A Biomimetic Chip with Dendrimer-Encapsulated Platinum Nanoparticles for Enhanced Electrochemiluminescence Detection of Cardiac Troponin I †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Apparatus
2.2. Fabrication of the Biomimetic Chip
2.3. Synthesis of Pt-DENs
2.4. Preparation of Immunomagnetic Beads
2.5. On-Chip Immunoassay Operation
3. Results and Discussion
3.1. Characterization of the Fabricated Biomimetic Microstructures
3.2. Characterization of the Prepared Pt-DENs
3.3. Characterization and Optimization of Ru@SiO2
3.4. Characterization of the Construction of IMBs
3.5. Analytical Performance of the Magneto-Immunosensor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, H.; Lin, Q.; Huang, L.; Zhai, Y.; Liu, Y.; Deng, Y.; Su, E.; He, N. Ultrasensitive chemiluminescence immunoassay with enhanced precision for the detection of cTnI amplified by acridinium ester-loaded microspheres and internally calibrated by magnetic fluorescent nanoparticles. Nanoscale 2021, 13, 3275–3284. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.H.; Chen, L.C.; Wang, E.; Wang, C.C.; Lin, Y.R.; Chen, W.L. Development of an electrochemical immunosensor for detection of cardiac troponin i at the point-of-care. Biosensors 2021, 11, 210. [Google Scholar] [CrossRef] [PubMed]
- Kavetskyy, T.; Alipour, M.; Smutok, O.; Mushynska, O.; Kiv, A.; Fink, D.; Farshchi, F.; Ahmadian, E.; Hasanzadeh, M. Magneto-immunoassay of cancer biomarkers: Recent progress and challenges in biomedical analysis. Microchem. J. 2021, 167, 106320. [Google Scholar] [CrossRef]
- Chinnadayyala, S.R.; Park, J.; Le, H.T.N.; Santhosh, M.; Kadam, A.N.; Cho, S. Recent advances in microfluidic paper-based electrochemiluminescence analytical devices for point-of-care testing applications. Biosens. Bioelectron. 2019, 126, 68–81. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, H.; Li, B.; Liu, J.; Jiang, D.; Liu, B.; Sojic, N. Single Biomolecule Imaging by Electrochemiluminescence. J. Am. Chem. Soc. 2021, 143, 17910–17914. [Google Scholar] [CrossRef]
- Gao, W.; Muzyka, K.; Ma, X.; Lou, B.; Xu, G. A single-electrode electrochemical system for multiplex electrochemiluminescence analysis based on a resistance induced potential difference. Chem. Sci. 2018, 9, 3911–3916. [Google Scholar] [CrossRef]
- Chang, Y.; Wang, Y.; Zhang, J.; Xing, Y.; Li, G.; Deng, D.; Liu, L. Overview on the Design of Magnetically Assisted Electrochemical Biosensors. Biosensors 2022, 12, 954. [Google Scholar] [CrossRef]
- Science, D.; No, S.; Chemiluminescence, A.E.; Fundamentals, F.; Edited, B.; Sojic, N.; Society, T.R.; Society, R. Analytical Elelectrogenerated Chemiluminescence from Fundamentals to Bioassays; Number 15; Royal Society of Chemistry: London, UK, 2020. [Google Scholar]
- Liu, D.; Zhou, Y.; Gao, S.; Tang, Z.; La, M. Overview on the design and application of magnetically-assisted electrochemiluminescence biosensors. Int. J. Electrochem. Sci. 2022, 17, 221189. [Google Scholar] [CrossRef]
- Sentic, M.; Milutinovic, M.; Kanoufi, F.; Manojlovic, D.; Arbault, S.; Sojic, N. Mapping electrogenerated chemiluminescence reactivity in space: Mechanistic insight into model systems used in immunoassays. Chem. Sci. 2014, 5, 2568–2572. [Google Scholar] [CrossRef]
