Influence of pH on Room-Temperature Synthesis of Zinc Oxide Nanoparticles for Flexible Gas Sensor Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Methods
2.2. Hydrothermal Synthesis of ZnO NMs (hyd.C)
2.3. RT Synthesis of ZnO NMs (RT.pH(x) and RT.pH(x).C)
2.4. Characterization
2.5. Ink Formulation and Preparation of chemiresistive ZnO NMs-Based Sensors
2.6. Evaluation of the Sensing Performance of the ZnO NMs-Based Sensors
2.7. Evaluation of the Mechanical Flexibility of the ZnO NMs-Based Sensor
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weintraub, B.; Zhou, Z.; Li, Y.; Deng, Y. Solution Synthesis of One-Dimensional ZnO Nanomaterials and Their Applications. Nanoscale 2010, 2, 1573–1587. [Google Scholar] [CrossRef]
- Subhan, M.A.; Neogi, N.; Choudhury, K.P. Industrial Manufacturing Applications of Zinc Oxide Nanomaterials: A Comprehensive Study. Nanomanufacturing 2022, 2, 265–291. [Google Scholar] [CrossRef]
- Chaudhary, S.; Umar, A.; Bhasin, K.; Baskoutas, S. Chemical Sensing Applications of ZnO Nanomaterials. Materials 2018, 11, 287. [Google Scholar] [CrossRef]
- Nguyen, N.-K.; Nguyen, T.; Nguyen, T.-K.; Yadav, S.; Dinh, T.; Masud, M.K.; Singha, P.; Do, T.N.; Barton, M.J.; Ta, H.T.; et al. Wide-Band-Gap Semiconductors for Biointegrated Electronics: Recent Advances and Future Directions. ACS Appl. Electron. Mater. 2021, 3, 1959–1981. [Google Scholar] [CrossRef]
- Papadimitriou, D.N. Engineering of Optical and Electrical Properties of Electrodeposited Highly Doped Al:ZnO and In:ZnO for Cost-Effective Photovoltaic Device Technology. Micromachines 2022, 13, 1966. [Google Scholar] [CrossRef]
- Zhang, L.; Li, N.; Ma, Q.; Ding, J.; Chen, C.; Hu, Z.; Zhao, W.; Li, Y.; Feng, H.; Li, M.; et al. Large-Area Flexible and Transparent UV Photodetector Based on Cross-Linked AgNW@ZnONRs with High Performance. J. Mater. Sci. Technol. 2022, 110, 65–72. [Google Scholar] [CrossRef]
- Du, B.; Zhang, M.; Ye, J.; Wang, D.; Han, J.; Zhang, T. Novel Au Nanoparticle-Modified ZnO Nanorod Arrays for Enhanced Photoluminescence-Based Optical Sensing of Oxygen. Sensors 2023, 23, 2886. [Google Scholar] [CrossRef]
- Gatou, M.-A.; Lagopati, N.; Vagena, I.-A.; Gazouli, M.; Pavlatou, E.A. ZnO Nanoparticles from Different Precursors and Their Photocatalytic Potential for Biomedical Use. Nanomaterials 2022, 13, 122. [Google Scholar] [CrossRef]
- Al-Arjan, W.S. Zinc Oxide Nanoparticles and Their Applicationin Adsorption of Toxic Dye from Aqueous Solution. Polymers 2022, 14, 3086. [Google Scholar] [CrossRef]
- Ananthi, S.; Kavitha, M.; Kumar, E.R.; Prakash, T.; Poonguzhali, R.V.; Ranjithkumar, B.; Balamurugan, A.; Srinivas, C.; Sastry, D. Investigation of Physicochemical Properties of ZnO Nanoparticles for Gas Sensor Applications. Inorg. Chem. Commun. 2022, 146, 110152. [Google Scholar] [CrossRef]
- Shin, K.Y.; Mirzaei, A.; Oum, W.; Yu, D.J.; Kang, S.; Kim, E.B.; Kim, H.M.; Kim, S.S.; Kim, H.W. Enhancement of SelectiveNO2 Gas Sensing via Xenon Ion Irradiation of ZnO Nanoparticles. Sens. Actuators B Chem. 2023, 374, 132808. [Google Scholar] [CrossRef]
- Raha, S.; Ahmaruzzaman, M. ZnO Nanostructured Materials and Their Potential Applications: Progress, Challenges and Perspectives. Nanoscale Adv. 2022, 4, 1868–1925. [Google Scholar] [CrossRef]
- Sulaiman, S.; Izman, S.; Uday, M.; Omar, M. Review on Grain Size Effects on Thermal Conductivity in ZnO Thermoelectric Materials. RSC Adv. 2022, 12, 5428–5438. [Google Scholar] [CrossRef]
- Patil, S.A.; Jagdale, P.B.; Singh, A.; Singh, R.V.; Khan, Z.; Samal, A.K.; Saxena, M. 2D Zinc Oxide–Synthesis, Methodologies, Reaction Mechanism, and Applications. Small 2023, 19, 2206063. [Google Scholar] [CrossRef] [PubMed]
- Preeti, K.; Kumar, A.; Jain, N.; Kaushik, A.; Mishra, Y.K.; Sharma, S.K. Tailored ZnO Nanostructures for Efficient Sensing of Toxic Metallic Ions of Drainage Systems. Mater. Today Sustain. 2023, 24, 100515. [Google Scholar] [CrossRef]
