Sulfide Detection by Gold-Amalgam Microelectrodes in Artificial Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Gold Amalgam Microelectrode
2.2. Cathodic Stripping Voltammetry
2.3. Calibration and Measurement
2.4. Media and Cultivation
2.5. Confocal Laser Scanning Microscopy (CLSM)
3. Results
3.1. Temperature and Accumulation Time Influence Stripping Signals
3.2. GAME Calibration in AWW 1
3.3. Tracing Microbial Sulfide Formation in AWW 1
3.4. GAME Calibration in AWW 2
3.5. Tracing Microbial Sulfide Formation in AWW 2
3.6. GAME Stability during Operation
3.7. Variability of Deposition Procedure and Its Impact on Calibration
3.8. GAME Maturation and Aging
4. Discussion
4.1. Calibration
4.2. Microbial Sulfide Emissions
4.3. Potential Improvements for GAME Production
4.4. GAME Maturation and Aging
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nielson, A.R.H.; Vollertsen, J.; Hvitved-Jacobsen, T. Sewer Processes: Microbial and Chemical Process Engineering of Sewer Networks, 2nd ed.; Crc Pr Inc: Aalborg, Denmark, 2013. [Google Scholar]
- Jensen, H.S. Hydrogen Sulfide Induced Concrete Corrosion of Sewer Networks; Aalborg University: Aalborg, Denmark, 2009. [Google Scholar]
- Hao, T.; Xiang, P.-Y.; Mackey, H.R.; Chi, K.; Lu, H.; Chui, H.-K.; Van Loosdrecht, M.C.M.; Chen, G. A review of biological sulfate conversions in wastewater treatment. Water Res. 2014, 65, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Takagi, H.; Ohtsu, I. L-Cysteine metabolism and fermentation in microorganisms. In Advances in Biochemical Engineering/Biotechnology; Springer Science and Business Media Deutschland GmbH: Berlin, Germany, 2017. [Google Scholar] [CrossRef]
- Zhang, L.; De Schryver, P.; De Gusseme, B.; De Muynck, W.; Boon, N.; Verstraete, W. Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: A review. Water Res. 2008, 42, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ganigué, R.; Gutierrez, O.; Rootsey, R.; Yuan, Z. Chemical dosing for sulfide control in Australia: An industry survey. Water Res. 2011, 45, 6564–6574. [Google Scholar] [CrossRef]
- Lawrence, N. Analytical strategies for the detection of sulfide: A review. Talanta 2000, 52, 771–784. [Google Scholar] [CrossRef]
- Luther, G.W.; Glazer, B.T.; Ma, S.; Trouwborst, R.E.; Moore, T.S.; Metzger, E.; Kraiya, C.; Waite, T.J.; Druschel, G.; Sundby, B.; et al. Use of voltammetric solid-state (micro)electrodes for studying biogeochemical processes: Laboratory measurements to real time measurements with an in situ electrochemical analyzer (ISEA). Mar. Chem. 2008, 108, 221–235. [Google Scholar] [CrossRef] [Green Version]
- Luther, G.W.; Findlay, A.J.; Macdonald, D.J.; Owings, S.M.; Hanson, T.E.; Beinart, R.A.; Girguis, P.R. Thermodynamics and Kinetics of Sulfide Oxidation by Oxygen: A Look at Inorganically Controlled Reactions and Biologically Mediated Processes in the Environment. Front. Microbiol. 2011, 2, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Luther, G.W., III; Glazer, B.T.; Hohmann, L.; Popp, J.I.; Taillefert, M.; Rozan, T.F.; Brendel, P.J.; Theberge, S.M.; Nuzzio, D.B. Sulfur speciation monitored in situ with solid state gold amalgam voltammetric microelectrodes: Polysulfides as a special case in sediments, microbial mats and hydrothermal vent waters. J. Environ. Monit. 2001, 3, 61–66. [Google Scholar] [CrossRef]
- Luther, G.W.; Ferdelman, T.G. Voltammetric characterization of iron(II) sulfide complexes in laboratory solutions and in marine waters and porewaters. Environ. Sci. Technol. 1993, 27, 1154–1163. [Google Scholar] [CrossRef]
- Van den Berg, M.G. Adsorptive cathodic stripping voltammetry of trace elements in sea water. Analyst 1989, 114, 1527. [Google Scholar] [CrossRef]
