Determination of Trace Levels of Nickel(II) by Adsorptive Stripping Voltammetry Using a Disposable and Low-Cost Carbon Screen-Printed Electrode
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Apparatus
2.3. Voltammetric Measurements
3. Results and Discussion
3.1. Differential Pulse Adsorptive Stripping Voltammetry of Ni(II)
3.2. Interference Study
3.3. Analysis of a Wastewater Certified Reference Material by Using a SPCE
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J. Stripping Analysis: Principles, Instrumentation and Applications; VCH: Deerfield Beach, FL, USA, 1985. [Google Scholar]
- Barek, J.; Fogg, A.G.; Muck, A.; Zima, J. Polarography and voltammetry at mercury electrodes. Crit. Rev. Anal. Chem. 2001, 31, 291–309. [Google Scholar] [CrossRef]
- Gumpu, M.B.; Sethuraman, S.; Krishnan, U.M.; Rayappan, J.B.B. A review on detection of heavy metal ions in water–an electrochemical approach. Sens. Actuators B 2015, 213, 515–533. [Google Scholar] [CrossRef]
- Bansod, B.; Kumar, T.; Thakur, R.; Rana, S.; Singh, I. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosens. Bioelectron. 2017, 94, 443–455. [Google Scholar] [CrossRef] [PubMed]
- Ariño, C.; Serrano, N.; Díaz-Cruz, J.M.; Esteban, M. Voltammetric determination of metal ions beyond mercury electrodes. A review. Anal. Chim. Acta 2017, 990, 11–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metters, J.P.; Kadara, R.O.; Banks, C.E. New directions in screen printed electroanalytical sensors: An overview of recent developments. Analyst 2011, 136, 1067–1076. [Google Scholar] [CrossRef] [PubMed]
- Barton, J.; González García, M.B.; Hernández Santos, D.; Fanjul-Bolado, P.; Ribotti, A.; McCaul, M.; Diamond, D.; Magni, P. Screen-printed electrodes for environmental monitoring of heavy metal ions: A review. Microchim. Acta 2016, 183, 503–517. [Google Scholar] [CrossRef]
- Liu, X.; Yao, Y.; Ying, Y.; Ping, J. Recent advances in nanomaterial-enabled screen-printed electrochemical sensors for heavy metal detection. Trends Anal. Chem. 2019, 115, 187–202. [Google Scholar] [CrossRef]
- Duffus, J.H. “Heavy metals”—A meaningless term? Pure Appl. Chem. 2002, 74, 793–807. [Google Scholar] [CrossRef] [Green Version]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy Metal Toxicity and the Environment. In Molecular, Clinical and Environmental Toxicology; Luch, A., Ed.; Springer: Basel, Switzerland, 2012; Volume 3, pp. 133–164. [Google Scholar]
- Lambert, M.; Leven, B.A.; Green, R.M. New methods of cleaning up heavy metal in soils and water. In Environmental Science and Technology Briefs for Citizens; Kansas State University: Manhattan, KS, USA, 2000. [Google Scholar]
- Ansari, M.I.; Malik, A. Seasonal variation of different microorganisms with nickel and cadmium in the industrial wastewater and agricultural soils. Environ. Monit. Assess. 2010, 167, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Nieminen, T.M.; Ukonmaanaho, L.; Rausch, N.; Shotyk, W. Metal Ions in Life Sciences; John Wiley & Sons, Ltd.: New York, NY, USA, 2007; Volume 2, pp. 1–30. [Google Scholar]
- Das, K.K.; Reddy, R.C.; Bagoji, I.B.; Das, S.; Bagali, S.; Mullur, L.; Khodnapur, J.P.; Biradar, M.S. Primary concept of nickel toxicity—An overview. J. Basic Clin. Physiol. Pharmacol. 2019, 30, 141–152. [Google Scholar] [CrossRef] [Green Version]
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Nickel; Department of Health and Human Services, Public Health Service: Atlanta, GA, USA, 2005.