- Yadav, M.; Kumar, M.; Chaudhary, S.; Yadav, K.; Sharma, A. A Review on Chemiresistive Hybrid Zinc Oxide and Nanocomposites for Gas Sensing. Ind. Eng. Chem. Res. 2023, 62, 11259–11278. [Google Scholar] [CrossRef]
- Saleh, T.A.; Fadillah, G. Green Synthesis Protocols, Toxicity, and Recent Progressin Nanomaterial-Based for Environmental Chemical Sensors Applications. Trends Environ. Anal. Chem. 2023, 39, e00204. [Google Scholar] [CrossRef]
- Won, D.; Bang, J.; Choi, S.H.; Pyun, K.R.; Jeong, S.; Lee, Y.; Ko, S.H. Transparent Electronics for Wearable Electronics Application. Chem. Rev. 2023, 123, 9982–10078. [Google Scholar] [CrossRef]
- Kurugundla, G.K.; Godavarti, U.; Saidireddy, P.; Pothukanuri, N. Zinc Oxide Based Gas Sensors and Their Derivatives: A Critical Review. J. Mater. Chem. C 2023, 11, 3906–3925. [Google Scholar] [CrossRef]
- Kumar, R.; Al-Dossary, O.; Kumar, G.; Umar, A. Zinc Oxide Nanostructures for NO2 Gas–Sensor Applications: A Review. Nano-Micro Lett. 2015, 7, 97–120. [Google Scholar] [CrossRef]
- To, D.T.H.; Park, J.Y.; Yang, B.; Myung, N.V.; Choa, Y.-H. Nanocrystalline ZnO Quantum Dot-Based Chemiresistive Gas Sensors: Improving Sensing Performance towards NO2 and H2S by Optimizing Operating Temperature. Sens. Actuators Rep. 2023, 6, 100166. [Google Scholar] [CrossRef]
- Ramike, M.P.; Ndungu, P.G.; Mamo, M.A. Exploration of the Different Dimensions of Wurtzite ZnO Structure Nanomaterial sas Gas Sensors at Room Temperature. Nanomaterials 2023, 13, 2810. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Park, J.; Park, S. Synthesis of Flower-like ZnO and Its Enhanced Sensitivity towards NO2 Gas Detection at Room Temperature. Chemosensors 2023, 11, 322. [Google Scholar] [CrossRef]
- Zeng, T.; Ma, D.; Gui, Y. Gas-Sensitive Performance Study of Metal (Au,Pd,Pt)/ZnO Heterojunction Gas Sensors for Dissolved Gases in Transformer Oil. Langmuir 2024, 40, 9819–9830. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, B.; Li, J.; Duan, Z.; Yang, Y.; Yuan, Z.; Jiang, Y.; Tai, H. Pd-Decorated ZnO Hexagonal Microdiscs for NH3 Sensor. Chemosensors 2024, 12, 43. [Google Scholar] [CrossRef]
- Alouani, M.A.; Casanova-Cháfer, J.; Güell, F.; Peña-Martín, E.; Ruiz-Martínez-Al Cocer, S.; de Bernardi-Martín, S.; García-Gómez, A.; Vilanova, X.; Llobet, E. ZnO-Loaded Graphene for NO2 Gas Sensing. Sensors 2023, 23, 6055. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Chen, J.; Chen, J.; Yao, X.; Chen, G.; Jiao, Z.; Zhao, J.-T.; Cheng, S.; Yang, X.-C.; Li, Q. UV-Light Enhanced Gas Sensor Based on Ga Doped ZnO for Ultra-High Sensitive and Selective n-Butanol Detection. Appl. Surf. Sci. 2023, 641, 158551. [Google Scholar] [CrossRef]
- Ou, L.-X.; Liu, M.-Y.; Zhu, L.-Y.; Zhang, D.W.; Lu, H.-L. Recent Progress on Flexible Room-Temperature Gas Sensors Based on Metal Oxide Semiconductor. Nano-Micro Lett. 2022, 14, 206. [Google Scholar] [CrossRef]
- Güell, F.; Galdámez-Martínez, A.; Martinez-Alanis, P.R.; Catto, A.C.; da Silva, L.F.; Mastelaro, V.R.; Santana, G.; na Dutt, A. ZnO-Based Nanomaterials Approach for Photocatalytic and Sensing Applications: Recent Progress and Trends. Mater. Adv. 2023, 4, 3685–3707. [Google Scholar] [CrossRef]
- Wawrzyniak, J. Advancements in Improving Selectivity of Metal Oxide Semiconductor Gas Sensors Opening New Perspectives for Their Application in Food Industry. Sensors 2023, 23, 9548. [Google Scholar] [CrossRef]
- GaneshMoorthy, S.; Bouvet, M. Effects of Visible Lighton Gas Sensors: From Inorganic Resistors to Molecular Material-Based Heterojunctions. Sensors 2024, 24, 1571. [Google Scholar] [CrossRef] [PubMed]
- Pineda-Reyes, A.M.; Herrera-Rivera, M.R.; Rojas-Chávez, H.; Cruz-Martínez, H.; Medina, D.I. Recent Advances in ZnO-Based Carbon Monoxide Sensors: Role of Doping. Sensors 2021, 21, 4425. [Google Scholar] [CrossRef]
