MicroRNA Biosensors for Early Detection of Hepatocellular Carcinoma
Abstract
:1. Introduction
2. miRNAs Associated with HCC
3. Electrochemical Biosensors
3.1. Voltammetry
3.2. Impedance Method
3.3. Other Methods
4. Optical Biosensors
4.1. Colorimetry
4.2. Fluorescence Method
4.3. Surface Plasmon Resonance
4.4. Surface-Enhanced Raman Spectroscopy
4.5. Electrochemiluminescence
5. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Massarweh, N.N.; El-Serag, H.B. Epidemiology of Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma. Cancer Control 2017, 24, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Han, T.-S.; Hur, K.; Cho, H.-S.; Ban, H.S. Epigenetic Associations between LncRNA/CircRNA and MiRNA in Hepatocellular Carcinoma. Cancers 2020, 12, 2622. [Google Scholar] [CrossRef] [PubMed]
- Al-Saeed, Y.; Gab-Allah, W.A.; Soliman, H.; Abulkhair, M.F.; Shalash, W.M.; Elmogy, M. Efficient Computer Aided Diagnosis System for Hepatic Tumors Using Computed Tomography Scans. Comput. Mater. Contin. 2022, 71, 4871–4894. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, D. Comparative the Clinical Value of Contrast-Enhanced Ultrasonography, Enhancement CT and MRI for Diagnosing of Liver Lesions. Clin. Hemorheol. Microcirc. 2022, 80, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Winder, M.; Grabowska, S.; Hitnarowicz, A.; Barczyk-Gutkowska, A.; Gruszczyńska, K.; Steinhof-Radwańska, K. The Application of Abbreviated MRI Protocols in Malignant Liver Lesions Surveillance. Eur. J. Radiol. 2023, 164, 110840. [Google Scholar] [CrossRef]
- Huang, L.; Sun, H.; Sun, L.; Shi, K.; Chen, Y.; Ren, X.; Ge, Y.; Jiang, D.; Liu, X.; Knoll, W.; et al. Rapid, Label-Free Histopathological Diagnosis of Liver Cancer Based on Raman Spectroscopy and Deep Learning. Nat. Commun. 2023, 14, 48. [Google Scholar] [CrossRef]
- Falahi, S.; Rafiee-Pour, H.-A.; Zarejousheghani, M.; Rahimi, P.; Joseph, Y. Non-Coding RNA-Based Biosensors for Early Detection of Liver Cancer. Biomedicines 2021, 9, 964. [Google Scholar] [CrossRef]
- Liao, Z.; Zhou, Q.; Gao, B. AIEgens-Doped Photonic Crystals for High Sensitivity Fluorescence Detection of Tumor Markers. Biosensors 2023, 13, 276. [Google Scholar] [CrossRef]
- Forner, A. Hepatocellular Carcinoma Surveillance with MiRNAs. Lancet Oncol. 2015, 16, 743–745. [Google Scholar] [CrossRef]
- Wu, X.; Li, J.; Gassa, A.; Buchner, D.; Alakus, H.; Dong, Q.; Ren, N.; Liu, M.; Odenthal, M.; Stippel, D.; et al. Circulating Tumor DNA as an Emerging Liquid Biopsy Biomarker for Early Diagnosis and Therapeutic Monitoring in Hepatocellular Carcinoma. Int. J. Biol. Sci. 2020, 16, 1551–1562. [Google Scholar] [CrossRef]
- Ghidini, M.; Braconi, C. Non-Coding RNAs in Primary Liver Cancer. Front. Med. 2015, 2, 36. [Google Scholar]
- Rowe, M.M.; Kaestner, K.H. The Role of Non-Coding RNAs in Liver Disease, Injury, and Regeneration. Cells 2023, 12, 359. [Google Scholar] [CrossRef] [PubMed]
- Ling, H.; Fabbri, M.; Calin, G.A. MicroRNAs and Other Non-Coding RNAs as Targets for Anticancer Drug Development. Nat. Rev. Drug Discov. 2013, 12, 847–865. [Google Scholar]
- Kamel, R.R.; Amr, K.S.; Afify, M.; Elhosary, Y.A.; Hegazy, A.E.; Fahim, H.H.; Ezzat, W.M. Relation between MicroRNAs and Apoptosis in Hepatocellular Carcinoma. Open Access Maced. J. Med. Sci. 2016, 4, 31–37. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef]
