolainen, O.; Törrönen, R.; Martinez, J.A.; Poutanen, K.; Hanhineva, K. Metabolic profiling of Goji berry extracts for discrimination of geographical origin by non-targeted liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Food Res. Int. 2014, 63, 132–138. [Google Scholar] [CrossRef]
- Bertoldi, D.; Cossignani, L.; Blasi, F.; Perini, M.; Barbero, A.; Pianezze, S.; Montesano, D. Characterisation and geographical traceability of Italian goji berries. Food Chem. 2019, 275, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Lv, W.; Zhao, N.; Zhao, Q.; Huang, S.; Liu, D.; Wang, Z.; Yang, J.; Zhang, X. Discovery and validation of biomarkers for Zhongning goji berries using liquid chromatography mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2020, 1142, 122037. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.; Yu, Y.; Liu, Q.; Guo, H.; Yu, J.; Wang, X.; Zhao, H. An integrated strategy for the geographical origin traceability of Goji berries by antioxidants characteristic fingerprint based online ultra-performance liquid chromatography-2,2-diphenyl-1-picrylhydrazyl- photodiode array detector-mass spectrometry comb. J. Sep. Sci. 2023, 46, 2200826. [Google Scholar] [CrossRef]
- Pérez-Navarro, J.; Izquierdo-Cañas, P.M.; Mena-Morales, A.; Martínez-Gascueña, J.; Chacón-Vozmediano, J.L.; García-Romero, E.; Hermosín-Gutiérrez, I.; Gómez-Alonso, S. Phenolic compounds profile of different berry parts from novel Vitis vinifera L. red grape genotypes and Tempranillo using HPLC-DAD-ESI-MS/MS: A varietal differentiation tool. Food Chem. 2019, 295, 350–360. [Google Scholar] [CrossRef]
- Tamborra, P.; Esti, M. Authenticity markers in Aglianico, Uva di Troia, Negroamaro and Primitivo grapes. Anal. Chim. Acta 2010, 660, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Sarais, G.; D’Urso, G.; Lai, C.; Pirisi, F.M.; Pizza, C.; Montoro, P. Targeted and untargeted mass spectrometric approaches in discrimination between Myrtus communis cultivars from Sardinia region. J. Mass Spectrom. 2016, 51, 704–715. [Google Scholar] [CrossRef]
- D’Urso, G.; Sarais, G.; Lai, C.; Pizza, C.; Montoro, P. LC-MS based metabolomics study of different parts of myrtle berry from Sardinia (Italy). J. Berry Res. 2017, 7, 217–229. [Google Scholar] [CrossRef]
- Pop, R.M.; Weesepoel, Y.; Socaciu, C.; Pintea, A.; Vincken, J.P.; Gruppen, H. Carotenoid composition of berries and leaves from six Romanian sea buckthorn (Hippophae rhamnoides L.) varieties. Food Chem. 2014, 147, 1–9. [Google Scholar] [CrossRef]
- D’Urso, G.; Maldini, M.; Pintore, G.; d’Aquino, L.; Montoro, P.; Pizza, C. Characterisation of Fragaria vesca fruit from Italy following a metabolomics approach through integrated mass spectrometry techniques. LWT-Food Sci. Technol. 2016, 74, 387–395. [Google Scholar] [CrossRef]
- Reich, E.; Widmer, V. Plant analysis 2008-Planar chromatography. Planta Med. 2009, 75, 711–718. [Google Scholar] [CrossRef]
- Krüger, S.; Mirgos, M.; Morlock, G.E. Effect-directed analysis of fresh and dried elderberry (Sambucus nigra L.) via hyphenated planar chromatography. J. Chromatogr. A 2015, 1426, 209–219. [Google Scholar] [CrossRef] [PubMed]
- González, B.; Vogel, H.; Razmilic, I.; Wolfram, E. Polyphenol, anthocyanin and antioxidant content in different parts of maqui fruits (Aristotelia chilensis) during ripening and conservation treatments after harvest. Ind. Crops Prod. 2015, 76, 158–165. [Google Scholar] [CrossRef]
- Krstić, Đ.D.; Ristivojević, P.M.; Gašić, U.M.; Lazović, M.; Fotirić Akšić, M.M.; Milivojević, J.; Morlock, G.E.; Milojković-Opsenica, D.M.; Trifković, J.Đ. Authenticity assessment of cultivated berries via phenolic profiles of seeds. Food Chem. 2023, 402, 134184. [Google Scholar] [CrossRef] [PubMed]
- Maldini, M.; D’Urso, G.; Pagliuca, G.; Petretto, G.L.; Foddai, M.; Gallo, F.R.; Multari, G.; Caruso, D.; Montoro, P.; Pintore, G. HPTLC-PCA complementary to HRMS-PCA in the case study of Arbutus unedo antioxidant phenolic profiling. Foods 2019, 8, 294. [Google Scholar] [CrossRef]