- Abdelkarem, K.; Saad, R.; ElSayed, A.M.; Fathy, M.; Shaban, M.; Hamdy, H. Design of High-Sensitivity La-Doped ZnO Sensors for CO2 Gas Detection at Room Temperature. Sci. Rep. 2023, 13, 18398. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Choi, J. Improved Recovery of NO2 Sensors Using Heterojunctions between Transition Metal Dichalcogenides and ZnO Nanoparticles. Micro Nano Syst. Lett. 2023, 11, 5. [Google Scholar] [CrossRef]
- Hjiri, M.; Algessair, S.; Dhahri, R.; Albargi, H.B.; Mansour, N.B.; Assadi, A.; Neri, G. Ammonia Gas Sensors Based on Undoped and Ca-Doped ZnO Nanoparticles. RSC Adv. 2024, 14, 5001–5011. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Gong, Z.-X.; Huo, L.-Z.; Guo, C.-F.; Yang, X.-J.; Wang, Y.-X.; Luo, X.-P. Zinc Oxide-Loaded Cellulose-Based Carbon Gas Sensor for Selective Detection of Ammonia. Nanomaterials 2023, 13, 3151. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.A.; Mohammed, Y.H. Synthesis of ZnO Nanowires by Thermal Chemical Vapor Deposition Technique: Role of Oxygen Flow Rate. Micro Nanostruct. 2023, 181, 207628. [Google Scholar] [CrossRef]
- Torres, F.D.C.G.; López, J.L.C.; Rodríguez, A.S.L.; Gallardo, P.S.; Morales, E.R.; Hernández, G.P.; Guillen, J.C.D.; Flores, L.L.D. Sol–Gel/Hydrothermal Synthesis of Well-Aligned ZnO Nanorods. Bol. Soc. Esp. Ceram. Vidr. 2023, 62, 348–356. [Google Scholar] [CrossRef]
- Khoshsang, H.; Abbasi, K.; Ghaffarinejad, A. Biosynthesis of ZnO and CuO Nanoparticles Using Sun flower Petal Extract. Inorg. Chem. Commun. 2023, 155, 111083. [Google Scholar] [CrossRef]
- Juwono, H.; Zakiyah, A.; Subagyo, R.; Kusumawati, Y. Facile Production of Biodiesel from Candlenut Oil (Aleurites moluccana L.) Using Photocatalytic Method by Nano Sized-ZnO Photocatalytic Agent Synthesized via Polyol Method. Indones. J. Chem. 2023, 23, 1304–1314. [Google Scholar] [CrossRef]
- Zheng, A.; Abdullah, C.; Chung, E.; Andou, Y. Recent Progress in Visible Light-Doped ZnO Photocatalyst for Pollution Control. Int. J. Environ. Sci. Technol. 2023, 20, 5753–5772. [Google Scholar] [CrossRef]
- Baladi, M.; Amiri, M.; Mohammadi, P.; Mahdi, K.S.; Golshani, Z.; Razavi, R.; Salavati-Niasari, M. Green Sol–Gel Synthesis of Hydroxyapatite Nanoparticles Using Lemon Extractas Capping Agent and Investigation of Its Anticancer Activity against Human Cancer Cell Lines (T98, and SHSY5). Arab. J. Chem. 2023, 16, 104646. [Google Scholar] [CrossRef]
- Aldeen, T.S.; Mohamed, H.E.A.; Maaza, M. ZnO Nanoparticles Prepared via a Green Synthesis Approach: Physical Properties, Photocatalytic and Antibacterial Activity. J. Phys. Chem. Solids 2022, 160, 110313. [Google Scholar] [CrossRef]
- Mohammad, M.; Malek, M.F.; AbdHalim, M.F.; Mohammad Zamri, N.Z.; Bakri, M.D.; Khusaimi, Z.; Mamat, M.H.; Mahmood, M.R.; Tetsuo, S. Synthesisation of Zinc Oxide Nanowires via Hybrid Microwave Assisted Sonochemical Technique at Various Microwave Power. J. Mech. Eng. 2023, 20, 293–311. [Google Scholar] [CrossRef]
- Chen, Y.; Li, H.; Huang, D.; Wang, X.; Wang, Y.; Wang, W.; Yi, M.; Cheng, Q.; Song, Y.; Han, G. Highly Sensitive and Selective Acetone Gas Sensors Based on Modified ZnO Nanomaterials. Mater. Sci. Semicond. Process. 2022, 148, 106807. [Google Scholar] [CrossRef]
- Xu, J.; Huang, Y.; Zhu, S.; Abbes, N.; Jing, X.; Zhang, L. A Review of the Green Synthesis of ZnO Nanoparticles Using Plant Extracts and Their Prospects for Application in Antibacterial Textiles. J. Eng. Fibers. Fab. 2021, 16, 15589250211046242. [Google Scholar] [CrossRef]
- Almarhoon, Z.M.; Indumathi, T.; Kumar, E.R. Optimized Green Synthesis of ZnO Nanoparticles: Evaluation of Structural, Morphological, Vibrational and Optical Properties. J. Mater. Sci. Mater. Electron. 2022, 33, 23659–23672. [Google Scholar] [CrossRef]
- Sharma, B.K.; Mehta, B.R.; Shah, E.V.; Chaudhari, V.P.; Roy, D.R.; MondalRoy, S. Green Synthesis of Triangular ZnO Nanoparticles Using Azadirachta indica Leaf Extract and Its Shape Dependency for Significant Antimicrobial Activity: Joint Experimental and Theoretical Investigation. J. Clust. Sci. 2022, 33, 2517–2530. [Google Scholar] [CrossRef]