- Song, C.; Chen, W.; Kuang, J.; Yao, Y.; Tang, S.; Zhao, Z.; Guo, X.; Shen, W.; Lee, H.K. Recent Advances in the Detection of Multiple MicroRNAs. TrAC Trends Anal. Chem. 2021, 139, 116269. [Google Scholar] [CrossRef]
- Chen, Y.-X.; Huang, K.-J.; Niu, K.-X. Recent Advances in Signal Amplification Strategy Based on Oligonucleotide and Nanomaterials for MicroRNA Detection-a Review. Biosens. Bioelectron. 2018, 99, 612–624. [Google Scholar] [PubMed]
- Kilic, T.; Erdem, A.; Ozsoz, M.; Carrara, S. MicroRNA Biosensors: Opportunities and Challenges among Conventional and Commercially Available Techniques. Biosens. Bioelectron. 2018, 99, 525–546. [Google Scholar] [CrossRef]
- Singh, R.P. Prospects of Nanobiomaterials for Biosensing. Int. J. Electrochem. 2011, 2011, 125487. [Google Scholar] [CrossRef]
- Zhang, L.; Su, W.; Liu, S.; Huang, C.; Ghalandari, B.; Divsalar, A.; Ding, X. Recent Progresses in Electrochemical DNA Biosensors for MicroRNA Detection. Phenomics 2022, 2, 18–32. [Google Scholar] [PubMed]
- Tian, R.; Zheng, X. Sensitive Colorimetric Detection of MicroRNA Based on Target Catalyzed Double-arm Hairpin DNA Assembling. Anal. Sci. 2016, 32, 751–755. [Google Scholar] [CrossRef] [PubMed]
- Guk, K.; Hwang, S.G.; Lim, J.; Son, H.; Choi, Y.; Huh, Y.-M.; Kang, T.; Jung, J.; Lim, E.-K. Fluorescence Amplified Sensing Platforms Enabling MiRNA Detection by Self-Circulation of a Molecular Beacon Circuit. Chem. Commun. 2019, 55, 3457–3460. [Google Scholar] [CrossRef] [PubMed]
- Nie, W.; Wang, Q.; Yang, X.; Zhang, H.; Li, Z.; Gao, L.; Zheng, Y.; Liu, X.; Wang, K. High Sensitivity Surface Plasmon Resonance Biosensor for Detection of MicroRNA Based on Gold Nanoparticles-Decorated Molybdenum Sulfide. Anal. Chim. Acta 2017, 993, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Li, Y.; Han, H.; Zhao, C.; Zhang, X. Dual Cycle Amplification and Dual Signal Enhancement Assisted Sensitive SERS Assay of MicroRNA. Anal. Biochem. 2019, 564, 16–20. [Google Scholar] [CrossRef]
- Huang, Y.; Yao, Y.; Wang, Y.; Chen, L.; Zeng, Y.; Li, L.; Guo, L. Strategies for Enhancing the Sensitivity of Electrochemiluminescence Biosensors. Biosensors 2022, 12, 750. [Google Scholar] [CrossRef] [PubMed]
- Toh, T.B.; Lim, J.J.; Chow, E.K. Epigenetics of Hepatocellular Carcinoma. Clin. Transl. Med. 2019, 8, 13. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, D.; Zhang, R.; Gao, P.; Peng, R.; Li, J. The MiR-21 Potential of Serving as a Biomarker for Liver Diseases in Clinical Practice. Biochem. Soc. Trans. 2020, 48, 2295–2305. [Google Scholar] [CrossRef]
- Kalfert, D.; Ludvikova, M.; Pesta, M.; Ludvik, J.; Dostalova, L.; Kholová, I. Multifunctional Roles of MiR-34a in Cancer: A Review with the Emphasis on Head and Neck Squamous Cell Carcinoma and Thyroid Cancer with Clinical Implications. Diagnostics 2020, 10, 563. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Han, Y. MicroRNA-34a Inhibits Liver Cancer Cell Growth by Reprogramming Glucose Metabolism. Mol. Med. Rep. 2018, 17, 4483–4489. [Google Scholar] [CrossRef]