- Parker, M.; Pollnitz, A.P.; Cozzolino, D.; Francis, I.L.; Herderich, M.J. Identification and quantification of a marker compound for “pepper” aroma and flavor in Shiraz grape berries by combination of chemometrics and gas chromatography-mass spectrometry. J. Agric. Food Chem. 2007, 55, 5948–5955. [Google Scholar] [CrossRef]
- Deng, H.; He, R.; Long, M.; Li, Y.; Zheng, Y.; Lin, L.; Liang, D.; Zhang, X.; Liao, M.; Lv, X.; et al. Comparison of the fruit volatile profiles of five muscadine grape cultivars (Vitis rotundifolia Michx.) using HS-SPME-GC/MS combined with multivariate statistical analysis. Front. Plant Sci. 2021, 12, 728891. [Google Scholar] [CrossRef]
- Feng, T.; Sun, J.; Song, S.; Wang, H.; Yao, L.; Sun, M.; Wang, K.; Chen, D. Geographical differentiation of Molixiang table grapes grown in China based on volatile compounds analysis by HS-GC-IMS coupled with PCA and sensory evaluation of the grapes. Food Chem. X 2022, 15, 100423. [Google Scholar] [CrossRef]
- Szakiel, A.; Pa̧czkowski, C.; Koivuniemi, H.; Huttunen, S. Comparison of the triterpenoid content of berries and leaves of lingonberry Vaccinium vitis-idaea from Finland and Poland. J. Agric. Food Chem. 2012, 60, 4994–5002. [Google Scholar] [CrossRef]
- Socaci, S.A.; Socaciu, C.; Tofanǎ, M.; Raţi, I.V.; Pintea, A. In-tube extraction and GC-MS analysis of volatile components from wild and cultivated sea buckthorn (Hippophae rhamnoides L. ssp. Carpatica) berry varieties and juice. Phytochem. Anal. 2013, 24, 319–328. [Google Scholar] [CrossRef]
- Singh, S.; Sharma, P.C. Gas chromatography–mass spectrometry (GC–MS) profiling reveals substantial metabolome diversity in seabuckthorn (Hippophae rhamnoides L.) berries originating from different geographical regions in the Indian Himalayas. Phytochem. Anal. 2022, 33, 214–225. [Google Scholar] [CrossRef]
- Salvador, Â.C.; Rudnitskaya, A.; Silvestre, A.J.D.; Rocha, S.M. Metabolomic-Based Strategy for Fingerprinting of Sambucus nigra L. Berry Volatile Terpenoids and Norisoprenoids: Influence of Ripening and Cultivar. J. Agric. Food Chem. 2016, 64, 5428–5438. [Google Scholar] [CrossRef] [PubMed]
- Porto-Figueira, P.; Figueira, J.A.; Berenguer, P.; Câmara, J.S. Exploring a volatomic-based strategy for a fingerprinting approach of Vaccinium padifolium L. berries at different ripening stages. Food Chem. 2018, 245, 141–149. [Google Scholar] [CrossRef]
- Jarouche, M.; Suresh, H.; Hennell, J.; Sullivan, S.; Lee, S.; Singh, S.; Power, D.; Xu, C.; Khoo, C. The quality assessment of commercial lycium berries using LC-ESI-MS/MS and chemometrics. Plants 2019, 8, 604. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Liu, Z.; Gou, C.L.; Rogers, K.M.; Yu, W.J.; Zhang, S.S.; Yuan, Y.W.; Zhang, L. Geographical origin of Chinese wolfberry (goji) determined by carbon isotope analysis of specific volatile compounds. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019, 1105, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Socaciu, C.; Ranga, F.; Fetea, F.; Leopold, L.; Dulf, F.; Parlog, R. Complementary advanced techniques applied for plant and food authentication. Czech J. Food Sci. 2009, 27, S70. [Google Scholar] [CrossRef]
- Booker, A.; Suter, A.; Krnjic, A.; Strassel, B.; Zloh, M.; Said, M.; Heinrich, M. A phytochemical comparison of saw palmetto products using gas chromatography and 1H nuclear magnetic resonance spectroscopy metabolomic profiling. J. Pharm. Pharmacol. 2014, 66, 811–822. [Google Scholar] [CrossRef]
- Dumont, D.; Danielato, G.; Chastellier, A.; Saint Oyant, L.H.; Fanciullino, A.L.; Lugan, R. Multi-targeted metabolic profiling of carotenoids, phenolic compounds and primary metabolites in goji (Lycium spp.) berry and tomato (solanum lycopersicum) reveals inter and intra genus biomarkers. Metabolites 2020, 10, 422. [Google Scholar] [CrossRef]
