A Straightforward Electrochemical Approach for the Simultaneous Determination of Thymol and Carvacrol in Essential Oils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Instrumentation
2.3. Voltammetry Measurements
2.4. Estimation of ME Electroactive Area
2.5. Calibration and Validation Samples
2.6. Essential Oil Samples
2.7. Software
3. Results and Discussion
3.1. The Electrochemical Behavior of THY and CAR
3.2. Multivariate Calibration Method Development
3.3. Analytical Figures of Merit
3.4. Analysis of OEO and TEO
3.5. Greenness Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arafa, W.M.; Abolhadid, S.M.; Moawad, A.; Abdelaty, A.S.; Moawad, U.K.; Shokier, K.A.M.; Shehata, O.; Gadelhaq, S.M. Thymol efficacy against coccidiosis in pigeon (Columba livia domestica). Prev. Vet. Med. 2020, 176, 104914. [Google Scholar] [CrossRef] [PubMed]
- Boye, A.; Addo, J.K.; Acheampong, D.O.; Thomford, A.K.; Asante, E.; Amoaning, R.E.; Kuma, D.N. The hydroxyl moiety on carbon one (C1) in the monoterpene nucleus of thymol is indispensable for anti-bacterial effect of thymol. Heliyon 2020, 6, e03492. [Google Scholar] [CrossRef] [PubMed]
- Cai, R.; Zhang, M.; Cui, L.; Yuan, Y.; Yang, Y.; Wang, Z.; Yue, T. Antibacterial activity and mechanism of thymol against Alicyclobacillus acidoterrestris vegetative cells and spores. LWT 2019, 105, 377–384. [Google Scholar] [CrossRef]
- Gavliakova, S.; Biringerova, Z.; Buday, T.; Brozmanova, M.; Calkovsky, V.; Poliacek, I.; Plevkova, J. Antitussive effects of nasal thymol challenges in healthy volunteers. Respir. Physiol. Neurobiol. 2013, 187, 104–107. [Google Scholar] [CrossRef]
- Marchese, A.; Orhan, I.E.; Daglia, M.; Barbieri, R.; Di Lorenzo, A.; Nabavi, S.F.; Gortzi, O.; Izadi, M.; Nabavi, S.M. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem. 2016, 210, 402–414. [Google Scholar] [CrossRef]
- Rezaeinasab, M.; Benvidi, A.; Gharaghani, S.; Abbasi, S.; Zare, H.R. Electrochemical investigation of the inhibition effect of carvacrol on xanthine oxidase activity merging with theoretical studies. Process Biochem. 2019, 83, 86–95. [Google Scholar] [CrossRef]
- Guan, X.; Li, X.; Yang, X.; Yan, J.; Shi, P.; Ba, L.; Cao, Y.; Wang, P. The neuroprotective effects of carvacrol on ischemia/reperfusion-induced hippocampal neuronal impairment by ferroptosis mitigation. Life Sci. 2019, 235, 116795. [Google Scholar] [CrossRef]
- Khan, I.; Bhardwaj, M.; Shukla, S.; Min, S.-H.; Choi, D.K.; Bajpai, V.K.; Huh, Y.S.; Kang, S.C. Carvacrol inhibits cytochrome P450 and protects against binge alcohol-induced liver toxicity. Food Chem. Toxicol. 2019, 131, 110582. [Google Scholar] [CrossRef]
- Gursul, S.; Karabulut, I.; Durmaz, G. Antioxidant efficacy of thymol and carvacrol in microencapsulated walnut oil triacylglycerols. Food Chem. 2019, 278, 805–810. [Google Scholar] [CrossRef]
- Mechergui, K.; Jaouadi, W.; Coelho, J.P.; Khouja, M.L. Effect of harvest year on production, chemical composition and antioxidant activities of essential oil of oregano (Origanum vulgare subsp glandulosum (Desf.) Ietswaart) growing in North Africa. Ind. Crops Prod. 2016, 90, 32–37. [Google Scholar] [CrossRef]