- Coulouarn, C.; Factor, V.M.; Andersen, J.B.; Durkin, M.E.; Thorgeirsson, S.S. Loss of MiR-122 Expression in Liver Cancer Correlates with Suppression of the Hepatic Phenotype and Gain of Metastatic Properties. Oncogene 2009, 28, 3526–3536. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Wong, C.-M.; Ying, Q.; Fan, D.N.-Y.; Huang, S.; Ding, J.; Yao, J.; Yan, M.; Li, J.; Yao, M.; et al. MicroRNA-125b Suppressesed Human Liver Cancer Cell Proliferation and Metastasis by Directly Targeting Oncogene LIN28B2. Hepatology 2010, 52, 1731–1740. [Google Scholar] [CrossRef]
- Shaker, O.G.; Khairy, A.M.; Ali, R.M.M.; Badr, A.M. MiRNA-141 and Its Target Long Non-Coding RNA HOTAIR as Diagnostic Marker in Hepatocellular Carcinoma on Top of Hepatitis C Virus. Gene Rep. 2020, 21, 100807. [Google Scholar] [CrossRef]
- Ratnasari, N.; Lestari, P.; Renovaldi, D.; Raditya Ningsih, J.; Qoriansas, N.; Wardana, T.; Hakim, S.; Signa Aini Gumilas, N.; Indrarti, F.; Triwikatmani, C.; et al. Potential Plasma Biomarkers: MiRNA-29c, MiRNA-21, and MiRNA-155 in Clinical Progression of Hepatocellular Carcinoma Patients. PLoS ONE 2022, 17, e0263298. [Google Scholar] [CrossRef] [PubMed]
- Elmougy, F.A.F.; Mohamed, R.A.; Hassan, M.M.; Elsheikh, S.M.; Marzban, R.N.; Ahmed, F.M.; Elaraby, R.E. Study of Serum MicroRNA19a and MicroRNA223 as Potential Biomarkers for Early Diagnosis of Hepatitis C Virus-Related Hepatocellular Carcinoma. Gene Rep. 2019, 15, 100398. [Google Scholar] [CrossRef]
- Shehab-Eldeen, S.; Nada, A.; Abou-Elela, D.; El-Naidany, S.; Arafat, E.; Omar, T. Diagnostic Performance of MicroRNA-122 and MicroRNA-224 in Hepatitis C Virus-Induced Hepatocellular Carcinoma (HCC). Asian Pac. J. Cancer Prev. 2019, 20, 2515–2522. [Google Scholar] [CrossRef]
- Qiu, D.; Chen, J.; Liu, J.; Luo, Z.; Jiang, W.; Huang, J.; Qiu, Z.; Yue, W.; Wu, L. Expression of MicroRNA Let-7a Positively Correlates with Hepatitis B Virus Replication in Hepatocellular Carcinoma Tissues. Exp. Biol. Med. 2017, 242, 939–944. [Google Scholar] [CrossRef]
- Wang, Y.; Mo, Y.; Wang, L.; Su, P.; Xie, Y. Let-7b Contributes to Hepatocellular Cancer Progression through Wnt/β-Catenin Signaling. Saudi J. Biol. Sci. 2018, 25, 953–958. [Google Scholar] [CrossRef]
- Wang, K.; Peng, Z.; Lin, X.; Nian, W.; Zheng, X.; Wu, J. Electrochemical Biosensors for Circulating Tumor DNA Detection. Biosensors 2022, 12, 649. [Google Scholar] [CrossRef]
- Singh, A.; Sharma, A.; Ahmed, A.; Sundramoorthy, A.K.; Furukawa, H.; Arya, S.; Khosla, A. Recent Advances in Electrochemical Biosensors: Applications, Challenges, and Future Scope. Biosensors 2021, 11, 336. [Google Scholar] [CrossRef]
- Gulaboski, R. Future of Voltammetry. Maced. J. Chem. Chem. Eng. 2022, 41, 151–162. [Google Scholar] [CrossRef]
- Kanoun, O. Impedance Spectroscopy: From Laboratory Instrumentation to Field Sensors. IEEE Instrum. Meas. Mag. 2020, 23, 4–7. [Google Scholar] [CrossRef]
- Feng, X.; Gan, N.; Zhang, H.; Li, T.; Cao, Y.; Hu, F.; Jiang, Q. Ratiometric Biosensor Array for Multiplexed Detection of MicroRNAs Based on Electrochemiluminescence Coupled with Cyclic Voltammetry. Biosens. Bioelectron. 2016, 75, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Aamri, M.E.; Mohammadi, H.; Amine, A. Novel Label-Free Colorimetric and Electrochemical Detection for MiRNA-21 Based on the Complexation of Molybdate with Phosphate. Microchem. J. 2022, 182, 107851. [Google Scholar] [CrossRef]