- Das, K.K.; Buchner, V. Effect of nickel exposure on peripheral tissues: Role of oxidative stress in toxicity and possible protection by ascorbic acid. Rev. Environ. Health 2007, 22, 133–149. [Google Scholar] [CrossRef]
- Das, K.K.; Das, S.N.; Dhundasi, S.A. Nickel: Molecular diversity, application, essentiality and toxicity in human health. In Biometals: Molecular Structures, Binding Properties and Applications; Blanc, G., Moreau, D., Eds.; Nova Science Publishers: New York, NY, USA, 2010; pp. 33–58. [Google Scholar]
- IARC (International Agency for Research on Cancer). IARC Monograph on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 1990; Volume 49, pp. 318–411. [Google Scholar]
- Pihlar, B.; Valenta, P.; Nürnberg, H.W. Electrochemical reduction of Ni(II) on the hanging mercury drop electrode in the presence of dimethylglyoxime. J. Electroanal. Chem. Interf. Electrochem. 1986, 214, 157–177. [Google Scholar] [CrossRef]
- Zhang, H.; Wollast, R.; Vire, J.C.; Patriarche, G.J. Simultaneous determination of cobalt and nickel in sea water by adsorptive cathodic stripping square-wave voltammetry. Analyst 1989, 114, 1597–1602. [Google Scholar] [CrossRef]
- Serrano, N.; Alberich, A.; Díaz-Cruz, J.M.; Ariño, C.; Esteban, M. Coating methods, modifiers and applications of bismuth screen-printed electrodes. Trends Anal. Chem. 2013, 46, 15–29. [Google Scholar] [CrossRef]
- Serrano, N.; Díaz-Cruz, J.M.; Ariño, C.; Esteban, M. Antimony-based electrodes for analytical determinations. Trends Anal. Chem. 2016, 77, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Lu, J. Bismuth film electrodes for adsorptive stripping voltammetry of trace nickel. Electrochem. Commun. 2000, 2, 390–393. [Google Scholar] [CrossRef]
- Hutton, E.A.; Hocevar, S.B.; Ogorevc, B.; Smyth, M.R. Bismuth film electrode for simultaneous adsorptive stripping analysis of trace cobalt and nickel using constant current chronopotentiometric and voltammetric protocol. Electrochem. Commun. 2003, 5, 765–769. [Google Scholar] [CrossRef]
- Morfobos, M.; Economou, A.; Voulgaropoulos, A. Simultaneous determination of nickel(II) and cobalt(II) by square wave adsorptive stripping voltammetry on a rotating-disc bismuth-film electrode. Anal. Chim. Acta 2004, 519, 57–64. [Google Scholar] [CrossRef]
- Hutton, E.A.; Hocevar, S.B.; Ogorevc, B. Ex situ preparation of bismuth film microelectrode for use in electrochemical stripping microanalysis. Anal. Chim. Acta 2005, 537, 285–292. [Google Scholar] [CrossRef]
- Kokkinos, C.; Economou, A.; Raptis, I.; Speliotis, T. Disposable mercury-free cell-on-a-chip devices with integrated microfabricated electrodes for the determination of trace nickel(II) by adsorptive stripping voltammetry. Anal. Chim. Acta 2008, 622, 111–118. [Google Scholar] [CrossRef]
- Kokkinos, C.; Economou, A.; Raptis, I.; Speliotis, T. Novel disposable microfabricated antimony-film electrodes for adsorptive stripping analysis of trace Ni(II). Electrochem. Commun. 2009, 11, 250–253. [Google Scholar] [CrossRef]
- Korolczuk, M.; Rutyna, I.; Tyszczuk, K. Adsorptive stripping voltammetry of nickel at an in situ plated bismuth film electrode. Electroanalysis 2010, 22, 1494–1498. [Google Scholar] [CrossRef]
- Sopha, H.; Jovanovski, V.; Hocevar, S.B.; Ogorevc, B. In-situ plated antimony film electrode for adsorptive cathodic stripping voltammetric measurement of trace nickel. Electrochem. Commun. 2012, 20, 23–25. [Google Scholar] [CrossRef]
- Alves, G.M.S.; Magalhães, J.M.C.S.; Soares, H.M.V.M. Simultaneous determination of nickel and cobalt using a solid bismuth vibrating electrode by adsorptive cathodic stripping voltammetry. Electroanalysis 2013, 25, 1247–1255. [Google Scholar] [CrossRef]
- Dal Borgo, S.; Sopha, H.; Smarzewska, S.; Hočevar, S.B.; Švancara, I.; Metelka, R. Macroporous bismuth film screen-printed carbon electrode for simultaneous determination of Ni(II) and Co(II). Electroanalysis 2015, 27, 209–216. [Google Scholar] [CrossRef]