- Verma, R.S.; Padalia, R.C.; Goswami, P.; Upadhyay, R.K.; Singh, V.R.; Chauhan, A.; Tiwari, A.K. Assessing productivity and essential oil quality of Himalayan thyme (Thymus linearis Benth.) in the subtropical region of north India. Ind. Crops Prod. 2016, 94, 557–561. [Google Scholar] [CrossRef]
- Cui, H.; Zhang, C.; Li, C.; Lin, L. Antibacterial mechanism of oregano essential oil. Ind. Crops Prod. 2019, 139, 111498. [Google Scholar] [CrossRef]
- Alsaraf, S.; Hadi, Z.; Al-Lawati, W.M.; Al Lawati, A.A.; Khan, S.A. Chemical composition, in vitro antibacterial and antioxidant potential of Omani Thyme essential oil along with in silico studies of its major constituent. J. King Saud Univ. Sci. 2020, 32, 1021–1028. [Google Scholar] [CrossRef]
- Cruz-Tirado, J.P.; Barros Ferreira, R.S.; Lizárraga, E.; Tapia-Blácido, D.R.; Silva, N.C.C.; Angelats-Silva, L.; Siche, R. Bioactive Andean sweet potato starch-based foam incorporated with oregano or thyme essential oil. Food Packag. Shelf Life 2020, 23, 100457. [Google Scholar] [CrossRef]
- Lee, S.; Kim, H.; Beuchat, L.R.; Kim, Y.; Ryu, J.-H. Synergistic antimicrobial activity of oregano and thyme thymol essential oils against Leuconostoc citreum in a laboratory medium and tomato juice. Food Microbiol. 2020, 90, 103489. [Google Scholar] [CrossRef]
- Hajimehdipoor, H.; Shekarchi, M.; Khanavi, M.; Adib, N.; Amri, M. A validated high performance liquid chromatography method for the analysis of thymol and carvacrol in Thymus vulgaris L. volatile oil. Pharmacogn. Mag. 2010, 6, 154–158. [Google Scholar] [CrossRef]
- Beena; Kumar, D.; Rawat, D.S. Synthesis and antioxidant activity of thymol and carvacrol based Schiff bases. Bioorganic Med. Chem. Lett. 2013, 23, 641–645. [Google Scholar] [CrossRef]
- Sarikurkcu, C.; Zengin, G.; Oskay, M.; Uysal, S.; Ceylan, R.; Aktumsek, A. Composition, antioxidant, antimicrobial and enzyme inhibition activities of two Origanum vulgare subspecies (subsp. vulgare and subsp. hirtum) essential oils. Ind. Crops Prod. 2015, 70, 178–184. [Google Scholar] [CrossRef]
- Alekseeva, L.I. Determining thymol and carvacrol by reversed-phase high-performance liquid chromatography. Pharm. Chem. J. 2009, 43, 665–667. [Google Scholar] [CrossRef]
- Ghaedi, M.; Roosta, M.; Khodadoust, S.; Daneshfar, A. Application of Optimized Vortex-Assisted Surfactant-Enhanced DLLME for Preconcentration of Thymol and Carvacrol, and Their Determination by HPLC-UV: Response Surface Methodology. J. Chromatogr. Sci. 2015, 53, 1222–1231. [Google Scholar] [CrossRef]
- Roosta, M.; Ghaedi, M.; Daneshfar, A.; Sahraei, R. Ultrasound assisted microextraction-nano material solid phase dispersion for extraction and determination of thymol and carvacrol in pharmaceutical samples: Experimental design methodology. J. Chromatogr. B 2015, 975, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Ghiasvand, A.; Dowlatshah, S.; Nouraei, N.; Heidari, N.; Yazdankhah, F. A solid-phase microextraction platinized stainless steel fiber coated with a multiwalled carbon nanotube-polyaniline nanocomposite film for the extraction of thymol and carvacrol in medicinal plants and honey. J. Chromatogr. A 2015, 1406, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Fiori, G.M.L.; Bonato, P.S.; Pereira, M.P.M.; Contini, S.H.T.; Pereira, A.M.S. Determination of thymol and carvacrol in plasma and milk of dairy cows using solid-phase microextraction. J. Braz. Chem. Soc. 2013, 24, 837–846. [Google Scholar] [CrossRef]