- Sanjeev, N.O.; Valsan, A.E.; Zachariah, S.; Vasu, S.T. Synthesis of Zinc Oxide Nanoparticles from Azadirachta indica Extract: A Sustainable and Cost-Effective Material for Waste water Treatment. J. Hazard. Toxic Radioact. Waste 2023, 27, 04023027. [Google Scholar] [CrossRef]
- Ferreiro, A.; Flores-Carrasco, G.; Quevedo-López, M.; Urbieta, A.; Fernández, P.; Rabanal, M. Effect of Lithium Codoping on the Structural, Morphological and Photocatalytic Properties of Nd-Doped ZnO. Ceram. Int. 2023, 49, 33513–33524. [Google Scholar] [CrossRef]
- Reyes-Gracia, A.; Alvarado, J.A.; Pérez-Cuapio, R.; Juárez, H. Comparison from Lemon Juice and N-Dipentene ZnO Nanoparticles Green Synthesis: Influence of By products in Morphology and Size. Mater. Sci. Eng. B 2023, 290, 116335. [Google Scholar] [CrossRef]
- Khnam, B.R.; Prachalith, N.; Angadi, B.; Reddy, B.U.; Udaykumar, K. The Effect of Reaction and Annealing Temperatures on Physicochemical Properties of Highly Stable ZnO Nanoparticles Synthesized via a Green Route Using Plumeria obtuse L. New J. Chem. 2023, 47, 19122–19137. [Google Scholar] [CrossRef]
- Narin, P.; Kutlu-Narin, E.; Lisesivdin, S.B. Growth Dynamics of Mist-CVD Grown ZnO Nanoplatelets. Phys B Condens. Matter 2021, 614, 413028. [Google Scholar] [CrossRef]
- Pradeep, N.; selvi Gopal, T.; Venkatraman, U.; Alrebdi, T.A.; Pandiaraj, S.; Alodhayb, A.; Muthuramamoorthy, M.; Kim, S.Y.; Van Le, Q.; Khan, S.; et al. Effect of Substrate Bending towards Chemiresistive Based Hydrogen Gas Sensor Using ZnO-Decorated MgO Nanocubes. Mater. Today Chem. 2022, 26, 101200. [Google Scholar] [CrossRef]
- Choi, S.C.; Lee, D.K.; Sohn, S.H. Morphological Properties of One-Dimensional ZnO Nanostructures Grown by Thermal Chemical Vapor Deposition with Defferent Source Materials. Mol. Cryst. Liq. Cryst. 2022, 735, 126–133. [Google Scholar] [CrossRef]
- Nisansala, H.; Rajapaksha, G.; Dikella, D.; Dheerasinghe, M.; Sirimuthu, N.; Patabendige, C. Zinc Oxide Nanostructures in the Textile Industry. Indian J. Sci. Technol. 2021, 14, 3370–3395. [Google Scholar] [CrossRef]
- Li, S.-M.; Zhang, L.-X.; Zhu, M.-Y.; Ji, G.-J.; Zhao, L.-X.; Yin, J.; Bie, L.-J. Acetone Sensing of ZnO Nanosheets Synthesized Using Room-Temperature Precipitation. Sens. Actuators B Chem. 2017, 249, 611–623. [Google Scholar] [CrossRef]
- Malik, K.A.; Malik, J.H.; Assadullah, I.; Bhat, A.A.; Tomar, R. A Comparative Experimental and Theoretical Study on the Structural and Optical Properties of ZnO Synthesized at Room Temperature Using an Ultrasonication Technique. Energy Storage 2023, 5, e401. [Google Scholar] [CrossRef]
- Arya, S.; Mahajan, P.; Mahajan, S.; Khosla, A.; Datt, R.; Gupta, V.; Young, S.-J.; Oruganti, S.K. Influence of Processing Parameters to Control Morphology and Optical Properties of Sol-Gel Synthesized ZnO Nanoparticles. ECS J. Solid State Sci. Technol. 2021, 10, 023002. [Google Scholar] [CrossRef]
- Shaba, E.Y.; Jacob, J.O.; Tijani, J.O.; Suleiman, M.A.T. A Critical Review of Synthesis Parameters Affecting the Properties of Zinc Oxide Nanoparticle and Its Application in Wastewater Treatment. Appl. Water Sci. 2021, 11, 48. [Google Scholar] [CrossRef]
- Endriyatno, N.; Wikantyasning, E.; Indrayudha, P. Optimization synthesis of zinc oxide nanoparticles using factorial design and its antibacterial activity. Rasayan J. Chem. 2023, 16, 773–778. [Google Scholar] [CrossRef]
- Arif, H.; Qayyum, S.; Akhtar, W.; Fatima, I.; Kayani, W.K.; Rahman, K.U.; Al-Onazi, W.A.; Al-Mohaimeed, A.M.; Bangash, N.K.; Ashraf, N.; et al. Synthesis and Characterization of Zinc Oxide Nanoparticles at Different pH Values from Clinopodiumvulgare L. and Their Assessment as an Antimicrobial Agent and Biomedical Application. Micromachines 2023, 14, 1285. [Google Scholar] [CrossRef] [PubMed]
- Sheikhi, S.; Aliannezhadi, M.; Tehrani, F.S. Effect of Precursor Material, pH, and Aging on ZnO Nanoparticles Synthesized by One-Step Sol–Gel Method for Photodynamic and Photocatalytic Applications. Eur. Phys. J. Plus 2022, 137, 60. [Google Scholar] [CrossRef]