- Huang, C.Y.; Lin, F.Y.; Chang, C.J.; Lu, C.H.; Chen, J.K. Performance Enhancement of Electrochemiluminescence with the Immunosensor Controlled Using Magnetized Masks for the Determination of Epithelial Cancer Biomarker EpCAM. Anal. Chem. 2023, 95, 986–993. [Google Scholar] [CrossRef]
- Valenti, G.; Fiorani, A.; Li, H.; Sojic, N.; Paolucci, F. Essential Role of Electrode Materials in Electrochemiluminescence Applications. ChemElectroChem 2016, 3, 1990–1997. [Google Scholar] [CrossRef]
- Cheng, K.; Guo, J.; Fu, Y.; Guo, J. Active microparticle manipulation: Recent advances. Sens. Actuators A Phys. 2021, 322, 112616. [Google Scholar] [CrossRef]
- Nilsson, J.; Evander, M.; Hammarström, B.; Laurell, T. Review of cell and particle trapping in microfluidic systems. Anal. Chim. Acta 2009, 649, 141–157. [Google Scholar] [CrossRef] [PubMed]
- Kan, C.W.; Rivnak, A.J.; Campbell, T.G.; Piech, T.; Rissin, D.M.; Mösl, M.; Petera, A.; Niederberger, H.P.; Minnehan, K.A.; Patel, P.P.; et al. Isolation and detection of single molecules on paramagnetic beads using sequential fluid flows in microfabricated polymer array assemblies. Lab Chip J. 2012, 12, 977–985. [Google Scholar] [CrossRef] [PubMed]
- Kitagawa, A.; Ota, M.; Watamura, T.; Tonooka, T.; Murai, Y. Microplastic particle trapping through microfluidic devices with different shaped pillars. Chem. Eng. Sci. 2022, 264, 118163. [Google Scholar] [CrossRef]
- Chen, X.; Shojaei-Zadeh, S.; Gilchrist, M.L.; Maldarelli, C. A lipobead microarray assembled by particle entrapment in a microfluidic obstacle course and used for the display of cell membrane receptors. Lab A Chip 2013, 13, 3041–3060. [Google Scholar] [CrossRef]
- Peng, Z.; Wu, T.; Shu, W.; Wang, Y. Facile and High-Efficiency Microbead Array Based on Biomimetic Nepenthes Peristome Surfaces. In Proceedings of the 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS), Seoul, Republic of Korea, 27–31 January 2019; pp. 229–232. [Google Scholar] [CrossRef]
- Peng, Z.; Chen, Y.; Wu, T. Ultrafast Microdroplet Generation and High-Density Microparticle Arraying Based on Biomimetic Nepenthes Peristome Surfaces. ACS Appl. Mater. Interfaces 2020, 12, 47299–47308. [Google Scholar] [CrossRef]
- Rebeccani, S.; Zanut, A.; Santo, C.I.; Valenti, G.; Paolucci, F. A Guide Inside Electrochemiluminescent Microscopy Mechanisms for Analytical Performance Improvement. Anal. Chem. 2022, 94, 336–348. [Google Scholar] [CrossRef]
- Ren, L.L.; Dong, H.; Han, T.T.; Chen, Y.; Ding, S.N. Enhanced anodic electrochemiluminescence of CdTe quantum dots based on electrocatalytic oxidation of a co-reactant by dendrimer-encapsulated Pt nanoparticles and its application for sandwiched immunoassays. Analyst 2017, 142, 3934–3941. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, J. Modification of indium tin oxide with dendrimer-encapsulated nanoparticles to provide enhanced stable electrochemiluminescence of Ru(bpy)32+/tripropylamine while preserving optical transparency of indium tin oxide for sensitive electrochemiluminescence-ba. Anal. Chem. 2014, 86, 1654–1660. [Google Scholar] [CrossRef]
- Zhao, W.R.; Xu, Y.H.; Kang, T.F.; Zhang, X.; Liu, H.; Ming, A.J.; Cheng, S.Y.; Wei, F. Sandwich magnetically imprinted immunosensor for electrochemiluminescence ultrasensing diethylstilbestrol based on enhanced luminescence of Ru@SiO2 by CdTe@ZnS quantum dots. Biosens. Bioelectron. 2020, 155, 112102. [Google Scholar] [CrossRef] [PubMed]