- Ares, A.M.; Nozal, M.J.; Bernal, J.L.; Bernal, J. Simultaneous determination of carvacrol and thymol in bee pollen by using a simple and efficient solvent extraction method and gas chromatography-mass spectrometry. J. Pharm. Biomed. Anal. 2020, 181, 113124. [Google Scholar] [CrossRef]
- Jiménez-Salcedo, M.; Tena, M.T. Determination of cinnamaldehyde, carvacrol and thymol in feedstuff additives by pressurized liquid extraction followed by gas chromatography–mass spectrometry. J. Chromatogr. A 2017, 1487, 14–21. [Google Scholar] [CrossRef]
- Pavela, R.; Bartolucci, F.; Desneux, N.; Lavoir, A.-V.; Canale, A.; Maggi, F.; Benelli, G. Chemical profiles and insecticidal efficacy of the essential oils from four Thymus taxa growing in central-southern Italy. Ind. Crops Prod. 2019, 138, 111460. [Google Scholar] [CrossRef]
- Lemos, M.F.; Lemos, M.F.; Pacheco, H.P.; Guimarães, A.C.; Fronza, M.; Endringer, D.C.; Scherer, R. Seasonal variation affects the composition and antibacterial and antioxidant activities of Thymus vulgaris. Ind. Crops Prod. 2017, 95, 543–548. [Google Scholar] [CrossRef]
- Kasiotis, K.M.; Tzouganaki, Z.D.; Machera, K. Chromatographic determination of monoterpenes and other acaricides in honeybees: Prevalence and possible synergies. Sci. Total Environ. 2018, 625, 96–105. [Google Scholar] [CrossRef]
- Kiyanpour, V.; Fakhari, A.R.; Alizadeh, R.; Asghari, B.; Jalali-Heravi, M. Multivariate optimization of hydrodistillation-headspace solvent microextraction of thymol and carvacrol from Thymus transcaspicus. Talanta 2009, 79, 695–699. [Google Scholar] [CrossRef]
- Chang, X.; Sun, P.; Ma, Y.; Han, D.; Zhao, Y.; Bai, Y.; Zhang, D.; Yang, L. A New Method for Determination of Thymol and Carvacrol in Thymi herba by Ultraperformance Convergence Chromatography (UPC2). Molecules 2020, 25, 502. [Google Scholar] [CrossRef]
- Welch, C.J.; Wu, N.; Biba, M.; Hartman, R.; Brkovic, T.; Gong, X.; Helmy, R.; Schafer, W.; Cuff, J.; Pirzada, Z.; et al. Greening analytical chromatography. TrAC Trends Anal. Chem. 2010, 29, 667–680. [Google Scholar] [CrossRef]
- Yáñez-Sedeño, P.; Campuzano, S.; Pingarrón, J.M. Electrochemical (bio)sensors: Promising tools for green analytical chemistry. Curr. Opin. Green Sustain. Chem. 2019, 19, 1–7. [Google Scholar] [CrossRef]
- Michelitsch, A.; Rittmannsberger, A.; Hüfner, A.; Rückert, U.; Likussar, W. Determination of isopropylmethylphenols in black seed oil by differential pulse voltammetry. Phytochem. Anal. 2004, 15, 320–324. [Google Scholar] [CrossRef] [PubMed]
- Fuentes , F.G.; Gil, M.Á.L.; Mendoza, S.; Escarpa, A. Electrochemical Screening of Biomarkers in Chemotype Mexican Oregano Oils on Single-Walled Carbon Nanotubes Screen-Printed Electrodes. Electroanalysis 2011, 23, 2212–2216. [Google Scholar] [CrossRef]
- Robledo, S.N.; Pierini, G.D.; Nieto, C.H.D.; Fernández, H.; Zon, M.A. Development of an electrochemical method to determine phenolic monoterpenes in essential oils. Talanta 2019, 196, 362–369. [Google Scholar] [CrossRef]
- Esteban, M.; Ariño, C.; Díaz-Cruz, J.M. Chemometrics in Electrochemistry. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Robledo, S.N.; Zachetti, V.G.L.; Zon, M.A.; Fernández, H. Quantitative determination of tocopherols in edible vegetable oils using electrochemical ultra-microsensors combined with chemometric tools. Talanta 2013, 116, 964–971. [Google Scholar] [CrossRef]