- Lee, M.Y.; Seo, H.S.; Singh, D.; Lee, S.J.; Lee, C.H. Unraveling dynamic metabolomes underlying different maturation stages of berries harvested from Panax ginseng. J. Ginseng Res. 2020, 44, 413–423. [Google Scholar] [CrossRef]
- Gallo, V.; Ragone, R.; Musio, B.; Todisco, S.; Rizzuti, A.; Mastrorilli, P.; Pontrelli, S.; Intini, N.; Scapicchio, P.; Triggiani, M.; et al. A contribution to the harmonization of non-targeted NMR methods for data-driven food authenticity assessment. Food Anal. Methods 2020, 13, 530–541. [Google Scholar] [CrossRef]
- Horn, B.; Esslinger, S.; Fauhl-Hassek, C.; Riedl, J. 1H NMR spectroscopy, one-class classification and outlier diagnosis: A powerful combination for adulteration detection in paprika powder. Food Control 2021, 128, 108205. [Google Scholar] [CrossRef]
- Ehlers, M.; Horn, B.; Raeke, J.; Fauhl-Hassek, C.; Hermann, A.; Brockmeyer, J.; Riedl, J. Towards harmonization of non-targeted 1H NMR spectroscopy-based wine authentication: Instrument comparison. Food Control 2022, 132, 108508. [Google Scholar] [CrossRef]
- Kuballa, T.; Brunner, T.S.; Thongpanchang, T.; Walch, S.G.; Lachenmeier, D.W. Application of NMR for authentication of honey, beer and spices. Curr. Opin. Food Sci. 2018, 19, 57–62. [Google Scholar] [CrossRef]
- Pereira, G.E.; Gaudillere, J.P.; van Leeuwen, C.; Hilbert, G.; Maucourt, M.; Deborde, C.; Moing, A.; Rolin, D. 1H NMR metabolite fingerprints of grape berry: Comparison of vintage and soil effects in Bordeaux grapevine growing areas. Anal. Chim. Acta 2006, 563, 346–352. [Google Scholar] [CrossRef]
- Son, H.S.; Hwang, G.S.; Kim, K.M.; Ahn, H.J.; Park, W.M.; Van Den Berg, F.; Hong, Y.S.; Lee, C.H. Metabolomic studies on geographical grapes and their wines using 1H NMR analysis coupled with multivariate statistics. J. Agric. Food Chem. 2009, 57, 1481–1490. [Google Scholar] [CrossRef]
- Ali, K.; Maltese, F.; Fortes, A.M.; Pais, M.S.; Choi, Y.H.; Verpoorte, R. Monitoring biochemical changes during grape berry development in Portuguese cultivars by NMR spectroscopy. Food Chem. 2011, 124, 1760–1769. [Google Scholar] [CrossRef]
- Picone, G.; Trimigno, A.; Tessarin, P.; Donnini, S.; Rombolà, A.D.; Capozzi, F. 1H NMR foodomics reveals that the biodynamic and the organic cultivation managements produce different grape berries (Vitis vinifera L. cv. Sangiovese). Food Chem. 2016, 213, 187–195. [Google Scholar] [CrossRef]
- Li, W.; Ruan, C.J.; da Silva, J.A.T.; Guo, H.; Zhao, C.E. NMR metabolomics of berry quality in sea buckthorn (Hippophae L.). Mol. Breed. 2013, 31, 57–67. [Google Scholar] [CrossRef]
- Kortesniemi, M.; Sinkkonen, J.; Yang, B.; Kallio, H. NMR metabolomics demonstrates phenotypic plasticity of sea buckthorn (Hippophaë rhamnoides) berries with respect to growth conditions in Finland and Canada. Food Chem. 2017, 219, 139–147. [Google Scholar] [CrossRef]
- Kortesniemi, M.; Sinkkonen, J.; Yang, B.; Kallio, H. 1H NMR spectroscopy reveals the effect of genotype and growth conditions on composition of sea buckthorn (Hippophaë rhamnoides L.) berries. Food Chem. 2014, 147, 138–146. [Google Scholar] [CrossRef]
- Singh, S.; Sharma, P.C. 1H Nuclear Magnetic Resonance (NMR)-based metabolome diversity of seabuckthorn (H. rhamnoides L.) berries originating from two geographical regions of Indian Himalayas. Food Anal. Methods 2022, 15, 157–171. [Google Scholar] [CrossRef]
- Peçanha, J.d.S.; dos Santos, N.M.; Maróstica Júnior, M.R.; Micheletti, A.C.; Lião, L.M.; Alcantara, G.B. NMR-based metabolomics of dried berries in comparison with dietary supplements. J. Pharm. Biomed. Anal. 2022, 209, 114494. [Google Scholar] [CrossRef] [PubMed]
- Reich, G. Near-infrared spectroscopy and imaging: Basic principles and pharmaceutical applications. Adv. Drug Deliv. Rev. 2005, 57, 1109–1143. [Google Scholar] [CrossRef] [PubMed]