- Gherbi, B.; Laouini, S.E.; Meneceur, S.; Bouafia, A.; Hemmami, H.; Tedjani, M.L.; Thiripuranathar, G.; Barhoum, A.; Menaa, F. Effect of pH Value on the Bandgap Energy and Particles Size for Biosynthesis of ZnO Nanoparticles: Efficiency for Photocatalytic Adsorption of Methyl Orange. Sustainability 2022, 14, 11300. [Google Scholar] [CrossRef]
- Ali, A.; Yusoff, M.; TerTeo, P.; Mamat, S.; Mohamed, M.; Ramli, N.; Akmal, S. Synthesis of Zinc Oxide Nanostructures Growth by the Role of pH Variation. IOP Conf. Series Earth Environ. Sci. 2020, 596, 012040. [Google Scholar] [CrossRef]
- Devi, L.R.; Sarathi, R.; Sheeba, N.; Esakki, E.S.; Sundar, S.M. Influence of pH Variation on Structural, Optical, and Superparamagnetic Behavior of Ni-Doped ZnO (X=0.02) Using a Solvothermal Method. J. Indian Chem. Soc. 2023, 100, 100874. [Google Scholar] [CrossRef]
- Kumar, S.; Ye, F.; Mazinani, B.; Dobretsov, S.; Dutta, J. Chitosan Nanocomposite Coatings Containing Chemically Resistant ZnO–SnOx Core–Shell Nanoparticles for Photocatalytic Antifouling. Int. J. Mol. Sci. 2021, 22, 4513. [Google Scholar] [CrossRef] [PubMed]
- Gerbreders, V.; Krasovska, M.; Sledevskis, E.; Gerbreders, A.; Mihailova, I.; Tamanis, E.; Ogurcovs, A. Hydrothermal Synthesis of ZnO Nanostructures with Controllable Morphology Change. Cryst. Eng. Comm. 2020, 22, 1346–1358. [Google Scholar] [CrossRef]
- Du, H.; Yue, M.; Huang, X.; Duan, G.; Yang, Z.; Huang, W.; Shen, W.; Yin, X. Preparation, Application and Enhancement Dyeing Properties of ZnO Nanoparticles in Silk Fabrics Dyed with Natural Dyes. Nanomaterials 2022, 12, 3953. [Google Scholar] [CrossRef]
- Kedruk, Y.; Baigarinova, G.; Gritsenko, L.; Cicero, G.; Abdullin, K.A. Facile Low-Cost Synthesis of Highly Photocatalitycally Active Zinc Oxide Powders. Front. Mater. 2022, 9, 869493. [Google Scholar] [CrossRef]
- Al Shboul, A.M.; Izquierdo, R. Printed Chemiresistive In2O3 Nanoparticle-Based Sensors with Ppb Detection of H2S Gas for Food Packaging. ACS Appl. Nano Mater. 2021, 4, 9508–9517. [Google Scholar] [CrossRef]
- Al Shboul, A.; Shih, A.; Izquierdo, R. A Flexible Indium Oxide Sensor with Anti-Humidity Property for Room Temperature Detection of Hydrogen Sulfide. IEEE Sens. J. 2020, 21, 9667–9674. [Google Scholar] [CrossRef]
- Al Shboul, A.M.; Ketabi, M.; Mechael, S.S.; Nyayachavadi, A.; Rondeau-Gagné, S.; Izquierdo, R. Hydrogen Sulfide Gas Detection in Ppb Levels at Room Temperature with a Printed, Flexible, Disposable In2O3 NPs-Based Sensor for IoT Food Packaging Applications. Adv. Mater. Technol. 2023, 8, 2201086. [Google Scholar] [CrossRef]
- Nextron. Available online: https://www.microprobesystem.com (accessed on 2 May 2024).
- Rajendran, G.; Datta, S.P.; Singh, R.D.; Datta, S.C.; Vakada, M. Synthesisand Characterization of ZnO Nanoparticles–Comparison of Acetate (Precursor) Based Methods. Inorg. Nano-Met. Chem. 2022, 52, 185–194. [Google Scholar] [CrossRef]
- Jum’h, I.; Telfah, A.; Lambert, J.; Gogiashvili, M.; Al-Taani, H.; Hergenröder, R. 13C and 1H NMR Measurements to Investigate the Kinetics and the Mechanism of Acetic Acid (CH3CO2H) Ionization as a Model for Organic Acid Dissociation Dynamics for Polymeric Membrane Water Filtration. J. Mol. Liq. 2017, 227, 106–113. [Google Scholar] [CrossRef]
- Syrovaya, A.; Levashova, O.; Chalenko, N.; Petyunina, V.; Makarov, V.; Andreeva, S.; Lukianova, L.; Kozub, S.; Tishakova, T.; Savelieva, E.; et al. Acid-Base Equilibrium in the Organism. pH of Biological Liquids; KhNMU Medical Chemistry: Kharkiv, Ukraine, 2017; p. 24. [Google Scholar]
- Liu, W.; Wang, S.; Wang, J.; Zhang, B.; Liu, L.; Liu, H.; Yang, J. Super critical Hydrothermal Synthesis of Nano-Zinc Oxide: Process and Mechanism. Ceram. Int. 2022, 48, 22629–22646. [Google Scholar] [CrossRef]
- Droepenu, E.K.; Wee, B.S.; Chin, S.F.; Kok, K.Y.; Maligan, M.F. Zinc Oxide Nanoparticles Synthesis Methods and Its Effecton Morphology: A Review. Biointerface Res. Appl. Chem. 2022, 12, 4261–4292. [Google Scholar] [CrossRef]