- Tesio, A.Y.; Robledo, S.N.; Granero, A.M.; Fernández, H.; Zon, M.A. Simultaneous electroanalytical determination of luteolin and rutin using artificial neural networks. Sens. Actuators B Chem. 2014, 203, 655–662. [Google Scholar] [CrossRef]
- Pierini, G.D.; Pistonesi, M.F.; Di Nezio, M.S.; Centurión, M.E. A pencil-lead bismuth film electrode and chemometric tools for simultaneous determination of heavy metals in propolis samples. Microchem. J. 2016, 125, 266–272. [Google Scholar] [CrossRef]
- Granero, A.M.; Pierini, G.D.; Robledo, S.N.; Di Nezio, M.S.; Fernández, H.; Zon, M.A. Simultaneous determination of ascorbic and uric acids and dopamine in human serum samples using three-way calibration with data from square wave voltammetry. Microchem. J. 2016, 129, 205–212. [Google Scholar] [CrossRef]
- Kumar, N.; Bansal, A.; Sarma, G.S.; Rawal, R.K. Chemometrics tools used in analytical chemistry: An overview. Talanta 2014, 123, 186–199. [Google Scholar] [CrossRef]
- Kumar, K. Partial Least Square (PLS) Analysis. Resonance 2021, 26, 429–442. [Google Scholar] [CrossRef]
- Tonello, N.; Moressi, M.B.; Robledo, S.N.; D’Eramo, F.; Marioli, J.M. Square wave voltammetry with multivariate calibration tools for determination of eugenol, carvacrol and thymol in honey. Talanta 2016, 158, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Kowalcze, M.; Jakubowska, M. Multivariate approach in voltammetric identification and simultaneous determination of eugenol, carvacrol, and thymol on boron-doped diamond electrode. Monatshefte Für Chem. Chem. Mon. 2019, 150, 991–1002. [Google Scholar] [CrossRef]
- Darío Pierini, G.; Andrés Bortolato, S.; Noel Robledo, S.; Raquel Alcaraz, M.; Fernández, H.; Casimiro Goicoechea, H.; Alicia Zon, M. Second-order electrochemical data generation to quantify carvacrol in oregano essential oils. Food Chem. 2022, 368, 130840. [Google Scholar] [CrossRef]
- Stulík, K.; Amatore, C.; Holub, K.; Marecek, V.; Kutner, W. Microelectrodes. Definitions, characterization, and applications (Technical report). Pure Appl. Chem. 2000, 72, 1483. [Google Scholar] [CrossRef]
- Marriott, P.J.; Shellie, R.; Cornwell, C. Gas chromatographic technologies for the analysis of essential oils. J. Chromatogr. A 2001, 936, 1–22. [Google Scholar] [CrossRef]
- Robledo, S.N.; Tesio, A.Y.; Ceballos, C.D.; Zon, M.A.; Fernández, H. Electrochemical ultra-micro sensors for the determination of synthetic and natural antioxidants in edible vegetable oils. Sens. Actuators B Chem. 2014, 192, 467–473. [Google Scholar] [CrossRef]
- Wang, Y.; Rogers, E.I.; Compton, R.G. The measurement of the diffusion coefficients of ferrocene and ferrocenium and their temperature dependence in acetonitrile using double potential step microdisk electrode chronoamperometry. J. Electroanal. Chem. 2010, 648, 15–19. [Google Scholar] [CrossRef]
- Shoup, D.; Szabo, A. Chronoamperometric current at finite disk electrodes. J. Electroanal. Chem. 1982, 140, 237–245. [Google Scholar] [CrossRef]
- Brereton, R.G. Multilevel Multifactor Designs for MultivariateCalibration. Analyst 1997, 122, 1521–1529. [Google Scholar] [CrossRef]
- MATLAB 9.4.0; The MathWorks Inc.: Natick, MA, USA, 2018.