- Bas, B.; Wegiel, K.; Jedlinska, K. The renewable bismuth bulk annular band working electrode: Fabrication and application in the adsorptive stripping voltammetric determination of nickel(II) and cobalt(II). Anal. Chim. Acta 2015, 881, 44–53. [Google Scholar] [CrossRef]
- Barceló, C.; Serrano, N.; Ariño, C.; Díaz-Cruz, J.M.; Esteban, M. Ex-situ antimony screen-printed carbon electrode for voltammetric determination of Ni(II)—Ions in wastewater. Electroanalysis 2016, 28, 640–644. [Google Scholar] [CrossRef] [Green Version]
- Baldwin, R.P.; Christensen, J.K.; Kryger, L. Voltammetric determination of traces of nickel(II) at a chemically modified electrode based on dimethylglyoxime-containing carbon paste. Anal. Chem. 1986, 58, 1790–1798. [Google Scholar] [CrossRef]
- Bing, C. Chemical accumulation and voltammetric determination of traces of nickel(II) at glassy carbon electrodes modified with dimethylglyoxime containing polymer coatings. Talanta 1999, 49, 651–659. [Google Scholar] [CrossRef]
- Tien, H. The application of chelating agent incorporated polymer modified electrodes in the detection of trace metals. J. Chin. Chem. Soc. 1998, 45, 39–46. [Google Scholar] [CrossRef]
- González, P.; Cortínez, V.A.; Fontán, C.A. Determination of nickel by anodic adsorptive stripping voltammetry with a cation exchanger-modified carbon paste electrode. Talanta 2002, 58, 679–690. [Google Scholar] [CrossRef]
- Tartarotti, F.O.; De Oliveira, M.F.; Balbo, V.R.; Stradiotto, N.R. Determination of nickel in fuel ethanol using a carbon paste modified electrode containing dimethylglyoxime. Microchim. Acta 2006, 155, 397–401. [Google Scholar] [CrossRef]
- Ferancová, A.; Hattuniemi, M.K.; Sesay, A.M.; Räty, J.P.; Virtanen, V.T. Rapid and direct electrochemical determination of Ni(II) in industrial discharge water. J. Hazard. Mater. 2016, 306, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Pokpas, K.; Jahed, N.; Baker, P.G.; Iwuoha, E.I. Complexation-based detection of nickel(II) at a graphene-chelate probe in the presence of cobalt and zinc by adsorptive stripping voltammetry. Sensors 2017, 17, 1711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosal, M.; Cetó, X.; Serrano, N.; Ariño, C.; Esteban, M.; Díaz-Cruz, J.M. Dimethylglyoxime modified screen-printed electrodes for nickel determination. J. Electroanal. Chem. 2019, 839, 83–89. [Google Scholar] [CrossRef]
- Korolczuk, M. Voltammetric method for direct determination of nickel in natural waters in the presence of surfactants. Talanta 2000, 53, 679–686. [Google Scholar] [CrossRef]
- Mahajan, R.K.; Dhawan, P. Adsorptive stripping voltammetric determination of nickel(II) using N-2-pyridyl-benzamidine as a complexing reagent. Indian J. Chem. 2002, 41, 981–984. [Google Scholar]
- Korolczuk, M. Voltammetric determination of nickel in the flow system in the presence of an extremely large excess of cobalt and zinc. Electroanalysis 2000, 12, 1502–1504. [Google Scholar] [CrossRef]
- Bobrowski, A.; Królicka, A.; Maczuga, M.; Zarȩbski, J. A novel screen-printed electrode modified with lead film for adsorptive stripping voltammetric determination of cobalt and nickel. Sens. Actuators B 2014, 191, 291–297. [Google Scholar] [CrossRef]
- Ochab, M.; Gęca, I.; Korolczuk, M. The new micro-set for adsorptive stripping voltammetric simultaneous determination of nickel and cobalt traces in aqueous media. Electroanalysis 2019, 31, 1769–1774. [Google Scholar] [CrossRef]
Sensitivity (a.u. µg−1 L) | 1.007 (0.002) |
---|---|
R2 | 0.9998 |
Linear range (µg L−1) a | 1.7–150 |
LOD (µg L−1) | 0.5 |
Reproducibility (from slopes, n = 3, %) | 0.3 |
Repeatability (at 20 µg L−1, n = 5, %) | 0.4 |
Repeatability (at 20 µg L−1, n = 15, %) | 1.5 |
Electrode | Technique | Linear Range (µg L−1) | LOD (µg L−1) | Deposition Time (s) | Ref. |
