Nondestructive Discrimination of Plant-Based Patty Containing Traditional Medicinal Roots Using Visible–Near-Infrared Hyperspectral Imaging and Machine Learning Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant-Based Patty Fabrication
2.2. Hyperspectral Imaging: System Configurations and Data Collection
2.3. Data Analysis
2.3.1. Principal Component Analysis (PCA)
2.3.2. Support Vector Machine (SVM)
2.3.3. One-Dimensional Convolutional Neural Network (1D-CNN)
2.4. Model Evaluation
3. Results
3.1. Spectra Exploration
3.2. PCA Results
3.3. Classifier Performances
4. Discussion
4.1. Interpretation of VNIR Spectra
4.2. PCA Interpretation
4.3. Comparison of Classification Models
4.4. Potency for Future Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- OECD. OECD-FAO Agricultural Outlook 2024-2033; OECD: Paris, France, 2024. [Google Scholar]
- Godfray, H.C.J.; Aveyard, P.; Garnett, T.; Hall, J.W.; Key, T.J.; Lorimer, J.; Pierrehumbert, R.T.; Scarborough, P.; Springmann, M.; Jebb, S.A. Meat consumption, health, and the environment. Science 2018, 361, eaam5324. [Google Scholar] [CrossRef]
- Rueda, O.; Scherer, L. What’s Cooking? An Assessment of the Potential Impacts of Selected Novel Alternatives to Conventional Animal Products; UN Environment Programme: Nairobi, Kenya, 2023. [Google Scholar]
- Li, Y. Feeding the future: Plant-based meat for global food security and environmental sustainability. Cereal Foods World 2020, 65, 8–11. [Google Scholar]
- Lusk, J.L.; Blaustein-Rejto, D.; Shah, S.; Tonsor, G.T. Impact of plant-based meat alternatives on cattle inventories and greenhouse gas emissions. Environ. Res. Lett. 2022, 17, 024035. [Google Scholar] [CrossRef]
- He, J.; Liu, H.; Balamurugan, S.; Shao, S. Fatty acids and volatile flavor compounds in commercial plant-based burgers. J. Food Sci. 2021, 86, 293–305. [Google Scholar] [CrossRef] [PubMed]
- Kyriakopoulou, K.; Keppler, J.K.; van Der Goot, A.J. Functionality of ingredients and additives in plant-based meat analogues. Foods 2021, 10, 600. [Google Scholar] [CrossRef] [PubMed]
- Gyun, K.; Hye, Y.; Yung, L. Perception of elementary school parents in Gyeongbuk area on allergenic food labeling system and children’s food allergy status. Korean J. Hum. Ecol. 2013, 22, 491–506. [Google Scholar]
- Lee, J.-Y.; Jin, H.J.; Park, J.-W.; Jung, S.K.; Jang, J.-Y.; Park, H.-S. A case of korean ginseng-induced anaphylaxis confirmed by open oral challenge and basophil activation test. Allergy Asthma Immunol. Res. 2012, 4, 110–111. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-A.; Kim, D.-K.; Yang, H.-J.; Yoo, Y.; Ahn, Y.; Park, H.-S.; Lee, H.J.; Jeong, Y.Y.; Kim, B.-S.; Bae, W.Y. Pollen-food allergy syndrome in Korean pollinosis patients: A nationwide survey. Allergy Asthma Immunol. Res. 2018, 10, 648–661. [Google Scholar] [CrossRef]
- Zheng, J.; He, L. Surface-enhanced Raman spectroscopy for the chemical analysis of food. Compr. Rev. Food Sci. Food Saf. 2014, 13, 317–328. [Google Scholar] [CrossRef]
- Jia, B.; Wang, W.; Ni, X.; Lawrence, K.C.; Zhuang, H.; Yoon, S.-C.; Gao, Z. Essential processing methods of hyperspectral images of agricultural and food products. Chemom. Intell. Lab. Syst. 2020, 198, 103936. [Google Scholar] [CrossRef]
- Pellacani, S.; Borsari, M.; Cocchi, M.; D’Alessandro, A.; Durante, C.; Farioli, G.; Strani, L. Near infrared and UV-Visible spectroscopy coupled with chemometrics for the characterization of flours from different starch origins. Chemosensors 2023, 12, 1. [Google Scholar] [CrossRef]
- Wang, B.; Sun, J.; Xia, L.; Liu, J.; Wang, Z.; Li, P.; Guo, Y.; Sun, X. The applications of hyperspectral imaging technology for agricultural products quality analysis: A review. Food Rev. Int. 2023, 39, 1043–1062. [Google Scholar] [CrossRef]
- Li, J.; Luo, W.; Wang, Z.; Fan, S. Early detection of decay on apples using hyperspectral reflectance imaging combining both principal component analysis and improved watershed segmentation method. Postharvest Biol. Technol. 2019, 149, 235–246. [Google Scholar] [CrossRef]
