Photoluminescence Sensing of Lead Halide Perovskite Nanocrystals and Their Two-Dimensional Structural Materials
Abstract
:1. Introduction
2. Composition and Structure of Lead Halide Perovskite Materials and Their Sensing Characteristics
2.1. Composition and Structure of Lead Halide Perovskite Materials
2.2. Photoluminescence Sensing of 3D Lead Halide Perovskite Nanocrystal
2.2.1. Sensing Mechanism of 3D Lead Halide Perovskite Nanocrystal
2.2.2. Sensing Applications of 3D Lead Halide Perovskite Nanocrystal
2.3. Photoluminescence Sensing of 2D Lead Halide Perovskite
2.3.1. Influence Factors on the Photoluminescence of 2D Lead Halide Perovskite
2.3.2. Sensing Applications of 2D Lead Halide Perovskitel
3. Conclusions and Outlook
Funding
Acknowledgments
Conflicts of Interest
References
- Møller, C.K. Crystal structure and photoconductivity of cæsium plumbohalides. Nature 1958, 182, 1436. [Google Scholar] [CrossRef]
- Weber, D. CH3NH3PbX3, a Pb(II)-system with cubic perovskite structure. Z. Naturforschung B 1978, 33, 1443–1445. [Google Scholar] [CrossRef]
- Shamsi, J.; Urban, A.S.; Imran, M.; Trizio, L.D.; Manna, L. Metal halide perovskite nanocrystals: Synthesis, post-synthesis modifications, and their optical properties. Chem. Rev. 2019, 119, 3296–3348. [Google Scholar] [CrossRef]
- Akkerman, Q.A.; Raino, G.; Kovalenko, M.V.; Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 2018, 17, 394–405. [Google Scholar] [CrossRef]
- Kojima, A.T.K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Bodnarchuk, M.I.; Kershaw, S.V.; Kovalenko, M.V.; Rogach, A.L. Lead halide perovskite nanocrystals in the research spotlight: Stability and defect tolerance. ACS Energy Lett. 2017, 2, 2071–2083. [Google Scholar] [CrossRef]
- Li, X.; Cao, F.; Yu, D.; Chen, J.; Sun, Z.; Shen, Y.; Zhu, Y.; Wang, L.; Wei, Y.; Wu, Y.; et al. All inorganic halide perovskites nanosystem: Synthesis, structural features, optical properties and optoelectronic applications. Small 2017, 13, 1603996. [Google Scholar] [CrossRef]
- Lee, M.M.; Teuscher, J.; Miyasaka, T.; Murakami, T.N.; Snaith, H.J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 338, 643–647. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Lee, C.R.; Im, J.H.; Lee, K.B.; Moehl, T.; Marchioro, A.; Moon, S.J.; Humphry-Baker, R.; Yum, J.H.; Moser, J.E.; et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012, 2, 591–597. [Google Scholar] [CrossRef]
- Schmidt, L.C.; Pertegas, A.; Gonzalez-Carrero, S.; Malinkiewicz, O.; Agouram, S.; Mínguez, E.G.; Bolink, H.J.; Galian, R.E.; Pérez-Prieto, J. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J. Am. Chem. Soc. 2014, 136, 850–853. [Google Scholar] [CrossRef]
- Protesescu, L.; Yakunin, S.; Bodnarchuk, M.I.; Krieg, F.; Caputo, R.; Hendon, C.H.; Yang, R.X.; Walsh, A.; Kovalenko, M.V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696. [Google Scholar] [CrossRef] [PubMed]
- Quan, L.N.; Garcia de Arquer, F.P.; Sabatini, R.P.; Sargent, E.H. Perovskites for light emission. Adv. Mater. 2018, 30, 1801996–1802012. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Liu, W.; Zhang, Q. Perovskite-based nanocrystals: Synthesis and applications beyond solar cells. Small Methods 2018, 2, 1700380–1700398. [Google Scholar] [CrossRef]
- Yu, X.; Tsao, H.N.; Zhang, Z.; Gao, P. Miscellaneous and perspicacious: Hybrid halide perovskite materials based photodetectors and sensors. Adv. Opt. Mater. 2020, 8, 2001095–2001118. [Google Scholar] [CrossRef]
- Yan, F.; Tan, S.T.; Li, X.; Demir, H.V. Light generation in lead halide perovskite nanocrystals: LEDs, color converters, lasers, and other applications. Small 2019, 15, 1902079–1902093. [Google Scholar] [CrossRef] [PubMed]
- Aamir, M.; Shahiduzzaman, M.; Taima, T.; Akhtar, J.; Nunzi, J.M. It is an all-rounder on the development of metal halide perovskite-based fluorescent sensors and radiation detectors. Adv. Opt. Mater. 2021, 9, 2101276–2101302. [Google Scholar] [CrossRef]