---|---|---|---|---|---|
Bismuth film glassy carbon electrode | AdSV | 0–80 | 0.8 | 180 | [23] |
Bismuth film glassy carbon electrode | AdSV | 2–12 | 0.26 | 60 | [24] |
CCAdSCP | |||||
Rotating-disc bismuth-film electrode | SWAdSV | 1–14 | 0.1 | 300 | [25] |
Exsitu bismuth film microelectrode | SWAdCSV | 0.2–2 | 0.09 | 120 | [26] |
Sputtered bismuth film electrode | SWAdSV | 5–40 | 0.1 | 90 | [27] |
Sputtered antimony film electrodes | SWAdSV | 0–30 | 0.2 | 60 | [28] |
In-situ bismuth film glassy carbon electrode | SWAdSV | 0.3–3 | 0.06 | 120 | [29] |
In-situ antimony film glassy carbon electrode | SWAdSV | 2–20 | 0.11 | 60 | [30] |
Solid bismuth vibrating electrode | SWAdCSV | 0–10 | 0.6 | 30 | [31] |
Macroporous bismuth film screen-printed carbon electrode | AdCSV | 1–10 | 0.027 | 180 | [32] |
Renewable bismuth bulk annular band working electrode | DPAdSV | 0.6–41 | 0.18 | 30 | [33] |
Ex-situ antimony film screen-printed carbon electrode | DPAdSV | 3.1–197 | 0.9 | 120 | [34] |
Ex-situ bismuth film screen-printed carbon electrode | 9.8–226 | 2.9 | |||
Sputtered bismuth screen-printed electrode | 15.6–226 | 4.7 | |||
Chemically modified electrode based on dimethylglyoxime-containing carbon paste | DPV | 2.9–293.5 | 2.9 | 240 | [35] |
Glassy carbon coated with dimethylglyoxime-containing polymers | SWAdCSV | 18–180 | 18 | 240 | [36] |
Chelating agent-modified Nafion-coated mercury-film electrode | SWASV | 0.1–100 | 0.1 | 300 | [37] |
Cation exchanger-modified carbon paste electrode | AAdSV | 0.025–6 | 0.005 | 720 + 300 a | [38] |
6–600 | 0.006 | ||||
Carbon paste modified electrode containing dimethylglyoxime | DPV | 0.29–29.3 | 0.16 | 1500 | [39] |
Screen-printed electrodes modified with dimethylglyoxime in nafion | DPV | 60–500 | 30 | 120 | [40] |
Nafion-graphene dimethylglyoxime modified glassy carbon electrode | AdCSV | 2–20 | 1.5 | 120 | [41] |
Dimethylglyoxime modified screen-printed electrodes | DPAdSV | 7.6–200 b 23.6–200 c | 2.3 b 7.1 c | 60 | [42] |
Hanging mercury drop electrode | SWAdSV | --- | 0.003 | 60–180 | [20] |
Hanging mercury drop electrode | CSWV | 0.3–6 0.06–6 | 0.1 0.01 | 30 120 | [43] |
Hanging mercury drop electrode | AdSV | 0.3–3 | 0.06 | 180 | [44] |
Hanging mercury drop electrode | SWV | 0–18 | 0.07 | 120 | [45] |
Screen-printed electrode modified with lead film | SWAdSV | 5.9–35.2 0.6–2.9 | 0.6 0.2 | 60 90 | [46] |
In-situ plated lead film on carbon fiber working microelectrode | SWAdSV | 0.1–6 | 0.05 | 240 | [47] |
Screen-printed carbon electrode | DPAdSV | 1.7–150 | 0.5 | 120 | This work |
c (µg L−1) | RSD (%) | Relative Error (%) | |
---|---|---|---|
SPCE | 4954.0 | 0.4 | 0.9 |
Certified metal value | 5000.0 | 0.5 | — |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padilla, V.; Serrano, N.; Díaz-Cruz, J.M. Determination of Trace Levels of Nickel(II) by Adsorptive Stripping Voltammetry Using a Disposable and Low-Cost Carbon Screen-Printed Electrode. Chemosensors 2021, 9, 94. https://doi.org/10.3390/chemosensors9050094
Padilla V, Serrano N, Díaz-Cruz JM. Determination of Trace Levels of Nickel(II) by Adsorptive Stripping Voltammetry Using a Disposable and Low-Cost Carbon Screen-Printed Electrode. Chemosensors. 2021; 9(5):94. https://doi.org/10.3390/chemosensors9050094
Chicago/Turabian StylePadilla, Víctor, Núria Serrano, and José Manuel Díaz-Cruz. 2021. "Determination of Trace Levels of Nickel(II) by Adsorptive Stripping Voltammetry Using a Disposable and Low-Cost Carbon Screen-Printed Electrode" Chemosensors 9, no. 5: 94. https://doi.org/10.3390/chemosensors9050094
APA StylePadilla, V., Serrano, N., & Díaz-Cruz, J. M. (2021). Determination of Trace Levels of Nickel(II) by Adsorptive Stripping Voltammetry Using a Disposable and Low-Cost Carbon Screen-Printed Electrode. Chemosensors, 9(5), 94. https://doi.org/10.3390/chemosensors9050094