- Schröder, H. Surfactants: Non-biodegradable, significant pollutants in sewage treatment plant effluents. J. Chromatogr. A 1993, 647, 219–234. [Google Scholar] [CrossRef]
- Sedlak, D.L.; Phinney, J.T.; Bedsworth, W.W. Strongly Complexed Cu and Ni in Wastewater Effluents and Surface Runoff. Environ. Sci. Technol. 1997, 31, 3010–3016. [Google Scholar] [CrossRef]
- Baudler, A.; Riedl, S.; Schröder, U. Long-Term Performance of Primary and Secondary Electroactive Biofilms Using Layered Corrugated Carbon Electrodes. Front. Energy Res. 2014, 2, 1–6. [Google Scholar] [CrossRef]
- Luther, G.W.; Swartz, C.B.; Ullman, W.J. Direct determination of iodide in seawater by cathodic stripping square wave voltammetry. Anal. Chem. 1988, 60, 1721–1724. [Google Scholar] [CrossRef]
- Brendel, P.J.; Luther, G.W. Development of a Gold Amalgam Voltammetric Microelectrode for the Determination of Dissolved Fe, Mn, O2, and S(-II) in Porewaters of Marine and Freshwater Sediments. Environ. Sci. Technol. 1995, 29, 751–761. [Google Scholar] [CrossRef] [PubMed]
- Bard, A.J.; Faulkner, L.R.; Swain, E.; Robey, C. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; Harris, D., Swain, E., Robey, C., Aiello, E., Eds.; JOHN WILEY & SONS, INC.: New York, NY, USA, 2001. [Google Scholar]
- Glazer, B.T.; Cary, S.C.; Hohmann, L.; Luther, G.W. In Situ Sulfur Speciation Using Au/Hg Microelectrodes as an Aid to Microbial Characterization of an Intertidal Salt Marsh Microbial Mat. ACS Symp. Ser. 2002, 811, 283–304. [Google Scholar] [CrossRef]
- Ma, S.; Luther, G.W.; Keller, J.; Madison, A.S.; Metzger, E.; Emerson, D.; Megonigal, J.P. Solid-State Au/Hg Microelectrode for the Investigation of Fe and Mn Cycling in a Freshwater Wetland: Implications for Methane Production. Electroanalysis 2008, 20, 233–239. [Google Scholar] [CrossRef] [Green Version]
- Bobrowski, A.; Królicka, A. Renewable silver amalgam film electrodes in electrochemical stripping analysis—A review. J. Solid State Electrochem. 2016, 20, 3217–3228. [Google Scholar] [CrossRef]
- Hamann, C.H.; Vielstich, W. Elektrochemie; Wiley-VCH: Weinheim, Germany, 2005. [Google Scholar]
- Hughes, M.N.; Centelles, M.N.; Moore, K.P. Making and working with hydrogen sulfide. Free. Radic. Boil. Med. 2009, 47, 1346–1353. [Google Scholar] [CrossRef] [PubMed]
- Cline, J. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol. Oceanogr. 1969, 14, 454–458. [Google Scholar] [CrossRef]
- Riedl, S.; Brown, R.K.; Klöckner, S.; Huber, K.J.; Bunk, B.; Overmann, J.; Schröder, U. Successive Conditioning in Complex Artificial Wastewater Increases the Performance of Electrochemically Active Biofilms Treating Real Wastewater. Chem. Electro. Chem. 2017, 4, 3081–3090. [Google Scholar] [CrossRef]
- Baudler, A.; Schmidt, I.; Langner, M.; Duan, G.; Schröder, U. Does it have to be carbon? Metal anodes in microbial fuel cells and related bioelectrochemical systems. Energy Environ. Sci. 2015, 8, 2048–2055. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.R.; Min, B.; Logan, B.E. Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Appl. Microbiol. Biotechnol. 2005, 68, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Bialek, K.; Kim, J.; Lee, C.; Collins, G.; Mahony, T.; O’Flaherty, V. Quantitative and qualitative analyses of methanogenic community development in high-rate anaerobic bioreactors. Water Res. 2011, 45, 1298–1308. [Google Scholar] [CrossRef] [PubMed]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frankel, J.J. Notes on gold amalgam crystals. J. Chem. Metall. Min. Soc. S. Afr. 1956, 12, 451–456. [Google Scholar]
- Wu, F.; Qi, S. Global View of Engineering Geology and the Environment. In Proceedings of the International Symposium and 9th Asian Regional Conference of IAEG BT—International Symposium and 9th Asian Regional Conference of IAEG and the Environment, Beijing, China, 24–25 September 2013. [Google Scholar]