- Torul, H.; Yarali, E.; Eksin, E.; Ganguly, A.; Benson, J.; Tamer, U.; Papakonstantinou, P.; Erdem, A. Paper-Based Electrochemical Biosensors for Voltammetric Detection of MiRNA Biomarkers Using Reduced Graphene Oxide or MoS2 Nanosheets Decorated with Gold Nanoparticle Electrodes. Biosensors 2021, 11, 236. [Google Scholar] [CrossRef]
- Amr, K.S.; Elmawgoud Atia, H.A.; Elazeem Elbnhawy, R.A.; Ezzat, W.M. Early Diagnostic Evaluation of MiR-122 and MiR-224 as Biomarkers for Hepatocellular Carcinoma. Genes Dis. 2017, 4, 215–221. [Google Scholar] [CrossRef]
- Gao, F.; Chu, Y.; Ai, Y.; Yang, W.; Lin, Z.; Wang, Q. Hybridization Induced Ion-Barrier Effect for the Label-Free and Sensitive Electrochemical Sensing of Hepatocellular Carcinoma Biomarker of MiRNA-122. Chin. Chem. Lett. 2021, 32, 2192–2196. [Google Scholar] [CrossRef]
- Gonzalez-Losada, P.; Freisa, M.; Poujouly, C.; Gamby, J. An Integrated Multiple Electrochemical MiRNA Sensing System Embedded into a Microfluidic Chip. Biosensors 2022, 12, 145. [Google Scholar] [CrossRef]
- Yang, R.; Jiang, G.; Liu, H.; He, L.; Yu, F.; Liu, L.; Qu, L.; Wu, Y. A Dual-Model “on-Super off” Photoelectrochemical/Ratiometric Electrochemical Biosensor for Ultrasensitive and Accurate Detection of MicroRNA-224. Biosens. Bioelectron. 2021, 188, 113337. [Google Scholar] [CrossRef]
- Wu, J.; Lv, W.; Yang, Q.; Li, H.; Li, F. Label-Free Homogeneous Electrochemical Detection of MicroRNA Based on Target-Induced Anti-Shielding against the Catalytic Activity of Two-Dimension Nanozyme. Biosens. Bioelectron. 2021, 171, 112707. [Google Scholar] [CrossRef]
- Azab, S.M.; Elhakim, H.K.A.; Fekry, A.M. The Strategy of Nanoparticles and the Flavone Chrysin to Quantify MiRNA-Let 7a in Zepto-Molar Level: Its Application as Tumor Marker. J. Mol. Struct. 2019, 1196, 647–652. [Google Scholar] [CrossRef]
- Cai, B.; Huang, L.; Zhang, H.; Sun, Z.; Zhang, Z.; Zhang, G.-J. Gold Nanoparticles-Decorated Graphene Field-Effect Transistor Biosensor for Femtomolar MicroRNA Detection. Biosens. Bioelectron. 2015, 74, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Cadoni, E.; Manicardi, A.; Madder, A. PNA-Based MicroRNA Detection Methodologies. Molecules 2020, 25, 1296. [Google Scholar] [CrossRef] [PubMed]
- Erdem, A.; Eksin, E. Zip Nucleic Acid-Based Genomagnetic Assay for Electrochemical Detection of MicroRNA-34a. Biosensors 2023, 13, 144. [Google Scholar] [CrossRef]
- Zeng, R.; Xu, J.; Lu, L.; Lin, Q.; Huang, X.; Huang, L.; Li, M.; Tang, D. Photoelectrochemical Bioanalysis of MicroRNA on Yolk-in-Shell Au@CdS Based on the Catalytic Hairpin Assembly-Mediated CRISPR-Cas12a System. Chem. Commun. 2022, 58, 7562–7565. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, R.; Jiang, L.; Xie, X.; Yuan, P.; Zhao, Y.; Li, Y.; Tamayo, A.I.B.; Liu, B.; Miao, Y. Ti3C2@Bi2O3 Nanoaccordion for Electrochemical Determination of MiRNA-21. Microchim. Acta 2023, 190, 52. [Google Scholar] [CrossRef]
- Bahadır, E.B.; Sezgintürk, M.K. A Review on Impedimetric Biosensors. Artif. Cell. Nanomed. Biotechnol. 2016, 44, 248–262. [Google Scholar] [CrossRef]
- Ciucci, F. Modeling Electrochemical Impedance Spectroscopy. Curr. Opin. Electrochem. 2019, 13, 132–139. [Google Scholar] [CrossRef]
- Brett, C.M.A. Electrochemical Impedance Spectroscopy in the Characterisation and Application of Modified Electrodes for Electrochemical Sensors and Biosensors. Molecules 2022, 27, 1497. [Google Scholar] [CrossRef]