- Teixeira Dos Santos, C.A.; Lopo, M.; Páscoa, R.N.M.J.; Lopes, J.A. A review on the applications of portable near-infrared spectrometers in the agro-food industry. Appl. Spectrosc. 2013, 67, 1215–1233. [Google Scholar] [CrossRef]
- Martínez-Sandoval, J.R.; Nogales-Bueno, J.; Rodríguez-Pulido, F.J.; Hernández-Hierro, J.M.; Segovia-Quintero, M.A.; Martínez-Rosas, M.E.; Heredia, F.J. Screening of anthocyanins in single red grapes using a non-destructive method based on the near infrared hyperspectral technology and chemometrics. J. Sci. Food Agric. 2016, 96, 1643–1647. [Google Scholar] [CrossRef] [PubMed]
- Arslan, M.; Xiaobo, Z.; Xuetao, H.; Elrasheid Tahir, H.; Shi, J.; Khan, M.R.; Zareef, M. Near infrared spectroscopy coupled with chemometric algorithms for predicting chemical components in black goji berries (Lycium ruthenicum Murr.). J. Near Infrared Spectrosc. 2018, 26, 275–286. [Google Scholar] [CrossRef]
- Li, Q.; Yu, X.; Gao, J.-M. A novel method to determine total sugar of Goji berry using FT-NIR spectroscopy with effective wavelength selection. Int. J. Food Prop. 2017, 20, S478–S488. [Google Scholar] [CrossRef]
- Stuppner, S.; Mayr, S.; Beganovic, A.; Beć, K.; Grabska, J.; Aufschnaiter, U.; Groeneveld, M.; Rainer, M.; Jakschitz, T.; Bonn, G.K.; et al. Near-infrared spectroscopy as a rapid screening method for the determination of total anthocyanin content in sambucus fructus. Sensors 2020, 20, 4983. [Google Scholar] [CrossRef]
- Xie, L.; Ye, X.; Liu, D.; Ying, Y. Prediction of titratable acidity, malic acid, and citric acid in bayberry fruit by near-infrared spectroscopy. Food Res. Int. 2011, 44, 2198–2204. [Google Scholar] [CrossRef]
- Cuq, S.; Lemetter, V.; Kleiber, D.; Levasseur-Garcia, C. Assessing macro- (P, K, Ca, Mg) and micronutrient (Mn, Fe, Cu, Zn, B) concentration in vine leaves and grape berries of Vitis vinifera by using near-infrared spectroscopy and chemometrics. Comput. Electron. Agric. 2020, 179, 105841. [Google Scholar] [CrossRef]
- Summerson, V.; Viejo, C.G.; Szeto, C.; Wilkinson, K.L.; Torrico, D.D.; Pang, A.; De Bei, R.; Fuentes, S. Classification of smoke contaminated cabernet sauvignon berries and leaves based on chemical fingerprinting and machine learning algorithms. Sensors 2020, 20, 5099. [Google Scholar] [CrossRef]
- Guidetti, R.; Beghi, R.; Bodria, L.; Spinardi, A.; Mignani, I.; Folini, L. Prediction of blueberry (Vaccinium corymbosum) ripeness by a portable vis-NIR device. Acta Hortic. 2009, 810, 877–886. [Google Scholar] [CrossRef]
- Musingarabwi, D.M.; Nieuwoudt, H.H.; Young, P.R.; Eyéghè-Bickong, H.A.; Vivier, M.A. A rapid qualitative and quantitative evaluation of grape berries at various stages of development using Fourier-transform infrared spectroscopy and multivariate data analysis. Food Chem. 2016, 190, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Tingting, S.; Xiaobo, Z.; Jiyong, S.; Zhihua, L.; Xiaowei, H.; Yiwei, X.; Wu, C. Determination Geographical Origin and Flavonoids Content of Goji Berry Using Near-Infrared Spectroscopy and Chemometrics. Food Anal. Methods 2016, 9, 68–79. [Google Scholar] [CrossRef]
- Yahui, L.; Xiaobo, Z.; Tingting, S.; Jiyong, S.; Jiewen, Z.; Holmes, M. Determination of geographical origin and anthocyanin content of black Goji berry (Lycium ruthenicum Murr.) using near-infrared spectroscopy and chemometrics. Food Anal. Methods 2017, 10, 1034–1044. [Google Scholar] [CrossRef]
- Zaukuu, J.L.Z.; Soós, J.; Bodor, Z.; Felföldi, J.; Magyar, I.; Kovacs, Z. Authentication of Tokaj wine (Hungaricum) with the electronic tongue and near infrared spectroscopy. J. Food Sci. 2019, 84, 3437–3444. [Google Scholar] [CrossRef]
- Carvalho, D.G.; Sebben, J.A.; de Moura, N.F.; Trierweiler, J.O.; Espindola, J. da S. Raman spectroscopy for monitoring carotenoids in processed Bunchosia glandulifera pulps. Food Chem. 2019, 294, 565–571. [Google Scholar] [CrossRef]