- Azimi, A.; Azari, A.; Rezakazemi, M.; Ansarpour, M. Removal of Heavy Metals from Industrial Wastewaters: A Review. Chem. Biomol. Eng. Rev. 2017, 4, 37–59. [Google Scholar] [CrossRef]
- Ramm, A.E.; Bella, D.A. Sulfide production in anaerobic microcosms. Limnol. Oceanogr. 1974, 19, 110–118. [Google Scholar] [CrossRef]
- Kabil, O.; Banerjee, R. Redox Biochemistry of Hydrogen Sulfide. J. Boil. Chem. 2010, 285, 21903–21907. [Google Scholar] [CrossRef] [Green Version]
- Benavides, G.A.; Squadrito, G.L.; Mills, R.W.; Patel, H.D.; Isbell, T.S.; Patel, R.P.; Darley-Usmar, V.; Doeller, J.E.; Kraus, D.W. Hydrogen sulfide mediates the vasoactivity of garlic. Proc. Natl. Acad. Sci. USA 2007, 104, 17977–17982. [Google Scholar] [CrossRef] [Green Version]
- Goubern, M.; Andriamihaja, M.; Nübel, T.; Blachier, F.; Bouillaud, F. Sulfide, the first inorganic substrate for human cells. FASEB J. 2007, 21, 1699–1706. [Google Scholar] [CrossRef]
- Zhao, F.; Slade, R.C.T.; Varcoe, J.R. Techniques for the study and development of microbial fuel cells: An electrochemical perspective. Chem. Soc. Rev. 2009, 38, 1926–1939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mikkelsen, Ø.; Schrøder, K.H. Amalgam Electrodes for Electroanalysis. Electroanalysis 2003, 15, 679–687. [Google Scholar] [CrossRef]
- Matono, R.; Fusayama, T. Corrosion of amalgam in contact with gold. J. Prosthet. Dent. 1972, 28, 170–178. [Google Scholar] [CrossRef]
- Bergman, B.; Bergman, M.; Helander, H. Appearance of surfaces of dental amalgam in contact with gold: An in vivo study. Acta Odontol. Scand. 1982, 40, 325–332. [Google Scholar] [CrossRef]
- Hou, T.; Chen, M.; Greene, G.W.; Horn, R.G. Mercury Vapor Sorption and Amalgamation with a Thin Gold Film. ACS Appl. Mater. Interfaces 2015, 7, 23172–23181. [Google Scholar] [CrossRef]
- George, M.A.; Glaunsinger, W.S.; Thundat, T.; Lindsay, S.M. Investigation of mercury adsorption on gold films by STM. J. Microsc. 1988, 152, 703–713. [Google Scholar] [CrossRef]
- Koike, M.; Ferracane, J.L.; Fujii, H.; Okabe, T. Evaluation of the amalgamation reaction of experimental Ag-Sn-Cu alloys containing Pd using a mercury plating technique. Dent. Mater. J. 2003, 22, 280–291. [Google Scholar] [CrossRef] [Green Version]
- O’Shea, T.J.; Lunte, S.M. Selective detection of free thiols by capillary electrophoresis-electrochemistry using a gold/mercury amalgam microelectrode. Anal. Chem. 1993, 65, 247–250. [Google Scholar] [CrossRef]
- Ostapczuk, P.; Kublik, Z. Silver based mercury film electrode. J. Electroanal. Chem. Interfacial Electrochem. 1978, 93, 195–212. [Google Scholar] [CrossRef]
- Wilson, D.J.; Kumar, A.A.; Mace, C.R. Overreliance on Cost Reduction as a Featured Element of Sensor Design. ACS Sens. 2019, 4, 1120–1125. [Google Scholar] [CrossRef]
- Andrich, J.M.S. Down Under—Aspects of Microbial Fuel Cell’s Sewer Implementation. Ph.D. Thesis, Technische Universität Braunschweig, Braunschweig, Germany, 2017. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrich, J.M.S.; Schröder, U. Sulfide Detection by Gold-Amalgam Microelectrodes in Artificial Wastewater. Chemosensors 2020, 8, 49. https://doi.org/10.3390/chemosensors8030049
Andrich JMS, Schröder U. Sulfide Detection by Gold-Amalgam Microelectrodes in Artificial Wastewater. Chemosensors. 2020; 8(3):49. https://doi.org/10.3390/chemosensors8030049
Chicago/Turabian StyleAndrich, Jonas M. S., and Uwe Schröder. 2020. "Sulfide Detection by Gold-Amalgam Microelectrodes in Artificial Wastewater" Chemosensors 8, no. 3: 49. https://doi.org/10.3390/chemosensors8030049
APA StyleAndrich, J. M. S., & Schröder, U. (2020). Sulfide Detection by Gold-Amalgam Microelectrodes in Artificial Wastewater. Chemosensors, 8(3), 49. https://doi.org/10.3390/chemosensors8030049