- Xiao, Q.; Bai, X.; He, Y. Rapid screen of the color and water content of fresh-cut potato tuber slices using hyperspectral imaging coupled with multivariate analysis. Foods 2020, 9, 94. [Google Scholar] [CrossRef] [PubMed]
- Mollazade, K.; Hashim, N.; Zude-Sasse, M. Towards a multispectral imaging system for spatial mapping of chemical composition in fresh-cut pineapple (Ananas comosus). Foods 2023, 12, 3243. [Google Scholar] [CrossRef]
- Ayaz, H.; Ahmad, M.; Mazzara, M.; Sohaib, A. Hyperspectral imaging for minced meat classification using nonlinear deep features. Appl. Sci. 2020, 10, 7783. [Google Scholar] [CrossRef]
- Dashti, A.; Müller-Maatsch, J.; Weesepoel, Y.; Parastar, H.; Kobarfard, F.; Daraei, B.; AliAbadi, M.H.S.; Yazdanpanah, H. The feasibility of two handheld spectrometers for meat speciation combined with chemometric methods and its application for halal certification. Foods 2021, 11, 71. [Google Scholar] [CrossRef]
- Dhanapal, L.; Erkinbaev, C. Non-invasive characterization of color variation in plant-based meat burgers using portable hyperspectral imaging device and multivariate image analysis. Future Foods 2024, 9, 100293. [Google Scholar] [CrossRef]
- Dhanapal, L.; Erkinbaev, C. Portable hyperspectral imaging coupled with multivariate analysis for real-time prediction of plant-based meat analogues quality. J. Food Compos. Anal. 2024, 126, 105840. [Google Scholar] [CrossRef]
- El Azizi, S.; Amharref, M.; Bernoussi, A.S. Assessment of water content in plant leaves using hyperspectral remote sensing and chemometrics, application: Rosmarinus officinalis. J. Biosyst. Eng. 2024, 49, 337–345. [Google Scholar] [CrossRef]
- Hernanda, R.A.P.; Kim, J.; Faqeerzada, M.A.; Amanah, H.Z.; Cho, B.-K.; Kim, M.S.; Baek, I.; Lee, H. Rapid and noncontact identification of soybean flour in edible insect using NIR spectral imager: A case study in Protaetia brevitarsis seulensis powder. Food Control 2025, 169, 111019. [Google Scholar] [CrossRef]
- Zhao, J.; Fang, Y.; Chu, G.; Yan, H.; Hu, L.; Huang, L. Identification of leaf-scale wheat powdery mildew (Blumeria graminis f. sp. Tritici) combining hyperspectral imaging and an SVM classifier. Plants 2020, 9, 936. [Google Scholar] [CrossRef]
- Chandra, M.A.; Bedi, S. Survey on SVM and their application in image classification. Int. J. Inf. Technol. 2021, 13, 1–11. [Google Scholar] [CrossRef]
- Li, H.; Zhang, L.; Sun, H.; Rao, Z.; Ji, H. Identification of soybean varieties based on hyperspectral imaging technology and one-dimensional convolutional neural network. J. Food Process Eng. 2021, 44, e13767. [Google Scholar] [CrossRef]
- Singh, N.; Mahore, V.; Kaur, S.; Ajaykumar, K.; Choudhary, V. Deep Learning-Enabled Mobile Application for On-Site Nitrogen Prediction in Strawberry Cultivation. J. Biosyst. Eng. 2024, 49, 399–418. [Google Scholar] [CrossRef]
- Wang, J.; Qian, J.; Xu, M.; Ding, J.; Yue, Z.; Zhang, Y.; Dai, H.; Liu, X.; Pi, F. Adulteration detection of multi-species vegetable oils in camellia oil using Raman spectroscopy: Comparison of chemometrics and deep learning methods. Food Chem. 2025, 463, 141314. [Google Scholar] [CrossRef]
- Urbanos, G.; Martín, A.; Vázquez, G.; Villanueva, M.; Villa, M.; Jimenez-Roldan, L.; Chavarrías, M.; Lagares, A.; Juárez, E.; Sanz, C. Supervised machine learning methods and hyperspectral imaging techniques jointly applied for brain cancer classification. Sensors 2021, 21, 3827. [Google Scholar] [CrossRef]
- Pahlawan, M.; Murti, B.; Masithoh, R. The potency of Vis/NIR spectroscopy for classification of soybean based of colour. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2022; p. 012015. [Google Scholar]
- Padhi, S.R.; John, R.; Tripathi, K.; Wankhede, D.P.; Joshi, T.; Rana, J.C.; Riar, A.; Bhardwaj, R. A Comparison of Spectral Preprocessing Methods and Their Effects on Nutritional Traits in Cowpea Germplasm. Legume Sci. 2024, 6, e2977. [Google Scholar] [CrossRef]