- Hu, H.; Zhao, D.; Gao, Y.; Qiao, X.; Salim, T.; Chen, B.; Chia, E.E.M.; Grimsdale, A.C.; Lam, Y.M. Harvesting triplet excitons in lead-halide perovskites for room-temperature phosphorescence. Chem. Mater. 2019, 31, 2597–2602. [Google Scholar] [CrossRef]
- Hu, H.; Meier, F.; Zhao, D.; Abe, Y.; Gao, Y.; Chen, B.; Salim, T.; Chia, E.E.M.; Qiao, X.; Deibel, C.; et al. Efficient room-temperature phosphorescence from organic-inorganic hybrid perovskites by molecular engineering. Adv. Mater. 2018, 30, 1707621–1707627. [Google Scholar] [CrossRef]
- Lin, H.; Zhou, C.; Tian, Y.; Siegrist, T.; Ma, B. Low-dimensional organometal halide perovskites. ACS Energy Lett. 2018, 3, 54–62. [Google Scholar] [CrossRef]
- Biswas, A.; Bakthavatsalam, R.; Kundu, J. Efficient exciton to dopant energy transfer in Mn2+-doped (C4H9NH3)2PbBr4 Two-Dimensional (2D) layered perovskites. Chem. Mater. 2017, 29, 7816–7825. [Google Scholar] [CrossRef]
- Wei, Q.; Li, M.; Zhang, Z.; Jia, G.; Guichuan, X.; Tze, C.S.; Huang, W. Efficient recycling of trapped energies for dual-emission in Mn-doped perovskite nanocrystals. Nano Energy 2018, 51, 704–710. [Google Scholar] [CrossRef]
- Pan, G.; Bai, X.; Yang, D.; Chen, X.; Jing, P.; Qu, S.; Zhang, L.; Zhou, D.; Zhu, J.; Xu, W.; et al. Doping lanthanide into perovskite nanocrystals: Highly improved and expanded optical properties. Nano Lett. 2017, 17, 8005–8011. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Shu, Y.; Xin, Y.; Ma, B. Highly luminescent nanoscale quasi-2D layered lead bromide perovskites with tunable emissions. Chem. Commun. 2016, 52, 3887–3890. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Yan, L.; You, W. Two-dimensional organic-inorganic hybrid perovskites: A new platform for optoelectronic applications. Adv. Mater. 2018, 30, 1802041–1802050. [Google Scholar] [CrossRef]
- Soe, C.M.M.; Stoumpos, C.C.; Kepenekian, M.; Traoré, B.; Tsai, H.; Nie, W.; Wang, B.; Katan, C.; Seshadri, R.; Mohite, A.; et al. New type of 2D perovskites with alternating cations in the interlayer space, (C(NH2)3)(CH3NH3)nPbnI3n+1: Structure, properties, and photovoltaic performance. J. Am. Chem. Soc. 2017, 139, 16297–16309. [Google Scholar] [CrossRef]
- Dolzhenko, Y.I.; Inabe, T.; Maruyama, Y. In situ X-ray observation on the intercalation of weak interaction molecules into perovskite-type layered crystals (C9H19NH3)2PbI4 and (C10H21NH3)2CdCl4. Bull. Chem. Soc. Jpn. 1986, 59, 563–567. [Google Scholar] [CrossRef]
- Ishihara, T.; Takahashi, J.; Goto, T. Exciton state in two dimensional perovskite semiconductor (C10H21NH3)2PbI4. Solid State Commun. 1989, 69, 933–936. [Google Scholar] [CrossRef]
- Ishihara, T.; Takahashi, J.; Goto, T. Optical properties due to electronic transitions in two-dimensional semiconductors (CnH2n+1NH3)2PbI4. Phys. B Condens. Matter Mater. Phys. 1990, 42, 11099–11107. [Google Scholar] [CrossRef]
- Papavassiliou, G.C.; Patsis, A.P.; Lagouvardos, D.J.; Koutselas, I.B. Spectroscopic studies of (C10H21NH3)2PbI4, (CH3NH3)(C10H21NH3)2Pb2I7, (CH3NH3)PbI3, and similar compounds. Synth. Met. 1993, 57, 3889–3894. [Google Scholar] [CrossRef]
- Papavassiliou, G.C.; Koutselas, I.B. Structural, optical and related properties of some natural three and lower-dimensional semiconductor systems. Synth. Met. 1995, 71, 1713–1714. [Google Scholar] [CrossRef]
- Calabrese, J.; Jones, N.L.; Harlow, R.L.; Herron, N.; Thorn, D.L.; Wang, Y. Preparation and characterization of layered lead halide compounds. J. Am. Chem. Soc. 1991, 113, 2328–2330. [Google Scholar] [CrossRef]
- Mao, L.; Stoumpos, C.C.; Kanatzidis, M.G. Two-dimensional hybrid halide perovskites: Principles and promises. J. Am. Chem. Soc. 2019, 141, 1171–1190. [Google Scholar] [CrossRef] [PubMed]