- Hui, Y.; Shu, W.; Zhu, J.; Li, J.; Wu, T.; Zhou, W.; Yu, X. Pt Dendrimer-Encapsulated Nanoparticles Modified UMEAs for Electrochemiluminescence Heterogeneous Immunoassay. In Proceedings of the 2023 IEEE SENSORS, Vienna, Austria, 29 October–1 November 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Hui, Y.; Zhao, Z.; Shu, W.; Shen, F.; Kong, W.; Geng, S.; Xu, Z.; Wu, T.; Zhou, W.; Yu, X. An electrochemiluminescent magneto-immunosensor for ultrasensitive detection of hs-cTnI on a microfluidic chip. Nanotechnol. Precis. Eng. 2024, 7, 033002. [Google Scholar] [CrossRef]
- Podešva, P.; Liu, X.; Neu, P. Single nanostructured gold amalgam microelectrode electrochemiluminescence: From arrays to a single point. Sens. Actuators B Chem. 2019, 286, 282–288. [Google Scholar] [CrossRef]
- Cui, C.; Jin, R.; Jiang, D.; Zhang, J.; Zhu, J.J. Electrogenerated Chemiluminescence in Submicrometer Wells for Very High-Density Biosensing. Anal. Chem. 2020, 92, 578–582. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, L.; Zhang, P.; Zhang, D.; Han, Z.; Jiang, L. A Novel Bioinspired Continuous Unidirectional Liquid Spreading Surface Structure from the Peristome Surface of Nepenthes alata. Small 2017, 13, 1601676. [Google Scholar] [CrossRef]
- Mark, S.S.; Bergkvist, M.; Yang, X.; Angert, E.R.; Batt, C.A. Self-assembly of dendrimer-encapsulated nanoparticle arrays using 2-D microbial S-layer protein biotemplates. Biomacromolecules 2006, 7, 1884–1897. [Google Scholar] [CrossRef]
- Hong, D.; Kim, K.; Jo, E.J.; Kim, M.G. Electrochemiluminescence-Incorporated Lateral Flow Immunosensors Using Ru(bpy)32+-Labeled Gold Nanoparticles for the Full-Range Detection of Physiological C-Reactive Protein Levels. Anal. Chem. 2021, 93, 7925–7932. [Google Scholar] [CrossRef]
- Sahoo, S.L.; Liu, C.H.; Kumari, M.; Wu, W.C.; Wang, C.C. Biocompatible quantum dot-antibody conjugate for cell imaging, targeting and fluorometric immunoassay: Crosslinking, characterization and applications. RSC Adv. 2019, 9, 32791–32803. [Google Scholar] [CrossRef]
- Voci, S.; Goudeau, B.; Valenti, G.; Lesch, A.; Jovic´, M.; Rapino, S.; Paolucci, F.; Arbault, S.; Sojic, N. Surface-Confined Electrochemiluminescence Microscopy of Cell Membranes. J. Am. Chem. Soc. 2018, 140, 14753–14760. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, X.; Wen, Y.; Tan, X.; Yuan, R.; Chen, S. Assembling inner filter effect reduced SnS2 quantum dots-based hollow polymeric spherical nanoshells for ratio electrochemiluminescence bioassay. Biosens. Bioelectron. 2022, 218, 114786. [Google Scholar] [CrossRef]
- Du, F.; Dong, Z.; Guan, Y.; Zeid, A.M.; Ma, D.; Feng, J.; Yang, D.; Xu, G. Single-Electrode Electrochemical System for the Visual and High-Throughput Electrochemiluminescence Immunoassay. Anal. Chem. 2022, 94, 2189–2194. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.T.; Zhao, L.Z.; Fu, Y.Z.; Liu, X.M.; Ren, S.W.; Liu, Y.M. Tyramide signal amplification and enzyme biocatalytic precipitation on closed bipolar electrode: Toward highly sensitive electrochemiluminescence immunoassay. Sens. Actuators B Chem. 2021, 331, 129427. [Google Scholar] [CrossRef]