- Olivieri, A.C.; Goicoechea, H.C.; Iñón, F.A. MVC1: An integrated MatLab toolbox for first-order multivariate calibration. Chemom. Intell. Lab. Syst. 2004, 73, 189–197. [Google Scholar] [CrossRef]
- Pena-Pereira, F.; Wojnowski, W.; Tobiszewski, M. AGREE—Analytical GREEnness Metric Approach and Software. Anal. Chem. 2020, 92, 10076–10082. [Google Scholar] [CrossRef] [PubMed]
- Bard, A.J.; Faulkner, L.R.; White, H.S. Electrochemical Methods: Fundamentals and Applications, New York: Wiley, 2001, 2nd ed. Russ. J. Electrochem. 2002, 38, 1364–1365. [Google Scholar] [CrossRef]
- Orozco, J.; Fernández-Sánchez, C.; Jiménez-Jorquera, C. Ultramicroelectrode Array Based Sensors: A Promising Analytical Tool for Environmental Monitoring. Sensors 2010, 10, 475–490. [Google Scholar] [CrossRef]
- Esteban, M.; Ariño-Blasco, M.C.; Díaz-Cruz, J.M. 4.01-Chemometrics in Electrochemistry. In Comprehensive Chemometrics, 2nd ed.; Brown, S., Tauler, R., Walczak, B., Eds.; Elsevier: Oxford, UK, 2020; pp. 1–31. [Google Scholar]
- Olivieri, A.C. Introduction to Multivariate Calibration: A Practical Approach; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Díaz-Cruz, J.M.; Esteban, M.; Ariño, C. Multivariate Calibration. In Chemometrics in Electroanalysis; Díaz-Cruz, J.M., Esteban, M., Ariño, C., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 87–129. [Google Scholar]
- Bernal, J.; Nozal, M.J.; Bernal, J.L.; Ares, A.M. Determination of Carvacrol and Thymol in Honey by Using a Simple and Efficient Headspace-Gas Chromatography-Mass Spectrometry Method. Food Anal. Methods 2020, 13, 2138–2146. [Google Scholar] [CrossRef]
- Kasiri, E.; Haddadi, H.; Javadian, H.; Asfaram, A. Highly effective pre-concentration of thymol and carvacrol using nano-sized magnetic molecularly imprinted polymer based on experimental design optimization and their trace determination in summer savoury, Origanum majorana and Origanum vulgare extracts. J. Chromatogr. B 2021, 1182, 122941. [Google Scholar] [CrossRef]
- Cantalapiedra, A.; Gismera, M.J.; Sevilla, M.T.; Procopio, J.R. Sensitive and Selective Determination of Phenolic Compounds from Aromatic Plants Using an Electrochemical Detection Coupled with HPLC Method. Phytochem. Anal. 2014, 25, 247–254. [Google Scholar] [CrossRef]
Analyte | Data | LV | Statistical Indicators | |||
---|---|---|---|---|---|---|
RMSECV a (µM) | RMSEP b (µM) | REP% c | r2 d | |||
THY | Raw | 5 | 8.84 | 16.9 | 2.29 | 0.9994 |
Mean-centering | 4 | 8.84 | 16.9 | 2.29 | 0.9994 | |
First derivative e | 3 | 7.95 | 17.0 | 2.30 | 0.9994 | |
Second derivative e | 2 | 10.12 | 19.6 | 2.65 | 0.9993 | |