- Su, R.; Fieramosca, A.; Zhang, Q.; Nguyen, H.S.; Deleporte, E.; Chen, Z.; Sanvitto, D.; Liew, T.C.H.; Xiong, Q. Perovskite semiconductors for room-temperature exciton-polaritonics. Nat. Mater. 2021, 20, 1315–1324. [Google Scholar] [CrossRef] [PubMed]
- Quan, L.N.; Yuan, M.; Comin, R.; Voznyy, O.; Beauregard, E.M.; Hoogland, S.; Buin, A.; Kirmani, A.R.; Zhao, K.; Amassian, A.; et al. Ligand-stabilized reduced-dimensionality perovskites. J. Am. Chem. Soc. 2016, 138, 2649–2655. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Feng, Y.; Li, F.; Lin, F.; Wang, Y.; Chen, X.; Xie, R. Sensing studies and applications based on metal halide perovskite materials: Current advances and future perspectives. TRAC-Trend. Anal. Chem. 2021, 134, 116127–116145. [Google Scholar] [CrossRef]
- Jia, D.; Xu, M.; Mu, S.; Ren, W.; Liu, C. Recent progress of perovskite nanocrystals in chem/bio sensing. Biosensors 2022, 12, 754. [Google Scholar] [CrossRef]
- Frost, J.M.; Butler, K.T.; Brivio, F.; Hendon, C.H.; van Schilfgaarde, S.; Walsh, A. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 2014, 14, 2584–2590. [Google Scholar] [CrossRef] [PubMed]
- Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M.I.; Grotevent, M.J.; Kovalenko, M.V. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 2015, 15, 5635–5640. [Google Scholar] [CrossRef]
- Akkerman, Q.A.; D’Innocenzo, V.; Accornero, S.; Scarpellini, A.; Petrozza, A.; Prato, M.; Manna, L. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 2015, 137, 10276–10281. [Google Scholar] [CrossRef]
- Chen, D.; Zhou, S.; Fang, G.; Chen, X.; Zhong, J. Fast room-temperature cation exchange synthesis of Mn-doped CsPbCl3 nanocrystals driven by dynamic halogen exchange. ACS Appl. Mater. Inter. 2018, 10, 39872–39878. [Google Scholar] [CrossRef]
- Creutz, S.E.; Crites, E.N.; De Siena, M.C.; Gamelin, D.R. Anion exchange in cesium lead halide perovskite nanocrystals and thin films using trimethylsilyl halide reagents. Chem. Mater. 2018, 30, 4887–4891. [Google Scholar] [CrossRef]
- Fang, G.; Chen, D.; Zhou, S.; Chen, X.; Lei, L.; Zhong, J.; Ji, Z. Reverse synthesis of CsPbxMn1−x(Cl/Br)3 perovskite quantum dots from CsMnCl3 precursors through cation exchange. J. Mater. Chem. C 2018, 6, 5908–5915. [Google Scholar] [CrossRef]
- Sygletou, M.; Kyriazi, M.E.; Kanaras, A.G.; Stratakis, E. Anion exchange in inorganic perovskite nanocrystal polymer composites. Chem. Sci. 2018, 9, 8121–8126. [Google Scholar] [CrossRef]
- Parobek, D.; Dong, Y.; Qiao, T.; Rossi, D.; Son, D.H. Photoinduced anion exchange in cesium lead halide perovskite nanocrystals. J. Am. Chem. Soc. 2017, 139, 4358–4361. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, F.; Li, Q.; Yang, K.; Guo, T.; Li, X.; Zeng, H. Emissions at perovskite quantum dot/film interface with halide anion exchange. ACS Photonics 2018, 5, 4504–4512. [Google Scholar] [CrossRef]
- Hoffman, J.B.; Schleper, A.L.; Kamat, P.V. Transformation of sintered CsPbBr3 nanocrystals to cubic CsPbI3 and gradient CsPbBrxI3-x through halide exchange. J. Am. Chem. Soc. 2016, 138, 8603–8611. [Google Scholar] [CrossRef]
- Sun, C.; Su, S.; Gao, Z.; Liu, H.; Wu, H.; Shen, X.; Bi, W. Stimuli-responsive inks based on perovskite quantum dots for advanced full-color information encryption and decryption. ACS Appl. Mater. Inter. 2019, 11, 8210–8216. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Hu, H.; Xia, Z.; Gao, W.; Gou, W.; Qu, Y.; Ma, Y. CsPbBr3 perovskite nanocrystals as highly selective and sensitive spectrochemical probes for gaseous HCl detection. J. Mater. Chem. C 2017, 5, 309–313. [Google Scholar] [CrossRef]
- Guhrenz, C.; Benad, A.; Ziegler, C.; Haubold, D.; Gaponik, N.; Eychmuller, A. Solid-state anion exchange reactions for color tuning of CsPbX3 perovskite nanocrystals. Chem. Mater. 2016, 28, 9033–9040. [Google Scholar] [CrossRef]