- Xu, Y.; Zhong, P.; Jiang, A.; Shen, X.; Li, X.; Xu, Z.; Shen, Y.; Sun, Y.; Lei, H. Raman spectroscopy coupled with chemometrics for food authentication: A review. TrAC-Trends Anal. Chem. 2020, 131, 116017. [Google Scholar] [CrossRef]
- Khodabakhshian, R. Feasibility of using Raman spectroscopy for detection of tannin changes in pomegranate fruits during maturity. Sci. Hortic. 2019, 257, 108670. [Google Scholar] [CrossRef]
- Khodabakhshian, R.; Abbaspour-Fard, M.H. Pattern recognition-based Raman spectroscopy for non-destructive detection of pomegranates during maturity. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2020, 231, 118127. [Google Scholar] [CrossRef]
- Magdas, D.A.; Guyon, F.; Feher, I.; Pinzaru, S.C. Wine discrimination based on chemometric analysis of untargeted markers using FT-Raman spectroscopy. Food Control 2018, 85, 385–391. [Google Scholar] [CrossRef]
- Radulescu, C.; Olteanu, R.L.; Nicolescu, C.M.; Bumbac, M.; Buruleanu, L.C.; Holban, G.C. Vibrational spectroscopy combined with chemometrics as tool for discriminating organic vs. conventional culture systems for red grape extracts. Foods 2021, 10, 1856. [Google Scholar] [CrossRef] [PubMed]
- Cugnetto, A.; Santagostini, L.; Rolle, L.; Guidoni, S.; Gerbi, V.; Novello, V. Tracing the “terroirs” via the elemental composition of leaves, grapes and derived wines in cv Nebbiolo (Vitis vinifera L.). Sci. Hortic. 2014, 172, 101–108. [Google Scholar] [CrossRef]
- Pepi, S.; Coletta, A.; Crupi, P.; Leis, M.; Russo, S.; Sansone, L.; Tassinari, R.; Chicca, M.; Vaccaro, C. Geochemical characterization of elements in Vitis vinifera cv. Negroamaro grape berries grown under different soil managements. Environ. Monit. Assess 2016, 188, 211. [Google Scholar] [CrossRef] [PubMed]
- Pepi, S.; Sansone, L.; Chicca, M.; Vaccaro, C. Relationship among geochemical elements in soil and grapes as terroir fingerprintings in Vitis vinifera L. cv. “Glera”. Chem. Erde 2017, 77, 121–130. [Google Scholar] [CrossRef]
- Pepi, S.; Chicca, M.; Piroddi, G.; Tassinari, R.; Vaccaro, C. Geographical origin of Vitis vinifera cv. Cannonau established by the index of bioaccumulation and translocation coefficients. Environ. Monit. Assess. 2019, 191, 436. [Google Scholar] [CrossRef]
- Gao, F.; Hao, X.; Zeng, G.; Guan, L.; Wu, H.; Zhang, L.; Wei, R.; Wang, H.; Li, H. Identification of the geographical origin of Ecolly (Vitis vinifera L.) grapes and wines from different Chinese regions by ICP-MS coupled with chemometrics. J. Food Compos. Anal. 2022, 105, 104248. [Google Scholar] [CrossRef]
- Pepi, S.; Sansone, L.; Chicca, M.; Marrocchino, E.; Vaccaro, C. Distribution of rare earth elements in soil and grape berries of Vitis vinifera cv. “Glera.” Environ. Monit. Assess. 2016, 188, 477. [Google Scholar] [CrossRef]
- D’Antone, C.; Punturo, R.; Vaccaro, C. Rare earth elements distribution in grapevine varieties grown on volcanic soils: An example from Mount Etna (Sicily, Italy). Environ. Monit. Assess. 2017, 189, 160. [Google Scholar] [CrossRef]
- Pii, Y.; Zamboni, A.; Santo, S.D.; Pezzotti, M.; Varanini, Z.; Pandolfini, T. Prospect on ionomic signatures for the classification of grapevine berries according to their geographical origin. Front. Plant Sci. 2017, 8, 640. [Google Scholar] [CrossRef]
- Aide, M.T.; Aide, C. Rare earth elements: Their importance in understanding soil genesis. ISRN Soil Sci. 2012, 2012, 783876. [Google Scholar] [CrossRef]
- Covaciu, F.D.; Magdas, D.A.; Dehelean, A.; Feher, I.C.; Radu, S. Elemental, isotopic, and pesticide analysis of wild and cultivated berries. Anal. Lett. 2017, 50, 2699–2710. [Google Scholar] [CrossRef]
- Krstić, Đ.; Vukojević, V.; Mutić, J.; Fotirić Akšić, M.; Ličina, V.; Milojković-Opsenica, D.; Trifković, J. Distribution of elements in seeds of some wild and cultivated fruits. Nutrition and authenticity aspects. J. Sci. Food Agric. 2019, 99, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Mafra, I.; Ferreira, I.M.P.L.V.O.; Oliveira, M.B.P.P. Food authentication by PCR-based methods. Eur. Food Res. Technol. 2008, 227, 649–665. [Google Scholar]