- Lausecker, C.; Salem, B.; Baillin, X.; Consonni, V. Effects of Zinc Nitrate and HMTA on the Formation Mechanisms of ZnO Nanowires on Au Seed Layers. Cryst. Growth. Des. 2023, 23, 2941–2950. [Google Scholar] [CrossRef]
- Gatou, M.-A.; Kontoliou, K.; Volla, E.; Karachalios, K.; Raptopoulos, G.; Paraskevopoulou, P.; Lagopati, N.; Pavlatou, E.A. Optimization of ZnO Nanoparticles’ Synthesis via Precipitation Method Applying Taguchi Robust Design. Catalysts 2023, 13, 1367. [Google Scholar] [CrossRef]
- Bulcha, B.; Leta Tesfaye, J.; Anatol, D.; Shanmugam, R.; Dwarampudi, L.P.; Nagaprasad, N.; Bhargavi, V.N.; Krishnaraj, R. Synthesis of Zinc Oxide Nanoparticles by Hydrothermal Methods and Spectroscopic Investigation of Ultraviolet Radiation Protective Properties. J. Nanomater. 2021, 2021, 8617290. [Google Scholar] [CrossRef]
- Batterjee, M.G.; Nabi, A.; Kamli, M.R.; Alzahrani, K.A.; Danish, E.Y.; Malik, M.A. Green Hydrothermal Synthesis of Zinc Oxide Nanoparticles for UV-Light-Induced Photocatalytic Degradation of Ciprofloxacin Antibiotic in an Aqueous Environment. Catalysts 2022, 12, 1347. [Google Scholar] [CrossRef]
- Erol, I.; Hazman, Ö.; Aksu, M. Preparation of Novel Composites of Polyvinyl Alcohol Containing Hesperidin Loaded ZnO Nanoparticles and Determination of Their Biological and Thermal Properties. J. Inorg. Organomet. Poly. Mater. 2023, 33, 731–746. [Google Scholar] [CrossRef] [PubMed]
- Wahab, R.; Ansari, S.; Kim, Y.-S.; Seo, H.-K.; Shin, H.-S. Room Temperature Synthesis of Needle-Shaped ZnO Nanorods via Sonochemical Method. Appl. Surf. Sci. 2007, 253, 7622–7626. [Google Scholar] [CrossRef]
- Aydoğdu, N.K.S.B. Comparison of ZnO Nanoparts Synthesized with Vitisvinifera L. Cv. Öküzgözüby Thermogravimetric Analysis (TGA) According to Drying Temperatures. In Proceedings of the 17th Nanoscience and Nanotechnology Conference, Izmir-Urla, Izmir-Urla, Turkey, 27–30 August 2023. [Google Scholar]
- Limón-Rocha, I.; Guzmán-González, C.A.; Anaya-Esparza, L.M.; Romero-Toledo, R.; Rico, J.L.; González-Vargas, O.A.; Pérez-Larios, A. Effect of the Precursor on the Synthesis of ZnO and Its Photocatalytic Activity. Inorganics 2022, 10, 16. [Google Scholar] [CrossRef]
- Ramesh, A.M.; Pal, K.; Kodandaram, A.; Manjula, B.L.; Ravishankar, D.K.; Gowtham, H.G.; Murali, M.; Rahdar, A.; Kyzas, G.Z. Antioxidant and Photocatalytic Properties of Zinc Oxide Nanoparticles Phyto-Fabricated Using the Aqueous Leaf Extract of Sida Acuta. Green Process. Synth. 2022, 11, 857–867. [Google Scholar] [CrossRef]
- Sajid, M.M.; Shad, N.A.; Javed, Y.; Shafique, M.; Afzal, A.M.; Khan, S.B.; Amin, N.; Hassan, M.A.; Khan, M.U.H.; Tarabi, T.; et al. Efficient Photocatalytic and Antimicrobial Behaviour of Zinc Oxide Nanoplates Prepared by Hydrothermal Method. J. Clust. Sci. 2022, 33, 773–783. [Google Scholar] [CrossRef]
- Gonzalez, E.D.; Ospina, R.; Gonzalez-Estrada, O.A.; Botero, J.; Botero, M.A. Influence of the Filling Ratio of Vial in Chemical Surface and Physicochemical Properties of ZnO Nanoparticles Obtained by Planetary Ball Milling Process. Surf. Interface Anal. 2023, 55, 263–269. [Google Scholar] [CrossRef]
- Singh, K.; Nancy; Bhattu, M.; Singh, G.; Mubarak, N.M.; Singh, J. Light-Absorption-Driven Photocatalysis and Antimicrobial Potential of PVP-Capped ZincOxide Nanoparticles. Sci. Rep. 2023, 13, 13886. [Google Scholar] [CrossRef]
- Alzahrani, E.A.; Nabi, A.; Kamli, M.R.; Albukhari, S.M.; Althabaiti, S.A.; Al-Harbi, S.A.; Khan, I.; Malik, M.A. Facile Green Synthesis of ZnO NPs and Plasmonic Ag-Supported ZnO Nanocomposite for Photocatalytic Degradation of Methylene Blue. Water 2023, 15, 384. [Google Scholar] [CrossRef]
- El-Dawy, E.G.A.E.M.; Gherbawy, Y.A.; AbdEl-Sadek, M.S.; Fouad, W. Molecular Identification of Keratinophilic Fungi Associated with Hair Scalp and Antifungal Activity of Green-Synthesis Zinc Oxide Nanoparticles. J. Basic. Microbiol. 2023, 64, e2300447. [Google Scholar] [CrossRef]