- Xu, W.; Li, F.; Lin, F.; Chen, Y.; Cai, Z.; Wang, Y.; Chen, X. Synthesis of CsPbCl3-Mn nanocrystals via cation exchange. Adv. Opt. Mater. 2017, 5, 1700520. [Google Scholar] [CrossRef]
- Koscher, B.A.; Bronstein, N.D.; Olshansky, J.H.; Bekenstein, Y.; Alivisatos, A.P. Surface-vs diffusion-limited mechanisms of anion exchange in CsPbBr3 nanocrystal cubes revealed through kinetic studies. J. Am. Chem. Soc. 2016, 138, 12065–12068. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, J.; Bakr, O.M.; Sun, H.T. Metal-doped lead halide perovskites: Synthesis, properties, and optoelectronic applications. Chem. Mater. 2018, 30, 6589–6613. [Google Scholar] [CrossRef]
- Yu, D.; Cai, B.; Cao, F.; Li, X.; Liu, X.; Zhu, Y.; Ji, J.; Gu, Y.; Zeng, H. Cation exchange-induced dimensionality construction: From monolayered to multilayered 2D single crystal halide perovskites. Adv. Mater. Inter. 2017, 4, 1700441. [Google Scholar] [CrossRef]
- Van der Stam, W.; Geuchies, J.J.; Altantzis, T.; van den Bos Karel, H.W.; Meeldijk, J.D.; Van, A.S.; Bals, S.; Vanmaekelbergh, D.; de Mello, D.C. Highly emissive divalent-ion-doped colloidal CsPb1-xMxBr3 perovskite nanocrystals through cation exchange. J. Am. Chem. Soc. 2017, 139, 4087–4097. [Google Scholar] [CrossRef] [PubMed]
- Sheng, X.; Liu, Y.; Wang, Y.; Li, Y.; Wang, X.; Wang, X.; Dai, Z.; Bao, J.; Xu, X. Cesium lead halide perovskite quantum dots as a photoluminescence probe for metal ions. Adv. Mater. 2017, 29, 1700150–1700156. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, X.; Zhu, T.; Deng, M.; Ikechukwu, I.P.; Huang, W.; Yin, G.; Bai, Y.; Qu, D.; Huang, X.; et al. All-inorganic CsPbBr3 perovskite quantum dots as a photoluminescent probe for ultrasensitive Cu2+ detection. J. Mater. Chem. C 2018, 6, 4793–4799. [Google Scholar] [CrossRef]
- Wang, S.; Huang, Y.; Zhang, L.; Li, F.; Lin, F.; Wang, Y.; Chen, X. Highly selective fluorescence turn-on determination of Pb(II) in Water by in-situ enrichment of Pb(II) and MAPbBr3 perovskite growth in sulfydryl functionalized mesoporous alumina film. Sens. Actuators B-Chem. 2021, 326, 128975–128982. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, F.; Huang, Y.; Lin, F.; Chen, X. Wavelength-Shift-Based Colorimetric Sensing for Peroxide Number of Edible Oil Using CsPbBr3 Perovskite Nanocrystals. Anal. Chem. 2019, 91, 14183–14187. [Google Scholar] [CrossRef]
- Feng, X.; Qin, Y.; Sui, R.; Wang, G.; Zhang, X.; Liu, X.; Pei, J.; Liu, D.; Chen, Z. CH3I sensing using yttrium single atom-doped perovskite nanocrystals. Nano Res. 2023, 16, 10429–10453. [Google Scholar] [CrossRef]
- Li, F.; Feng, Y.; Huang, Y.; Yao, Q.; Huang, G.; Zhu, Y.; Chen, X. Colorimetric sensing of chloride in sweat based on fluorescence wavelength shift via halide exchange of CsPbBr3 perovskite nanocrystals. Microchim. Acta 2021, 188, 2. [Google Scholar] [CrossRef]
- Chen, J.; Shao, J.; Sun, R.; Zhang, W.; Huang, Y.; Zheng, J.; Chi, Y. Anion exchanges of water-stable perovskite nanocrystals in the pure water phase and applications in detecting halide ions via a smartphone-based sensing platform. Anal. Chem. 2023, 95, 11839–11848. [Google Scholar] [CrossRef] [PubMed]
- Saikia, P.; Dolui, S.K.; Mahanta, S.P. CsPbBr3 perovskites: A dual fluorescence sensor to distinguish ethanol from methanol. Spectrochim. Acta Part A 2023, 291, 122309. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.Q.; Tan, T.; Tian, X.K.; Li, Y.; Deng, P. Visual and Sensitive Fluorescent Sensing for Ultratrace Mercury Ions by Perovskite Quantum Dots. Anal. Chim. Acta 2017, 986, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Hao, M.; Song, Y.; Dang, S.; Liu, X.; Dong, Q. Dynamic Passivation in Perovskite Quantum Dots for Specific Ammonia Detection at Room Temperature. Small 2020, 16, 1904462. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Cai, Q.; Luo, F.; Dong, N.; Guo, L.; Qiu, B.; Lin, Z. Sensitive Fluorescent Sensor for Hydrogen Sulfide in Rat Brain Microdialysis via CsPbBr3 Quantum Dots. Anal. Chem. 2019, 91, 15915–15921. [Google Scholar] [CrossRef] [PubMed]