- Jaakola, L.; Suokas, M.; Häggman, H. Novel approaches based on DNA barcoding and high-resolution melting of amplicons for authenticity analyses of berry species. Food Chem. 2010, 123, 494–500. [Google Scholar] [CrossRef]
- Wu, Y.; Li, M.; Yang, Y.; Jiang, L.; Liu, M.; Wang, B.; Wang, Y. Authentication of Small Berry Fruit in Fruit Products by DNA Barcoding Method. J. Food Sci. 2018, 83, 1494–1504. [Google Scholar] [CrossRef]
- Baker, M. Digital PCR hits its stride. Nat. Methods 2012, 9, 541–544. [Google Scholar] [CrossRef]
- Karppinen, K.; Avetisyan, A.; Hykkerud, A.L.; Jaakola, L. A dPCR method for quantitative authentication of wild lingonberry (Vaccinium vitis-idaea) versus cultivated American cranberry (V. macrocarpon). Foods 2022, 11, 1476. [Google Scholar] [CrossRef]
- Li, X.; Zhu, J.; Hu, F.; Ge, S.; Ye, M.; Xiang, H.; Zhang, G.; Zheng, X.; Zhang, H.; Zhang, S.; et al. Single-base resolution maps of cultivated and wild rice methylomes and regulatory roles of DNA methylation in plant gene expression. BMC Genom. 2012, 13, 300. [Google Scholar] [CrossRef]
- Baránková, K.; Nebish, A.; Tříska, J.; Raddová, J.; Baránek, M. Comparison of DNA methylation landscape between Czech and Armenian vineyards show their unique character and increased diversity. Czech J. Genet. Plant Breed. 2021, 57, 67–75. [Google Scholar] [CrossRef]
- Mezzasalma, V.; Sandionigi, A.; Guzzetti, L.; Galimberti, A.; Grando, M.S.; Tardaguila, J.; Labra, M. Geographical and cultivar features differentiate grape microbiota in Northern Italy and Spain vineyards. Front. Microbiol. 2018, 9, 1–13. [Google Scholar] [CrossRef]
- Christoph, N.; Schellenberg, A.; Zander, W.; Krammer, G. Stable isotope ratio analysis for authenticity control. In Springer Handbook of Odor; Springer: Berlin/Heidelberg, Germany, 2017; pp. 53–54. [Google Scholar]
- Li, Q.; Chen, L.; Ding, Q.; Lin, G. The stable isotope signatures of blackcurrant (Ribes nigrum L.) in main cultivation regions of China: Implications for tracing geographic origin. Eur. Food Res. Technol. 2013, 237, 109–116. [Google Scholar] [CrossRef]
- Perini, M.; Giongo, L.; Grisenti, M.; Bontempo, L.; Camin, F. Stable isotope ratio analysis of different European raspberries, blackberries, blueberries, currants and strawberries. Food Chem. 2018, 239, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Klavins, L.; Maaga, I.; Bertins, M.; Hykkerud, A.L.; Karppinen, K.; Bobinas, Č.; Salo, H.M.; Nguyen, N.; Salminen, H.; Stankevica, K.; et al. Trace element concentration and stable isotope ratio analysis in blueberries and bilberries: A tool for quality and authenticity control. Foods 2021, 10, 567. [Google Scholar] [CrossRef] [PubMed]
Berry Type | Genotype/Origin | Instrument/Chemometrics | Discriminating Marker(s) | Reference |
---|---|---|---|---|
Bilberry (Vaccinium myrtillus L.) | Bilberries from 10 wild populations in Turkey and 20 wild populations in Finland. | HPLC-DAD and logistic regression model | Anthocyanin glycosides. | [15] |
Blueberry (Vaccinium spp.) and Cranberry (Vaccinium spp.) | Blueberry and cranberry juices adulterated with apple and grape juices. | LC-qTOF-MS and PCA-DA | Anthocyanins and other flavonoids such as myricetin, together with several nonphenolic compounds. | [16] |
Cranberry (Vaccinium macrocarpon) vs. Lingonberry (Vaccinium vitis-idaea) | Different cultivars of cranberries (Pilgrim, Howes, Ben Lear, McFarlin and Stevens) and lingonberries (Koral, Sussi, Linnea, Ida, Runo Bielawskie and Sanna). | UHPLC-qTOF and PLS-DA | Cranberries: glycosylated peonidins and flavonols (myricetin 3-O-glucoside and myricetin 3-O-arabinoside). Lingonberries: catechin and ferulic acid. Glycerophospholipids upregulated. | [17] |