- La, M.; Zhang, Y.; Gao, Y.; Li, M.; Liu, L.; Chang, Y. Impedimetric Detection of MicroRNAs by the Signal Amplification of Streptavidin Induced In Situ Formation of Biotin Phenylalanine Nanoparticle Networks. J. Electrochem. Soc. 2020, 167, 117505. [Google Scholar] [CrossRef]
- Eksin, E.; Torul, H.; Yarali, E.; Tamer, U.; Papakonstantinou, P.; Erdem, A. Paper-Based Electrode Assemble for Impedimetric Detection of MiRNA. Talanta 2021, 225, 122043. [Google Scholar] [CrossRef]
- Yarali, E.; Eksin, E.; Torul, H.; Ganguly, A.; Tamer, U.; Papakonstantinou, P.; Erdem, A. Impedimetric Detection of MiRNA Biomarkers Using Paper-Based Electrodes Modified with Bulk Crystals or Nanosheets of Molybdenum Disulfide. Talanta 2022, 241, 123233. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Wu, Z.; Li, L.; Yan, R.; Zhu, J.; Wen, W.; Zhang, X.; Wang, S. Zinc-Air Battery-Based Self-Powered Sensor with High Output Power for Ultrasensitive MicroRNA Let-7a Detection in Cancer Cells. Anal. Chem. 2022, 94, 14368–14376. [Google Scholar] [CrossRef] [PubMed]
- Han, L. Ultrasensitive Label-Free MiRNA Sensing Based on a Flexible Graphene Field-Effect Transistor without Functionalization. ACS Appl. Electron. Mater. 2020, 2, 1090–1098. [Google Scholar]
- Xu, J.; Liu, Y.; Li, Y.; Liu, Y.; Huang, K.-J. Smartphone-Assisted Flexible Electrochemical Sensor Platform by a Homology DNA Nanomanager Tailored for Multiple Cancer Markers Field Inspection. Anal. Chem. 2023, 95, 13305–13312. [Google Scholar] [CrossRef]
- Yan, T.; Guo, C.; Wang, C.; Zhu, K. Optical Biosensing Systems for a Biological Living Body. View 2023, 4, 20220059. [Google Scholar] [CrossRef]
- Chen, C.; Wang, J. Optical Biosensors: An Exhaustive and Comprehensive Review. Analyst 2020, 145, 1605–1628. [Google Scholar] [CrossRef]
- Yan, T.; Zhang, G.; Chai, H.; Qu, L.; Zhang, X. Flexible Biosensors Based on Colorimetry, Fluorescence, and Electrochemistry for Point-of-Care Testing. Front. Bioeng. Biotechnol. 2021, 9, 753692. [Google Scholar] [CrossRef]
- Zhu, D.; Liu, B.; Wei, G. Two-Dimensional Material-Based Colorimetric Biosensors: A Review. Biosensors 2021, 11, 259. [Google Scholar] [CrossRef]
- Shahsavar, K.; Shokri, E.; Hosseini, M. Sensitive Colorimetric Detection of MiRNA-155 via G-Quadruplex DNAzyme Decorated Spherical Nucleic Acid. Microchim. Acta 2022, 189, 357. [Google Scholar] [CrossRef]
- Li, Z.-H.; Yang, M.; Zhao, C.-X.; Shu, Y. Bifunctional Y-Shaped Probe Combined with Dual Amplification for Colorimetric Sensing and Molecular Logic Operation of Two MiRNAs. Talanta 2023, 259, 124480. [Google Scholar] [CrossRef]
- Yang, X. Target-Catalyzed Self-Assembled Spherical G-Quadruplex/Hemin DNAzymes for Highly Sensitive Colorimetric Detection of MicroRNA in Serum. Anal. Chim. Acta 2023, 1247, 340879. [Google Scholar] [CrossRef]
- Son, M.H.; Park, S.W.; Sagong, H.Y.; Jung, Y.K. Recent Advances in Electrochemical and Optical Biosensors for Cancer Biomarker Detection. BioChip J. 2023, 17, 44–67. [Google Scholar] [CrossRef]
- Camarca, A.; Varriale, A.; Capo, A.; Pennacchio, A.; Calabrese, A.; Giannattasio, C.; Murillo Almuzara, C.; D’Auria, S.; Staiano, M. Emergent Biosensing Technologies Based on Fluorescence Spectroscopy and Surface Plasmon Resonance. Sensors 2021, 21, 906. [Google Scholar] [CrossRef]