- You, X.; Wu, J.; Chi, Y. Superhydrophobic Silica Aerogels Encapsulated Fluorescent Perovskite Quantum Dots for Reversible Sensing of SO2 in a 3D-Printed Gas Cell. Anal. Chem. 2019, 91, 5058–5066. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; John, A.T.; Li, H.; Huang, C.; Chi, Y.; Anandan, P.R.; Murugappan, K.; Tang, J.; Lin, C.; Hu, L.; et al. High-performance optoelectronic gas sensing based on all-inorganic mixed-halide perovskite nanocrystals with halide engineering. Small Methods 2024, 8, 2300417. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Wang, S.; Zhu, Y.; Li, F.; Jin, J.; Dong, J.; Lin, F.; Wang, Y.; Chen, X. Dual-mode of fluorescence turn-On and wavelength-shift for methylamine gas sensing based on space-confined growth of methylammonium lead tribromide perovskite nanocrystals. Anal. Chem. 2020, 92, 5661–5665. [Google Scholar] [CrossRef]
- Cheng, S.; Zhong, H. What happens when halide perovskites meet with water? J. Phys. Chem. Lett. 2022, 13, 2281–2290. [Google Scholar] [CrossRef]
- Shu, Y.; Wang, Y.; Guan, J.; Ji, Z.; Xu, Q.; Hu, X. Amphiphilic polymer ligand-assisted synthesis of highly luminescent and stable perovskite nanocrystals for sweat fluorescent sensing. Anal. Chem. 2022, 94, 5415–5424. [Google Scholar] [CrossRef]
- Li, M.; Zeng, Y.; Qu, X.; Jalalah, M.; Alsareii, S.A.; Li, C.; Harraz, F.A.; Li, G. Biocatalytic CsPbX3 perovskite nanocrystals: A self-reporting nanoprobe for metabolism analysis. Small 2021, 17, 2103255–2103265. [Google Scholar] [CrossRef] [PubMed]
- Lorenzon, M.; Sortino, L.; Akkerman, Q.; Accornero, S.; Pedrini, J.; Prato, M.; Pinchetti, V.; Meinardi, F.; Manna, L.; Brovelli, S. Role of nonradiative defects and environmental oxygen on exciton recombination processes in CsPbBr3 perovskite nanocrystals. Nano Lett. 2017, 17, 3844–3853. [Google Scholar] [CrossRef]
- Roda, C.; Abdelhady, A.L.; Shamsi, J.; Lorenzon, M.; Pinchetti, V.; Gandini, M.; Meinardi, F.; Manna, L.; Brovelli, S. O2 as a molecular probe for nonradiative surface defects in CsPbBr3 perovskite nanostructures and single crystals. Nanoscale 2019, 11, 7613–7623. [Google Scholar] [CrossRef] [PubMed]
- Stoeckel, M.A.; Gobbi, M.; Bonacchi, S.; Liscio, F.; Ferlauto, L.; Orgiu, E.; Samorì, P. Reversible, fast, and wide-range oxygen sensor based on nanostructured organometal halide perovskite. Adv. Mater. 2017, 29, 1702469–1702475. [Google Scholar] [CrossRef] [PubMed]
- Meggiolaro, D.; Mosconi, E.; De Angelis, F. Mechanism of reversible trap passivation by molecular oxygen in lead-halide perovskites. ACS Energy Lett. 2017, 2, 2794–2798. [Google Scholar] [CrossRef]
- Liu, L.; Deng, L.; Huang, S.; Zhang, P.; Linnros, J.; Zhong, H.; Sychugov, I. Photodegradation of organometal hybrid perovskite nanocrystals: Clarifying the role of oxygen by single-dot photoluminescence. J. Phys. Chem. Lett. 2019, 10, 864–869. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; Li, F.; Lai, Z.; Cai, Z.; Wang, Y.; Wolfbeis, O.S.; Chen, X. MnII-doped cesium lead chloride perovskite nanocrystals: Demonstration of oxygen sensing capability based on luminescent dopants and host-dopant energy transfer. ACS Appl. Mater. Inter. 2018, 10, 23335–23343. [Google Scholar] [CrossRef]
- Li, D.; Li, X.; Zhao, T.; Liu, H.; Jiang, S.; Zhang, Q.; Ågren, H.; Chen, G. Ultraefficient singlet oxygen generation from manganese-doped cesium lead chloride perovskite quantum dots. ACS Nano 2020, 14, 12596–12604. [Google Scholar] [CrossRef] [PubMed]
- Lindblad, R.; Jena, N.K.; Philippe, B.; Oscarsson, J.; Bi, D.; Lindblad, A.; Mandal, S.; Pal, B.; Sarma, D.D.; Karis, O.; et al. Electronic structure of CH3NH3PbX3 perovskites: Dependence on the halide moiety. J. Phys. Chem. C 2015, 119, 1818–1825. [Google Scholar] [CrossRef]