- Hong, D.; Jo, E.J.; Kim, K.; Song, M.B.; Kim, M.G. Ru(bpy)32+-Loaded Mesoporous Silica Nanoparticles as Electrochemiluminescent Probes of a Lateral Flow Immunosensor for Highly Sensitive and Quantitative Detection of Troponin I. Small 2020, 16, 2004535. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Zhou, Z.; Shangguan, L.; Zhao, F.; Liu, S. Electrochemiluminescent detection of cardiac troponin I by using soybean peroxidase labeled-antibody as signal amplifier. Talanta 2018, 180, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Zhan, T.; Su, Y.; Lai, W.; Chen, Z.; Zhang, C. A dry chemistry-based ultrasensitive electrochemiluminescence immunosensor for sample-to-answer detection of Cardiac Troponin I. Biosens. Bioelectron. 2022, 214, 114494. [Google Scholar] [CrossRef]
- Zhang, L.; Dong, S. Electrogenerated chemiluminescence sensing platform using Ru (bpy) 32+ doped silica nanoparticles and carbon nanotubes. Electrochem. Commun. 2006, 8, 1687–1691. [Google Scholar] [CrossRef]
- Zanut, A.; Palomba, F.; Rossi Scota, M.; Rebeccani, S.; Marcaccio, M.; Genovese, D.; Rampazzo, E.; Valenti, G.; Paolucci, F.; Prodi, L. Dye-doped Silica nanoparticles for enhanced ECL-based immunoassay analytical performance. Angew. Chem. Int. Ed. 2020, 59, 21858–21863. [Google Scholar] [CrossRef]
- Valenti, G.; Rampazzo, E.; Bonacchi, E.; Petrizza, L.; Marcaccio, M.; Prodi, L.; Paolucci, F. Variable doping induces mechanism swapping in electrogenerated chemiluminescence of Ru(bpy)32+ core-shell silica nanoparticles. J.Am. Chem. Soc. 2016, 138, 15935–15942. [Google Scholar] [CrossRef]
Electrode Material | ECL System | Linear Dynamic Range (pg/mL) | Limit of Detection (pg/mL) |
---|---|---|---|
Ir nanorods/Glassy carbon electrode [33] | SnS2-Hollow polymeric spherical | 1–1,000,000 | 0.32 |
Carbon ink screen- printed electrode [34] | Luminol/H2O2 | 1000–1,000,000 | 940 |
PDMS slab/ITO [35] | Horseradish peroxidase–gold nanoparticles/H2O2 + Ru(bpy)32+/TPA | 1–50,000 | 0.5 |
Screen-printed gold electrode [36] | Ru@SiO2/TPA | 1–100,000 | 0.81 |
Polyethylenimine– graphene oxide/Glassy carbon electrode [37] | Soybean peroxidase/Luminol/H2O2 | 5–30,000 | 3.3 |
Closed bipolar electrode [38] | Ru(bpy)32+/L-cysteine | 1–100,000,000 | 0.4416 |
Pt-DENs/ITO MEAs | Ru@SiO2/TPA | 2.5–1000 | 0.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hui, Y.; Kong, W.; Shu, W.; Peng, Z.; Shen, F.; Jiang, M.; Xu, Z.; Wu, T.; Zhou, W.; Yu, X.-F. A Biomimetic Chip with Dendrimer-Encapsulated Platinum Nanoparticles for Enhanced Electrochemiluminescence Detection of Cardiac Troponin I. Chemosensors 2024, 12, 214. https://doi.org/10.3390/chemosensors12100214
Hui Y, Kong W, Shu W, Peng Z, Shen F, Jiang M, Xu Z, Wu T, Zhou W, Yu X-F. A Biomimetic Chip with Dendrimer-Encapsulated Platinum Nanoparticles for Enhanced Electrochemiluminescence Detection of Cardiac Troponin I. Chemosensors. 2024; 12(10):214. https://doi.org/10.3390/chemosensors12100214
Chicago/Turabian StyleHui, Yun, Weijun Kong, Weiliang Shu, Zhiting Peng, Fengshan Shen, Mingyang Jiang, Zhen Xu, Tianzhun Wu, Wenhua Zhou, and Xue-Feng Yu. 2024. "A Biomimetic Chip with Dendrimer-Encapsulated Platinum Nanoparticles for Enhanced Electrochemiluminescence Detection of Cardiac Troponin I" Chemosensors 12, no. 10: 214. https://doi.org/10.3390/chemosensors12100214
APA StyleHui, Y., Kong, W., Shu, W., Peng, Z., Shen, F., Jiang, M., Xu, Z., Wu, T., Zhou, W., & Yu, X. -F. (2024). A Biomimetic Chip with Dendrimer-Encapsulated Platinum Nanoparticles for Enhanced Electrochemiluminescence Detection of Cardiac Troponin I. Chemosensors, 12(10), 214. https://doi.org/10.3390/chemosensors12100214