- Franco, M.A.; Conti, P.P.; Andre, R.S.; Correa, D.S. A Review on Chemiresistive ZnO Gas Sensors. Sens. Actuators Rep. 2022, 4, 100100. [Google Scholar] [CrossRef]
- Kang, Y.; Yu, F.; Zhang, L.; Wang, W.; Chen, L.; Li, Y. Review of ZnO-Based Nanomaterials in Ga Sensors. Solid State Ion. 2021, 360, 115544. [Google Scholar] [CrossRef]
- Kutilike, B.; Hamidin, T.; Nizamidin, P.; Abliz, S.; Yimit, A. Improved Determination of Styrene with a Titanium (IV) Oxide Film Optical Waveguide Doped with Zinc Ferrite. Instrum. Sci. Technol. 2020, 49, 216–232. [Google Scholar] [CrossRef]
- Yang, J.; Ren, C.; Liu, M.; Li, W.; Gao, D.; Li, H.; Ning, Z. A Novel Dye-Modified Metal–Organic Framework as a Bifunctional Fluorescent Probe for Visual Sensing for Styrene and Temperature. Molecules 2023, 28, 4919. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Li, Y.; Gao, L.; Zhou, F.; Duan, G. Ultrafine Pt NPs-Decorated SnO2/α-Fe2O3 Hollow Nanospheres with Highly Enhanced Sensing Performances for Styrene. J. Hazard. Mater. 2018, 358, 355–365. [Google Scholar] [CrossRef]
- Mian, S.A.; Hussain, A.; Basit, A.; Rahman, G.; Ahmed, E.; Jang, J. Molecular Modeling and Simulation of Transition Metal–Doped Molybdenum Disulfide Biomarkers in Exhaled Gases for Early Detection of Lung Cancer. J. Mol. Model. 2023, 29, 225. [Google Scholar] [CrossRef] [PubMed]
- Widjaja, E. Suspension Polymerization of Styrene Using Zinc Oxide as a Suspension Agent. J. Mater. Sci. Eng. B 2011, 1, 404. [Google Scholar]
- Himabindu, B.; Latha Devi, N.S.M.P.; Nagaraju, P.; Rajini Kanth, B. A Nanostructured Al-Doped ZnO as an Ultra-Sensitive Room-Temperature Ammonia Gas Sensor. J. Mater. Sci. Mater. Electron. 2023, 34, 1014. [Google Scholar] [CrossRef]
- Lupan, C.; Mishra, A.K.; Wolff, N.; Drewes, J.; Krüger, H.; Vahl, A.; Lupan, O.; Pauporté, T.; Viana, B.; Kienle, L.; et al. Nanosensors Based on a Single ZnO: Eu Nanowire for Hydrogen Gas Sensing. ACS Appl. Mater. Interfaces 2022, 14, 41196–41207. [Google Scholar] [CrossRef]
- Liu, S.; Yang, W.; Liu, L.; Chen, H.; Liu, Y. Enhanced H2S Gas-Sensing Performance of Ni-Doped ZnO Nanowire Arrays. ACS Omega 2023, 8, 7595–7601. [Google Scholar] [CrossRef]
- Lin, J.-H.; Yang, T.; Zhang, X.; Shiu, B.-C.; Lou, C.-W.; Li, T.-T. Mn-Doped ZnO/SnO2-Based Yarn Sensor for Ammonia Detection. Ceram. Int. 2023, 49, 34431–34439. [Google Scholar] [CrossRef]
- Daniel, T.T.; Yadav, V.K.S.; Abraham, E.E.; Paily, R.P. Carbon Monoxide Sensor Based on Printed ZnO. IEEE Sens. J. 2022, 22, 10910–10917. [Google Scholar] [CrossRef]
- Tseng, S.-F.; Chen, P.-S.; Hsu, S.-H.; Hsiao, W.-T.; Peng, W.-J. Investigation of Fiber Laser-Induced Porous Graphene Electrodes in Controlled Atmospheres for ZnO Nanorod-Based NO2 Gas Sensors. Appl. Surf. Sci. 2023, 620, 156847. [Google Scholar] [CrossRef]
- Kamble, C.; Narwade, S.; Mane, R. Detection of Acetylene (C2H2) Gas Using Ag-Modified ZnO/GO Nanorods Prepared by a Hydrothermal Synthesis. Mater. Sci. Semicond. Process. 2023, 153, 107145. [Google Scholar] [CrossRef]
- Kumar, B.B.; Bhowmik, B.; Singh, A.P.; Jit, S.; Singh, K. Room Temperature ZnO Nanorods Based TFT Ammonia Sensor: An Experimental and Simulation Study. Appl. Phys. A 2024, 130, 308. [Google Scholar] [CrossRef]
- Chao, J.; Meng, D.; Zhang, K.; Wang, J.; Guo, L.; Yang, X. Development of an Innovative Ethanol Sensing Sensor Platform Based on the Construction of Au Modified 3D Porous ZnO Hollow Microspheres. Mater. Res. Bull. 2024, 170, 112569. [Google Scholar] [CrossRef]
- Natarajamani, G.S.; Kannan, V.P.; Madanagurusamy, S. Synergistically Enhanced NH3 Gas Sensing of Graphene Oxide-Decorated Nano-ZnO Thin Films. Mater. Chem. Phys. 2024, 316, 129036. [Google Scholar] [CrossRef]
- Bolli, E.; Fornari, A.; Bellucci, A.; Mastellone, M.; Valentini, V.; Mezzi, A.; Polini, R.; Santagata, A.; Trucchi, D.M. Room-Temperature O3 Detection: Zero-Bias Sensors Based on ZnO Thin Films. Crystals 2024, 14, 90. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Mirzaei, A.; Lee, M.H.; Kim, T.-U.; Kim, S.S.; Kim, J.-H. Boosting the Acetone Gas Sensing of WS2–ZnO Nanosheets by Codecoration of Pt/Pd Nanoparticles. J. Alloys. Compd. 2024, 989, 174325. [Google Scholar] [CrossRef]