- Grancini, G.; D’Innocenzo, V.; Dohner, E.R.; Martino, N.; Kandada, A.R.S.; Mosconi, E.; Angelis, F.D.; Karunadasa, H.I.; Hoke, E.T.; Petrozza, A. CH3NH3PbI3 perovskite single crystals: Surface photophysics and their interaction with the environment. Chem. Sci. 2015, 6, 7305–7310. [Google Scholar] [CrossRef]
- Fang, H.H.; Adjokatse, S.; Wei, H.; Yang, J.; Blake, G.R.; Huang, J.; Even, J.; Loi, M.A. Ultrahigh sensitivity of methylammonium lead tribromide perovskite single crystals to environmental gases. Sci. Adv. 2016, 2, e1600534. [Google Scholar] [CrossRef] [PubMed]
- Park, K.; Tan, S.; Kodalle, T.; Lee, D.-K.; Abdelsamie, M.; Park, J.-S.; Lee, J.-H.; Jung, S.-K.; Ko, J.H.; Park, N.-G.; et al. Atmospheric humidity underlies irreproducibility of formamidinium lead iodide perovskites. Adv. Mater. 2024, 36, 2307265. [Google Scholar]
- Xu, W.; Li, F.; Cai, Z.; Wang, Y.; Luo, F.; Chen, X. An Ultrasensitive and Reversible Fluorescence Sensor of Humidity Using Perovskite CH3NH3PbBr3. J. Mater. Chem. C 2016, 4, 9651–9655. [Google Scholar] [CrossRef]
- Jing, J.; Jie, L.; Yi, H.; Lin, Z.; Zhang, L.; Jiang, Y.; Tian, D.; Lin, F.; Wang, Y.; Chen, X. High sensitivity ratiometric fluorescence temperature sensing using the microencapsulation of CsPbBr3 and K2SiF6:Mn4+ phosphor. Chin. Chem. Lett. 2022, 33, 4798–4802. [Google Scholar]
- Huang, Y.; Lin, F.; Li, F.; Jin, J.; Guo, Z.; Tian, D.; Xie, R.; Chen, X. Photoluminescence Enhancement in Silica-Confined Ligand-Free Perovskite Nanocrystals by Suppression of Silanol-Induced Traps and Phase Impurities. Angew. Chem. Int. Ed. 2024, 136, e202402520. [Google Scholar] [CrossRef]
- Tian, D.; Xu, H.; Yang, L.O.; Zhou, J.; Lin, F.; Liu, X.; Tan, K.; Xie, R.; Chen, X. Tunable emission of low dimensional organic metal halides by stoichiometric ratio and metal center. Inorg. Chem. 2024, 63, 4738–4746. [Google Scholar] [CrossRef] [PubMed]
- Blancon, J.C.; Tsai, H.; Nie, W.; Stoumpos, C.C.; Pedesseau, L.; Katan, C.; Kepenekian, M.; Soe, C.M.M.; Appavoo, K.; Sfeir, M.Y.; et al. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science 2017, 355, 1288–1292. [Google Scholar] [CrossRef]
- Zhou, G.; Jiang, X.; Molokeev, M.; Lin, Z.; Zhao, J.; Wang, J.; Xia, Z. Optically modulated ultra-broad-band warm white emission in Mn2+-doped (C6H18N2O2)PbBr4 hybrid metal halide phosphor. Chem. Mater. 2019, 31, 5788–5795. [Google Scholar]
- Fu, P.; Quintero, M.A.; Welton, C.; Li, X.; Cucco, B.; De Siena, M.C.; Even, J.; Volonakis, G.; Kepenekian, M.; Liu, R.; et al. Short aromatic diammonium ions modulate distortions in 2D lead bromide perovskites for tunable white-light emission. Chem. Mater. 2022, 34, 9685–9698. [Google Scholar] [CrossRef]
- Luo, B.; Guo, Y.; Xiao, Y.; Lian, X.; Tan, T.; Liang, D.; Li, X.; Huang, X. Fluorinated spacers regulate the emission and bandgap of two-dimensional single-layered lead bromide perovskites by hydrogen bonding. J. Phys. Chem. Lett. 2019, 10, 5271–5276. [Google Scholar] [CrossRef]
- Tian, Y.; Li, Y.; Chen, B.; Lai, R.; He, S.; Luo, X.; Han, Y.; Wei, Y.; Wu, K. Sensitized molecular triplet and triplet excimer emission in two-dimensional hybrid perovskites. J. Phys. Chem. Lett. 2020, 11, 2247–2255. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Jia, X.; Guo, S.; Molokeev, M.; Zhang, J.; Xia, Z. Role of halogen atoms on high-efficiency Mn2+ emission in two-dimensional hybrid perovskites. J. Phys. Chem. Lett. 2019, 10, 4706–4712. [Google Scholar] [CrossRef] [PubMed]
- Cao, F.; Yu, D.; Xu, X.; Cai, B.; Gu, Y.; Dong, Y.; Shen, Y.; Zeng, H. Water-assisted synthesis of blue chip excitable 2D halide perovskite with green-red dual emissions for white LEDs. Small Methods 2019, 3, 1900365–1900370. [Google Scholar] [CrossRef]
- Gao, X.; Shen, X.; Xue, D.; Li, X.; Lu, P.; Lu, M.; Li, C.; Yu, W.W.; Bai, X. Dual-color emitting Mn2+ ion doped (PEA)2PbBr4 perovskite towards white light-emitting diodes. Mater. Chem. Front. 2021, 5, 937–943. [Google Scholar] [CrossRef]