Elderberry (Sambucus nigra L.) | Elderberries obtained from 4 herbal manufacturers in Poland. | HPLC-UV and PCA, cluster analysis | Phenolic compounds (flavonols and phenolic acids). | [18] |
Ginseng berry (Panax ginseng) | Berries from 7 different cultivars of ginseng (Korea): Chunpoong, Chungsun, Kumpoong, Yunpoong, Gopoong, Sunun, Sunwon. | UPLC-qTOF/MS | Ginsenosides. | [19] |
Goji berry (Lycium barbarum) | 4 goji berries from different geographical origins (Tibet, Mongolia and North of China). | LC-PDA-qTOF-MS and PCA, PLS-DA | Mongolian berries: higher quercetin, kaempferol, and isorhamnetin derivatives, and coumaric acid. Chinese berries: citric acid and N-hydroxy-L-tyrosine, a dopamine derivative and a pesticide. | [20] |
23 goji berries from different geographical origins (Italian vs. Asian). | HPLC-DAD-MS and PCA, cluster analysis and Forward Stepwise DA | Total carotenoid content and zeaxanthin palmitate. | [21] | |
Zhongning goji berries (ZNG) and non-Zhongning goji berries (NZGB). | UHPLC-qTOF and PCA, PLS-DA | Succinic acid, N-methylcalystegine C1, N-trans-feruloyloctopamine, N-trans-feruloyltyramine, quercetin, gingerglycolipid B, glycoside of pyrrolidine alkaloid. | [22] | |
32 berries from 4 different regions in China | HPLC/UPLC-DPPH-PDA-ESI-TOF/MS and PCA, PLS-DA | Rutin, rutin di-hexose, p-coumaric acid tri-hexose, dicaffeoylquinic acid isomer, quercetin-rhamno-di-hexoside | [23] | |
Grape (Vitis vinifera L.) | 4 red grape varieties: Aglianico, Negroamaro, Uva di Troia, and Primitivo from southern Italy. | HPLC-DAD, UV and PCA | Acetylated forms of anthocyanins, cyanidin-3-O-glucoside, trans-coutaric and trans-caftaric acids; also, glucosidic precursors of several terpene families and shikimic acid. | [25] |
Moribel and Tinto Fragoso red grape genotypes, and Tempranillo variety. | HPLC-DAD-ESI-MS/MS, HPLC-MS-MRM and PCA | Tempranillo: higher acylated delphinidin and petunidin derivatives. Moribel and Tinto Fragoso: greater malvidin 3-glucoside. Tinto Fragoso: higher galloylated flavan-3-ols and stilbenes in seeds. Moribel: greater quercetin-type flavonols and procyanidin B2 in seeds. | [24] | |
Myrtle berry (Myrtus communis) | Different varieties of myrtle berry seeds collected from different geographic areas of Sardinia, and grown under similar experimental conditions (Sardinia, Italy). | LC–ESI–FT-(Orbitrap)-MS/MS and PCA | Delphinidin-3-O-glucoside, peonidin-3-O-glucoside and cyanidin-O-glucoside. | [26] |
2 cultivars of myrtle berry seeds collected from the geographic area of Sassari and Cagliari (Sardinia), and grown under similar experimental conditions (Sardinia, Italy). | LC-ESI-Orbitrap-MS and PCA | Anthocyanins and flavonoids (mainly in pulp and peel). | [27] | |
Sea buckthorn berries (Hippophae rhamnoides L., ssp. Carpatica) | 6 Romanian varieties (Victoria, Tiberiu, Sf. Gheorghe, Serpenta, Serbanesti 4 and Ovidiu) of sea buckthorn berries. | UHPLC-PAD-ESI-MS and PCA | Zeaxanthin di-palmitate, zeaxanthin-palmitate, zeaxanthin-palmitate myristate, lutein-palmitate-myristate, lutein-palmitate, lutein di-palmitate, lutein di-myristate, b-carotene, and 15,15-cis b-carotene. | [28] |
Strawberry (Fragaria vesca) | Strawberries from two different locations in southern Italy (Petina and Sarno). | LC-ESI-Orbitrap-MS and PCA | Polyphenols. Berries from Petina: overexpressed cyanidin derivatives. | [29] |
Berry Type | Genotype/Origin | Instrument/Chemometrics | Discriminating Marker(s) | Reference |
---|---|---|---|---|
Elderberry (Sambucus nigra L.) | 3 cultivars of elderberry at different ripening stages. | GCXGC–TOF-MS and PCA | Limonene, p-cymene, aromadendrene, β-caryophyllene, dihydroedulan. | [41] |
Ginseng berry (Panax ginseng) | Ginseng berries at 5 maturation stages: immature, mature, partially red, fully red, overmature red. | GC–MS and PCA, PLS-DA | Preharvest berries: amino acids, organic acids, 5-C sugars, purines, ethanolamines, palmitic acid. Harvest/postharvest berries: 6-C sugars, phenolic acid, oleamide. | [48] |