CAR | Raw | 5 | 9.04 | 16.5 | 2.17 | 0.9996 |
Mean-centering | 4 | 9.06 | 16.5 | 2.17 | 0.9996 | |
First derivative e | 2 | 8.96 | 15.3 | 2.10 | 0.9996 | |
Second derivative e | 2 | 9.05 | 14.8 | 1.95 | 0.9997 |
AFOM | THY | CAR |
---|---|---|
SEN (A/µM) | 3.5 × 10−13 | 1.3 × 10−14 |
γ (µM) | 293.1 | 18.8 |
LOD (µM) | 7.4–13.8 | 9.8–13.6 |
LOQ (µM) | 22.1–41.4 | 29.5–40.8 |
Sample | THY | CAR | Content in Sample | |||||
---|---|---|---|---|---|---|---|---|
GC-MS (µM) | EQ (µM) | R% | GC-MS (µM) | EQ (µM) | R% | THY (%w/v) | CAR (%w/v) | |
OEO 1 | 12.0 | 18.9 | 157.5 | 536.0 | 560.4 | 104.5 | 1.4 | 42.0 |
OEO 2 | 12.0 | 17.9 | 149.1 | 843.0 | 874.8 | 103.8 | 1.3 | 65.6 |
OEO 3 | 397.0 | 371.3 | 93.5 | 843.0 | 818.1 | 97.0 | 27.8 | 61.3 |
OEO 4 | 390.0 | 332.4 | 85.2 | 1270.0 | 1200.0 | 94.5 | 24.9 | 90 |
TEO 5 | 288.0 | 235.4 | 81.7 | 13.0 | 9.1 | 70.0 | 17.7 | 0.7 |
TEO 6 | 434.0 | 462.6 | 106.6 | 13.0 | 13.3 | 102.3 | 34.7 | 1.0 |
TEO 7 | 505.0 | 509.2 | 100.8 | 501.0 | 488.8 | 97.6 | 38.2 | 36.7 |
TEO 8 | 856.0 | 777.3 | 90.8 | 501.0 | 537.7 | 107.3 | 58.3 | 40.3 |
a | 108.2 | 97.1 | ||||||
REP% b | 5.6 | 4.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maccio, S.A.; Alaniz, R.D.; Pierini, G.D.; Zon, M.A.; Arévalo, F.J.; Fernández, H.; Goicoechea, H.C.; Robledo, S.N.; Alcaraz, M.R. A Straightforward Electrochemical Approach for the Simultaneous Determination of Thymol and Carvacrol in Essential Oils. Chemosensors 2024, 12, 197. https://doi.org/10.3390/chemosensors12090197
Maccio SA, Alaniz RD, Pierini GD, Zon MA, Arévalo FJ, Fernández H, Goicoechea HC, Robledo SN, Alcaraz MR. A Straightforward Electrochemical Approach for the Simultaneous Determination of Thymol and Carvacrol in Essential Oils. Chemosensors. 2024; 12(9):197. https://doi.org/10.3390/chemosensors12090197
Chicago/Turabian StyleMaccio, Sabrina Antonella, Ruben Darío Alaniz, Gastón Darío Pierini, María Alicia Zon, Fernando Javier Arévalo, Héctor Fernández, Héctor Casimiro Goicoechea, Sebastian Noel Robledo, and Mirta Raquel Alcaraz. 2024. "A Straightforward Electrochemical Approach for the Simultaneous Determination of Thymol and Carvacrol in Essential Oils" Chemosensors 12, no. 9: 197. https://doi.org/10.3390/chemosensors12090197
APA StyleMaccio, S. A., Alaniz, R. D., Pierini, G. D., Zon, M. A., Arévalo, F. J., Fernández, H., Goicoechea, H. C., Robledo, S. N., & Alcaraz, M. R. (2024). A Straightforward Electrochemical Approach for the Simultaneous Determination of Thymol and Carvacrol in Essential Oils. Chemosensors, 12(9), 197. https://doi.org/10.3390/chemosensors12090197