- Sun, C.; Gao, Z.; Deng, Y.; Liu, H.; Wang, L.; Su, S.; Li, P.; Li, H.; Zhang, Z.; Bi, W. Orange to red, emission-tunable Mn-doped two-dimensional perovskites with high luminescence and stability. ACS Appl. Mater. Inter. 2019, 11, 34109–34116. [Google Scholar] [CrossRef]
- Cortecchia, D.; Mroz, W.; Folpini, G.; Cortecchia, D.; Mróz, W.; Folpini, G.; Borzda, T.; Leoncino, L.; Alvarado-Leaños, A.L.; Speller, E.M.; et al. Layered perovskite doping with Eu3+ and β-diketonate Eu3+ complex. Chem. Mater. 2021, 33, 2289–2297. [Google Scholar] [CrossRef] [PubMed]
- Lyu, F.; Zheng, X.; Wang, Y.; Shi, R.; Yang, J.; Li, Z.; Yu, J.; Lin, B. Bi3+ doped 2D ruddlesden-popper organic lead halide perovskites. J. Mater. Chem. A 2019, 7, 15627–15632. [Google Scholar] [CrossRef]
- Yu, J.; Kong, J.; Hao, W.; Guo, X.; He, H.; Leow, W.R.; Liu, Z.; Cai, P.; Qian, G.; Li, S.; et al. Broadband extrinsic self-trapped exciton emission in Sn-doped 2D lead-halide perovskites. Adv. Mater. 2019, 31, 1806385–1806393. [Google Scholar] [CrossRef] [PubMed]
- Xie, A.; Hettiarachchi, C.; Maddalena, F.; Witkowski, M.E.; Makowski, M.; Drozdowski, W.; Arramel, A.; Wee, A.T.S.; Springham, S.V.; Vuong, P.Q.; et al. Lithium-doped two-dimensional perovskite scintillator for wide-range radiation detection. Commun. Mater. 2020, 1, 37–46. [Google Scholar] [CrossRef]
- Zhang, F.; Zhong, H.; Chen, C.; Wu, X.; Hu, X.; Huang, H.; Han, J.; Zou, B.; Dong, Y. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantumdots: Potential alternatives for display technology. ACS Nano 2015, 9, 4533–4542. [Google Scholar] [CrossRef]
- Yang, S.; Niu, W.; Wang, A.L.; Fan, Z.; Chen, B.; Tan, C.; Lu, Q.; Zhang, H. Ultrathin two-dimensional organic-inorganic hybrid perovskite nanosheets with bright, tunable photoluminescence and high stability. Angew. Chem. Inter. Ed. 2017, 56, 4252–4255. [Google Scholar] [CrossRef]
- Mao, L.; Wu, Y.; Stoumpos, C.C.; Traore, B.; Katan, C.; Even, J.; Wasielewski, M.R.; Kanatzidis, M.G. Tunable white-light emission in single-cation-templated three-layered 2D perovskites (CH3CH2NH3)4Pb3Br10-xClx. J. Am. Chem. Soc. 2017, 139, 11956–11963. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhang, S.; Hua, X.; Zhang, M.; You, C.; Chen, G.; Yang, W.; Huang, W.; Chen, T.; Li, F. Traffic light-type ratiometric fluorescence visual sensing of Cs+ in soybean oil based on dimension regulation of 2D perovskite nanosheets. Spectrochim. Acta A 2023, 284, 121818–121824. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Lo, M.F.; Lee, C.S. Stabilization of organometallic halide perovskite nanocrystals in aqueous solutions and their applications in copper ion detection. Chem. Commun. 2018, 54, 5784–5787. [Google Scholar] [CrossRef]
- Liu, S.; Sun, S.; Gan, C.K.; del Águila, A.G.; Fang, Y.; Xing, J.; Do, T.T.H.; White, T.J.; Li, H.; Huang, W.; et al. Manipulating efficient light emission in two-dimensional perovskite crystals by pressure-induced anisotropic deformation. Sci. Adv. 2019, 5, 9445–9454. [Google Scholar] [CrossRef]
- Niu, Y.; Zhang, F.; Bai, Z.; Dong, Y.; Yang, J.; Liu, R.; Zou, B.; Li, J.; Zhong, H. Aggregation-induced emission features of organometal halide perovskites and their fluorescence probe applications. Adv. Opt. Mater. 2015, 3, 112–119. [Google Scholar] [CrossRef]
- Xiao, Z.; Song, Z.; Yan, Y. From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives. Adv. Mater. 2019, 31, 1803792. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.; Lin, F.; Yang, L.; Jin, J.; Liu, X.; Wang, Y.; Chen, X. Highly stable luminescence temperature sensing based on eco-friendly lead-free cesium copper iodine perovskites. J. Lumin. 2023, 260, 119880. [Google Scholar] [CrossRef]