- Windarsih, A.; Jatmiko, T.H.; Anggraeni, A.S.; Rahmawati, L. Machine learning-assisted FT-IR spectroscopy for identification of pork oil adulteration in tuna fish oil. Vib. Spectrosc. 2024, 134, 103715. [Google Scholar] [CrossRef]
- Hernanda, R.A.P.; Lee, J.; Lee, H. Spectroscopy Imaging Techniques as In Vivo Analytical Tools to Detect Plant Traits. Appl. Sci. 2023, 13, 10420. [Google Scholar] [CrossRef]
- Li, B.; Sun, J.; Liu, Y.; Shi, L.; Zhong, Y.; Wu, P. Multi-level data fusion strategy based on spectral and image information for identifying varieties of soybean seeds. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 322, 124815. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-Y.; Lee, D.-H.; Lee, J.-J.; Park, S.-Y.; Choi, S.-G.; Choi, Y.-J.; Lee, J.-H. Differences in the Physical Properties of Plant-Based Meat Alternatives Containing Root Vegetables. Foods 2024, 13, 3746. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Duan, Z.; Li, Y.; Zhao, G.; Zhu, S.; Fu, W.; Peng, T.; Zhao, Q.; Svanberg, S.; Hu, J. Vis/NIR reflectance spectroscopy for hybrid rice variety identification and chlorophyll content evaluation for different nitrogen fertilizer levels. R. Soc. Open Sci. 2019, 6, 191132. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Dai, L.; Cheng, F. Classification of frozen corn seeds using hyperspectral VIS/NIR reflectance imaging. Molecules 2019, 24, 149. [Google Scholar] [CrossRef]
- Kim, Y.-K.; Baek, I.; Lee, K.-M.; Qin, J.; Kim, G.; Shin, B.K.; Chan, D.E.; Herrman, T.J.; Cho, S.-k.; Kim, M.S. Investigation of reflectance, fluorescence, and Raman hyperspectral imaging techniques for rapid detection of aflatoxins in ground maize. Food Control 2022, 132, 108479. [Google Scholar] [CrossRef]
- Wakholi, C.; Kandpal, L.M.; Lee, H.; Bae, H.; Park, E.; Kim, M.S.; Mo, C.; Lee, W.-H.; Cho, B.-K. Rapid assessment of corn seed viability using short wave infrared line-scan hyperspectral imaging and chemometrics. Sens. Actuators B Chem. 2018, 255, 498–507. [Google Scholar] [CrossRef]
Preprocessing | Model | Calibration | Prediction | ||||||
---|---|---|---|---|---|---|---|---|---|
Acc | F1-Score | Pre | Rec | Acc | F1-Score | Pre | Rec | ||
Raw | SVM | 97.443 | 97.431 | 97.429 | 97.443 | 93.716 | 93.664 | 93.636 | 93.716 |
1D-CNN | 99.087 | 99.086 | 99.101 | 99.087 | 94.536 | 94.512 | 94.608 | 94.536 | |
SNV | SVM | 99.012 | 99.010 | 99.010 | 99.010 | 96.774 | 96.781 | 96.798 | 96.774 |
1D-CNN | 98.742 | 98.742 | 98.742 | 98.742 | 95.968 | 95.972 | 96.061 | 95.968 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, G.; Chung, H.; Hernanda, R.A.P.; Lee, J.; Lee, H. Nondestructive Discrimination of Plant-Based Patty Containing Traditional Medicinal Roots Using Visible–Near-Infrared Hyperspectral Imaging and Machine Learning Techniques. Chemosensors 2025, 13, 158. https://doi.org/10.3390/chemosensors13050158
Song G, Chung H, Hernanda RAP, Lee J, Lee H. Nondestructive Discrimination of Plant-Based Patty Containing Traditional Medicinal Roots Using Visible–Near-Infrared Hyperspectral Imaging and Machine Learning Techniques. Chemosensors. 2025; 13(5):158. https://doi.org/10.3390/chemosensors13050158
Chicago/Turabian StyleSong, Gwanggeun, Hwanjo Chung, Reza Adhitama Putra Hernanda, Junghyun Lee, and Hoonsoo Lee. 2025. "Nondestructive Discrimination of Plant-Based Patty Containing Traditional Medicinal Roots Using Visible–Near-Infrared Hyperspectral Imaging and Machine Learning Techniques" Chemosensors 13, no. 5: 158. https://doi.org/10.3390/chemosensors13050158
APA StyleSong, G., Chung, H., Hernanda, R. A. P., Lee, J., & Lee, H. (2025). Nondestructive Discrimination of Plant-Based Patty Containing Traditional Medicinal Roots Using Visible–Near-Infrared Hyperspectral Imaging and Machine Learning Techniques. Chemosensors, 13(5), 158. https://doi.org/10.3390/chemosensors13050158