- Wang, S.; Wang, L.; Xu, X.; Li, X.; Jiang, W. MnO2 Nanosheet-Mediated Ratiometric Fluorescence Biosensor for MicroRNA Detection and Imaging in Living Cells. Anal. Chim. Acta 2019, 1063, 152–158. [Google Scholar] [CrossRef]
- Li, Y.; Tang, D.; Zhu, L.; Cai, J.; Chu, C.; Wang, J.; Xia, M.; Cao, Z.; Zhu, H. Label-Free Detection of MiRNA Cancer Markers Based on Terminal Deoxynucleotidyl Transferase-Induced Copper Nanoclusters. Anal. Biochem. 2019, 585, 113346. [Google Scholar] [CrossRef]
- Forte, G.; Ventimiglia, G.; Pesaturo, M.; Petralia, S. A Highly Sensitive PNA-microarray System for MiRNA122 Recognition. Biotechnol. J. 2022, 17, 2100587. [Google Scholar] [CrossRef]
- He, M.; Shang, N.; Zheng, B.; Yue, G.; Han, X.; Hu, X. Ultrasensitive Fluorescence Detection of MicroRNA through DNA-Induced Assembly of Carbon Dots on Gold Nanoparticles with No Signal Amplification Strategy. Microchim. Acta 2022, 189, 217. [Google Scholar] [CrossRef]
- He, M.; Zheng, B.; Shang, N.; Xiao, Y.; Wei, Y.; Hu, X. Synergistic Effect Enhancing the Energy Transfer Efficiency of Carbon Dots-Based Molecular Beacon Probe for Ultrasensitive Detection of MicroRNA. Microchem. J. 2023, 190, 108593. [Google Scholar] [CrossRef]
- Nurrohman, D.T.; Chiu, N.-F. A Review of Graphene-Based Surface Plasmon Resonance and Surface-Enhanced Raman Scattering Biosensors: Current Status and Future Prospects. Nanomaterials 2021, 11, 216. [Google Scholar] [CrossRef]
- Yu, H.; Han, R.; Su, J.; Chen, H.; Li, D. Multi-Marker Diagnosis Method for Early Hepatocellular Carcinoma Based on Surface Plasmon Resonance. Clin. Chim. Acta 2020, 502, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Sun, T.; Liu, L.; Xia, N.; Zhao, Y.; Yi, X. Surface Plasmon Resonance Biosensor for the Detection of MiRNAs by Combining the Advantages of Homogeneous Reaction and Heterogeneous Detection. Talanta 2021, 234, 122622. [Google Scholar] [CrossRef]
- Wang, X.; Hou, T.; Lin, H.; Lv, W.; Li, H.; Li, F. In Situ Template Generation of Silver Nanoparticles as Amplification Tags for Ultrasensitive Surface Plasmon Resonance Biosensing of MicroRNA. Biosens. Bioelectron. 2019, 137, 82–87. [Google Scholar] [CrossRef]
- Muhammad, M.; Huang, Q. A Review of Aptamer-Based SERS Biosensors: Design Strategies and Applications. Talanta 2021, 227, 122188. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, S.; Qu, A.; Xu, C.; Xu, L.; Kuang, H. Dimensional Surface-Enhanced Raman Scattering Nanostructures for MicroRNA Profiling. Small Struct. 2021, 2, 2000150. [Google Scholar] [CrossRef]
- Wang, H.-X.; Zhao, Y.-W.; Li, Z.; Liu, B.-S.; Zhang, D. Development and Application of Aptamer-Based Surface-Enhanced Raman Spectroscopy Sensors in Quantitative Analysis and Biotherapy. Sensors 2019, 19, 3806. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zong, S.; Wang, Z.; Wu, L.; Chen, P.; Yun, B.; Cui, Y. Microfluidic Chip Based Micro RNA Detection through the Combination of Fluorescence and Surface Enhanced Raman Scattering Techniques. Nanotechnology 2017, 28, 105501. [Google Scholar] [CrossRef]