- Nguyena, N.; Nguyen, V. Ultrasound-Assisted Sol-Gel Synthesis, Characterization, and Photocatalytic Application of ZnO Nanoparticles. Dig. J. Nanomater. Biostruct. 2023, 18, 889–897. [Google Scholar] [CrossRef]
- Haque, M.J.; Bellah, M.M.; Hassan, M.R.; Rahman, S. Synthesis of ZnO Nanoparticles by Two Different Methods & Comparison of Their Structural, Antibacterial, Photocatalytic and Optical Properties. Nano Express 2020, 1, 010007. [Google Scholar] [CrossRef]
- Al Awadh, A.A.; Shet, A.R.; Patil, L.R.; Shaikh, I.A.; Alshahrani, M.M.; Nadaf, R.; Mahnashi, M.H.; Desai, S.V.; Muddapur, U.M.; Achappa, S.; et al. Sustainable Synthesis and Characterization of Zinc Oxide Nanoparticles Using Raphanus Sativus Extract and Its Biomedical Applications. Crystals 2022, 12, 1142. [Google Scholar] [CrossRef]
- Lee, M.; Kim, M.Y.; Kim, J.; Park, C.O.; Choa, H.E.; Lee, S.Y.; Park, M.K.; Min, H.; Lee, K.H.; Lee, W. Conductometric Sensor for Gaseous Sulfur-Mustard Simulant by Gold Nanoparticles Anchored on ZnO Nanosheets Prepared via Microwave Irradiation. Sens. Actuators B Chem. 2023, 386, 133726. [Google Scholar] [CrossRef]
- Yan, P.; Hu, Q.; Chen, J.; Zhou, N.; Zhang, Q. Gas Sensing Property of ZnO NR Arrays Stabilized by High-Temperature Annealing and the Mechanism of Detecting Reduce Gases. J. Phys. Chem. Solids 2023, 181, 111488. [Google Scholar] [CrossRef]
- Findik, M. ZnO Nanoflowers Modified Pencil Graphite Electrode for Voltammetric DNA Detection and Investigation of Gemcitabine–DNA Interaction. Mater. Chem. Phys. 2023, 307, 128117. [Google Scholar] [CrossRef]
- Ahmad, H.; Naderi, N.; Yasin, M. Design and Photovoltaic Performance Analysis of Electrodeposited ZnO Microspheres/p-Si Heterojunction Energy Harvesters. J. Mater. Sci. Mater. Electron. 2023, 34, 414. [Google Scholar] [CrossRef]
- Nakate, U.T.; Yu, Y.-T.; Park, S. Hydrothermal Synthesis of ZnO Nanoflakes Composed of Fine Nanoparticles for H2S Gas Sensing Application. Ceram. Int. 2022, 48, 28822–28829. [Google Scholar] [CrossRef]
- Manzano, C.V.; Philippe, L.; Serrà, A. Recent Progress in the Electrochemical Deposition of ZnO Nanowires: Synthesis Approaches and Applications. Crit. Rev. Solid State Mater. Sci. 2022, 47, 772–805. [Google Scholar] [CrossRef]
- Sampath, S.; Rohini, V.; Chinnasamy, K.; Ponnusamy, P.; Thangarasau, S.; Kim, W.K.; Shkir, M.; Reddy, V.R.M.; Maiz, F. Solvothermal Synthesis of Magnetically Separable Co–ZnO Nanowires for Visible Light Driven Photocatalytic Applications. Phys. B Condens. Matter 2023, 652, 414654. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mechai, F.; Al Shboul, A.; Bensidhoum, M.O.; Anabestani, H.; Ketabi, M.; Izquierdo, R. Influence of pH on Room-Temperature Synthesis of Zinc Oxide Nanoparticles for Flexible Gas Sensor Applications. Chemosensors 2024, 12, 83. https://doi.org/10.3390/chemosensors12050083
Mechai F, Al Shboul A, Bensidhoum MO, Anabestani H, Ketabi M, Izquierdo R. Influence of pH on Room-Temperature Synthesis of Zinc Oxide Nanoparticles for Flexible Gas Sensor Applications. Chemosensors. 2024; 12(5):83. https://doi.org/10.3390/chemosensors12050083
Chicago/Turabian StyleMechai, Fazia, Ahmad Al Shboul, Mohand Outahar Bensidhoum, Hossein Anabestani, Mohsen Ketabi, and Ricardo Izquierdo. 2024. "Influence of pH on Room-Temperature Synthesis of Zinc Oxide Nanoparticles for Flexible Gas Sensor Applications" Chemosensors 12, no. 5: 83. https://doi.org/10.3390/chemosensors12050083
APA StyleMechai, F., Al Shboul, A., Bensidhoum, M. O., Anabestani, H., Ketabi, M., & Izquierdo, R. (2024). Influence of pH on Room-Temperature Synthesis of Zinc Oxide Nanoparticles for Flexible Gas Sensor Applications. Chemosensors, 12(5), 83. https://doi.org/10.3390/chemosensors12050083