- Liu, X.; Ye, M.; Lin, F.; Yang, L.; Lin, J.; Jiang, Y.; Tian, D.; Chen, X. Fluorescence sensing of ammonia in water using lead-free perovskite Cs2AgInCl6:Bi. Microchem. J. 2023, 192, 108913. [Google Scholar]
- Muthaiah, S.; Kien, W. Sun. Review on Sensing Applications of Perovskite Nanomaterials. Chemosensors 2020, 8, 55. [Google Scholar]
- Pratik, V.S.; Abhinandan, P.; Chandra, S.R. A review on the sensing mechanisms and recent developments on metal halide-based perovskite gas sensors. J. Mater. Chem. C 2022, 10, 10196–10223. [Google Scholar]
LHP Material | Analyte | Sensing Mechanism | Detection Range | Limit of Detection | Reference |
---|---|---|---|---|---|
halide ion | Halogen-exchange | -- | -- | [38] | |
CsPbBr3 NCs | Cu2+ | photogenic electron transfer | 0–100 nmol/L | 0.1 nmol/L | [56] |
CsPbBr3 NCs | Pb2+ | In situ perovskite growth | 0.01–1.0 μg/mL | 5 × 10−3 μg/mL | [57] |
CsPbBr3 NCs | edible oil | PLwavelength shift | 0–0.6 mg/100 g | 0.139 mg/100 g | [58] |
CsPbBr3 NCs | CH3I | Halogen-exchange | 0.794–22.244 mg/L | 0.044 mg/L | [59] |
CsPbBr3 NCs | Cl− in sweat | Halogen-exchange | 10–130 mmol/L | 3 mmol/L | [60] |
CTAB@CsPbBr3 | ethanol | Ethanol promotes the dissociation of CTAB@CsPbBr3 | 3.2–11.05 mg/L | 7.3 ppb | [62] |
CsPbBr3 NCs | Hg2+ | Exchange reaction between Hg2+ and Pb2+ | 0–100 nmol/L | 0.124 nmol/L | [63] |
CsPbBr3 QDs | NH3 | Effectively passivate surface defects of perovskite QDs introduced during purification | 25–350 mg/L | 8.85 mg/L | [64] |
CsPbBr3 NCs | H2S | Damage structure | 0–100 μmol/L | 0.18 μmol/L | [65] |
MAPbBr3 | SO2 | Transfer of excited state electrons | 0–10 mg/L | 155 ppb | [66] |
CsPbI2Br NCs | NO2 | The electron transfer between the sensing layer and NO2 causes change in resistance | 1–8 mg/L | 1.34 mg/L | [67] |
MAPbBr3 | methylamine | In situ perovskite growth | 1–95 mg/L | 70 ppb | [68] |
CsPbBr3 | O2 | O2 molecules extract the photogenerated electrons from CsPbBr3 nanocubesets through collision interaction | -- | -- | [72] |
MAPbBr3 | humidity | Humidity changes the crystal structure | 7–98% | 0.68% | [83] |
CsPbCl1.2Br1.8 NCs@h-SiO2 | temperature | Temperature change radiative transition | 30–45 °C | -- | [84] |
LHP Materials | Analyte | Sensing Mechanism | Detection Range | Limit of Detection | Reference |
---|---|---|---|---|---|
PEA2PbI4 | Cs+ in soybean oil | Cs+ concentration improves the exchange of PEA+ and Cs+ and results in the growth of CsPbI3 | 5–25 μmol/L | 1.95 μmol/L | [103] |
PEA2PbI4 | Cu2+ in water | Cu2+ interacts with I and exciton recombination is blocked | 5 × 10−10–5 × 10−2 M | -- | [104] |
PEA2PbI4 | Pressure | Effectively regulate the electronic and crystal structure | 0–7.6 GPa | -- | [105] |
(CnH2n+1NH3)2PbI4 (n = 4, 12, 16, 18) | Temperature | The structural change in the 2D LHP leads to exciton radiant thermal quenching after the temperature increases | 0–80 °C | -- | [106] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Zhang, C.; Liu, X.; Chen, X. Photoluminescence Sensing of Lead Halide Perovskite Nanocrystals and Their Two-Dimensional Structural Materials. Chemosensors 2024, 12, 114. https://doi.org/10.3390/chemosensors12060114
Huang Y, Zhang C, Liu X, Chen X. Photoluminescence Sensing of Lead Halide Perovskite Nanocrystals and Their Two-Dimensional Structural Materials. Chemosensors. 2024; 12(6):114. https://doi.org/10.3390/chemosensors12060114
Chicago/Turabian StyleHuang, Yaning, Chen Zhang, Xuelian Liu, and Xi Chen. 2024. "Photoluminescence Sensing of Lead Halide Perovskite Nanocrystals and Their Two-Dimensional Structural Materials" Chemosensors 12, no. 6: 114. https://doi.org/10.3390/chemosensors12060114
APA StyleHuang, Y., Zhang, C., Liu, X., & Chen, X. (2024). Photoluminescence Sensing of Lead Halide Perovskite Nanocrystals and Their Two-Dimensional Structural Materials. Chemosensors, 12(6), 114. https://doi.org/10.3390/chemosensors12060114