- Si, Y.; Xu, L.; Wang, N.; Zheng, J.; Yang, R.; Li, J. Target MicroRNA-Responsive DNA Hydrogel-Based Surface-Enhanced Raman Scattering Sensor Arrays for MicroRNA-Marked Cancer Screening. Anal. Chem. 2020, 92, 2649–2655. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhou, X.; Li, P.; Lin, X.; Wang, J.; Hu, Z.; Zhang, P.; Chen, D.; Cai, H.; Niessner, R.; et al. Ultrasensitive and Simultaneous SERS Detection of Multiplex MicroRNA Using Fractal Gold Nanotags for Early Diagnosis and Prognosis of Hepatocellular Carcinoma. Anal. Chem. 2021, 93, 8799–8809. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Tian, H.; Huang, L.; Chen, Q.; Yang, Y.; Zeng, R.; Xu, J.; Chen, S.; Zhou, X.; Liu, G.; et al. Well-Ordered Au Nanoarray for Sensitive and Reproducible Detection of Hepatocellular Carcinoma-Associated MiRNA via CHA-Assisted SERS/Fluorescence Dual-Mode Sensing. Anal. Chem. 2023, 95, 5955–5966. [Google Scholar] [CrossRef]
- Fiorani, A.; Valenti, G.; Iurlo, M.; Marcaccio, M.; Paolucci, F. Electrogenerated Chemiluminescence: A Molecular Electrochemistry Point of View. Curr. Opin. Electrochem. 2018, 8, 31–38. [Google Scholar] [CrossRef]
- Hou, L. Electrochemiluminescent Biosensors for the Detection of MicroRNAs: A Review. Int. J. Electrochem. Sci. 2019, 14, 2489–2508. [Google Scholar] [CrossRef]
- Fiorani, A.; Merino, J.P.; Zanut, A.; Criado, A.; Valenti, G.; Prato, M.; Paolucci, F. Advanced Carbon Nanomaterials for Electrochemiluminescent Biosensor Applications. Curr. Opin. Electrochem. 2019, 16, 66–74. [Google Scholar] [CrossRef]
- Li, J.; Cai, R.; Tan, W. A Novel ECL Sensing System for Ultrahigh Sensitivity MiRNA-21 Detection Based on Catalytic Hairpin Assembly Cascade Nonmetallic SPR Effect. Anal. Chem. 2022, 94, 12280–12285. [Google Scholar] [CrossRef]
- Wang, M.-Y.; Jing, W.-J.; Wang, L.-J.; Jia, L.-P.; Ma, R.-N.; Zhang, W.; Shang, L.; Li, X.-J.; Xue, Q.-W.; Wang, H.-S. Electrochemiluminescence Detection of MiRNA-21 Based on Dual Signal Amplification Strategies: Duplex-Specific Nuclease -Mediated Target Recycle and Nicking Endonuclease-Driven 3D DNA Nanomachine. Biosens. Bioelectron. 2023, 226, 115116. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Wu, J.; Wu, Y.; Ma, R.; Zhou, Y.; Shi, J.; Li, M.; Tan, X.; Huang, K. An All-Graphdiyne Electrochemiluminescence Biosensor for the Ultrasensitive Detection of MicroRNA-21 Based on Target Recycling with DNA Cascade Reaction for Signal Amplification. Analyst 2023, 148, 1330–1336. [Google Scholar] [CrossRef]
- Shen, B.; Wu, Q.; Fan, Y.; Wu, H.; Li, X.; Zhao, X.; Wang, Y.; Ding, S.; Zhang, J. TiO2@Ag Nanozyme Enhanced Electrochemiluminescent Biosensor Coupled with DNA Nanoframework-Carried Emitters and Enzyme-Assisted Target Recycling Amplification for Ultrasensitive Detection of MicroRNA. Chem. Eng. J. 2022, 445, 136820. [Google Scholar] [CrossRef]
Analyte | Receptor | Electrode | Electrochemical Method | Linearity Range | LOD | Sensitivity | Assay Time | Ref. |
---|---|---|---|---|---|---|---|---|
miRNA-122 | DNA probe | GCE | DPV | 0.1 fmol/L–1.0 nmol/L | 0.021 fmol/L | — | 60 min | [46] |
miRNA-122 | DNA probe | Au | CV | 10−18–10−6 mol/L | 10−18 mol/L | — | 30 min | [47] |
miRNA-224 | DNA probe | ITO | SWV | 0.52–500 fM | 0.061 fM | — | — | [48] |
miRNA-let 7a | DNA probe | MnO2 | DPV | 0.4–140 nM | 0.25 nM | — | — | [49] |
miRNA-let 7a | DNA probe | CPE | DPV | 1.0 zM–11 nM | 1.0 zM | — | 30 min | [50] |
miRNA-let 7b | PNA probe | AuNPs | Voltammetry | 1 fM–100 pM | 10 fM | — | 30 min | [51] |