Goji berry (Lycium spp.) | 2 goji berry fruit varieties: L. barbarum, L. chinense. | GC–MS and PCA | None. | [43] |
Goji berries from 3 provinces in China: Gansu, Ningxia, Qinghai. | HS–SPME coupled to GC-IRMS and LDA | Compounds geranylacetone, β-ionone, limonene, safranal, tetramethylpyrazine. | [44] | |
2 goji berry fruit varieties: L. barbarum, L. chinense. | GC–MS and PCA, PLS-DA | L. barbarum: lycibarbarphenylpropanoids A-B, fructose, glucose; L. chinense: asparagine. | [47] | |
Grape (Vitis vinifera L.) | Various vintages of Shiraz grapes from vineyards in South Australia and Victoria. | GC–MS and PCA, PLS | Alpha-ylangene was responsible for ‘pepper’ aroma and flavor. | [35] |
Red grapes of southern Italy: Aglianico, Negroamaro, Primitivo, Uva di Troia. | GC–MS and PCA | Glycosidic precursors from the alpha-terpineol and linalool families. | [25] | |
5 Muscadine grape cultivars from China: Alachua, Carlos, Fry, Granny Val, Noble. | HS-SPME-GC/MS and PCA, PLS-DA | Alachua: Geraniol, cinnamyl alcohol; Noble: trans-2-butenoate and propyl acetate; Carlos: 2-Ethyl-1-hexanol; Fry: (Z)-3-hexenal; Granny Val: (E)-2-hexenol. | [36] | |
Molixiang table grapes from 3 different regions of China: Ningbo, Beizhen, Zhangzhou. | HS-GC-IMS and PCA | Ningbo: Butyl lactate, E-2-octenal, Z-2-pentanol; Beizhen: p-cymene, styrene, γ-terpinene; Zhangzhou: benzaldehyde, methyl benzoate. | [37] | |
Lingonberry (Vaccinium vitis-idaea L.) | Lingonberry fruits and leaves from Finland and Poland. | GC–FID, GC–MS | Finnish berries: fernenol; Polish berries: taraxasterol. | [38] |
Madeira blueberry (Vaccinium padifolium L.) | Uveira berries from Portugal at 3 ripening stages: green, breaker, ripe. | HS–SPME coupled to GC–qMS and PLSR | Ethyl caprylate, trans-geraniol, ethyl isovalerate, benzyl carbinol. | [42] |
Saw palmetto berry (Serenoa repens) | 46 saw palmetto berry products from Canada, Finland, Germany, the Netherlands, the United Kingdom, South Korea, Spain, Switzerland, and the United States. | GC–FID | Lauric acid, capric acid, caprylic acid, myristic acid, palmitic acid, linolenic acid, oleic/linoleic acid, stearic acid. | [46] |
Sea buckthorn berry (Hippophae rhamnoides L.) | Sea buckthorn berry oils from Romania. | GC–FID | Palmitic acid, palmitoleic acid, oleic acid. | [45] |
12 wild and cultivated sea buckthorn berries. | GC–MS and PCA | Ethyl esters of 2-methylbutanoic acid, 3-methylbutanoic acid, hexanoic acid, octanoic acid, butanoic acid, 3-methylbutyl 3-methylbutanoate, 3-methylbutyl 2-methylbutanoate, benzoic acid ethyl ester. | [39] | |
6 sea buckthorn berry varieties from Romania: Victoria, Tiberiu, Sf. Gheorghe, Serpenta, Serbanesti 4, Ovidiu. | GC–MS | Palmitic acid, palmitoleic acid, oleic acid. | [28] | |
Berries from Himachal Pradesh and Jammu and Kashmir regions of the Indian Himalayas. | GC–MS and PCA, HCA | Amides, alkyl esters, alcohols, sugars, sugar esters, ketone, alkyl ether. | [40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrillo, C.; Tomasevic, I.B.; Barba, F.J.; Kamiloglu, S. Modern Analytical Techniques for Berry Authentication. Chemosensors 2023, 11, 500. https://doi.org/10.3390/chemosensors11090500
Carrillo C, Tomasevic IB, Barba FJ, Kamiloglu S. Modern Analytical Techniques for Berry Authentication. Chemosensors. 2023; 11(9):500. https://doi.org/10.3390/chemosensors11090500
Chicago/Turabian StyleCarrillo, Celia, Igor B. Tomasevic, Francisco J. Barba, and Senem Kamiloglu. 2023. "Modern Analytical Techniques for Berry Authentication" Chemosensors 11, no. 9: 500. https://doi.org/10.3390/chemosensors11090500
APA StyleCarrillo, C., Tomasevic, I. B., Barba, F. J., & Kamiloglu, S. (2023). Modern Analytical Techniques for Berry Authentication. Chemosensors, 11(9), 500. https://doi.org/10.3390/chemosensors11090500