miRNA-34a | ZNA probe | PGE | DPV | 2–8 μg/mL | 0.87 μg/mL | — | 60 min | [53] |
miRNA-21 | DNA probe | Au@CdS | Photocurrent | 0.01 pM–10 nM | 4.2 fM | — | — | [54] |
miRNA-21 | DNA probe | GCE | DPV | 1 fM–100 pM | 0.16 fM | — | 30 min | [55] |
miRNA-21 | — | Au | EIS | 0.1–250 fM | 0.1 fM | — | >2 h | [59] |
miRNA-155 | DNA probe | AuNPs-PE | EIS | 0–1.5 μg/mL | 33.8 nM | — | 15 min | [60] |
miRNA-21 miRNA-155 | DNA probe | MoS2-PE | EIS | 0.025–0.75 μg/mL 0.05–0.15 μg/mL | 9.2 ng/mL 17.0 ng/mL | 1372.4 kOhm.mL.μg−1.cm−2 1361 kOhm.mL.μg−1.cm−2 | 30 min | [61] |
Analyte | Receptor | Electrode | Optical Method | Spectral Peak | Linearity Range | LOD | Assay Time | Ref. |
---|---|---|---|---|---|---|---|---|
miRNA-155 | DNA probe | — | Colorimetry | 450 nm | 1–100 nM | 0.7 nM | — | [69] |
miRNA-21 miRNA-141 | DNA probe | — | Colorimetry | 520 nm/650 nm | 10 pM–0.4 nM | 3 pM | — | [70] |
miRNA-21 | DNA probe | — | Colorimetry | 650 nm | 100 fM–20 nM | 90.3 fM | 20 min | [71] |
miRNA-21 | DNA probe | — | Fluorescent | 520 nm/570 nm | 0.1–20 nM | 73 pM | 40 min | [74] |
miRNA-21 | DNA probe | — | Fluorescent | 605 nm | 50–1000 pM | 18.7 pM | — | [75] |
miRNA-122 | PNA probe | — | Fluorescent | 650 nm | 0.1–10 nM | 0.043 nM | 60 min | [76] |
miRNA-21 | DNA probe | — | Fluorescent | 500 nm | 1–1000 fM | 1 fM | 2 h | [77] |
miRNA-21 | DNA probe | — | Fluorescent | 513 nm | 0.5–800 pM | 500 fM | — | [78] |
miRNA-224 | DNA probe | — | Fluorescent | 618 nm | 1 fM–1 nM | 0.39 fM | 1.5 h | [89] |
miRNA-125b | DNA probe | — | SPR | — | 0–1000 pM | 123.044 pM | — | [80] |
miRNA-21 | DNA probe | — | SPR | — | 1–15 fM | 1 fM | 60 min | [81] |
miRNA let-7a | DNA probe | — | SPR | — | 0.001–0.1 pM | 0.35 fM | — | [82] |
miRNA-21 | DNA probe | — | Fluorescent +SERS | — | 10−9–10−7 M | — | 1h | [86] |
miRNA-21 | DNA probe | — | SERS | — | 4−1200 nM | 0.11 nM | — | [87] |
miRNA-122 miRNA-223 miRNA-21 | DNA probe | — | SERS | 615 cm−1 918 cm−1 1140 cm−1 | 1 fM–10 nM | 349 aM 374 aM 311 aM | — | [88] |
miRNA-224 | DNA probe | — | SERS | Cy3: 1586 cm−1 Rox: 1499 cm−1 | 1 fM–1 nM | 0.34 fM | 1.5 h | [89] |
miRNA-21 | DNA probe | GCE | ECL | — | 1 aM–1 nM | 0.6 aM | — | [93] |
miRNA-21 | DNA probe | GCE | ECL | — | 10 fM–10 nM | 1.0 fM | — | [94] |
miRNA-21 | DNA probe | GCE | ECL | — | 0.1 fM–1 nM | 0.023 fM | — | [95] |
miRNA-155 | DNA probe | GCE | ECL | — | 1.0 fM–500.0 pM | 0.45 fM | — | [96] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, X.; Wang, K.; Luo, C.; Yang, M.; Wu, J. MicroRNA Biosensors for Early Detection of Hepatocellular Carcinoma. Chemosensors 2023, 11, 504. https://doi.org/10.3390/chemosensors11090504
Lin X, Wang K, Luo C, Yang M, Wu J. MicroRNA Biosensors for Early Detection of Hepatocellular Carcinoma. Chemosensors. 2023; 11(9):504. https://doi.org/10.3390/chemosensors11090504
Chicago/Turabian StyleLin, Xiaogang, Ke Wang, Chunfeng Luo, Mengjie Yang, and Jayne Wu. 2023. "MicroRNA Biosensors for Early Detection of Hepatocellular Carcinoma" Chemosensors 11, no. 9: 504. https://doi.org/10.3390/chemosensors11090504
APA StyleLin, X., Wang, K., Luo, C., Yang, M., & Wu, J. (2023). MicroRNA Biosensors for Early Detection of Hepatocellular Carcinoma. Chemosensors, 11(9), 504. https://doi.org/10.3390/chemosensors11090504