Differential iNKT and T Cells Activation in Non-Alcoholic Fatty Liver Disease and Drug-Induced Liver Injury
Abstract
:1. Introduction
2. Material and Methods
2.1. Patients
2.1.1. Cohort of Patients with DILI
2.1.2. Cohort of Patients with NAFLD
2.1.3. Cohort of Healthy Controls
2.2. FibroScan Examination
2.3. Steatosis, NASH, and Fibrosis Non-Invasive Tests
2.4. Biochemical Measurements
2.5. Cellular Fraction Isolation and Flow Cytometry Study
2.6. Statistical Analysis
3. Results
3.1. iNKT Cells Are Increased in NAFLD Patients with Significant Fibrosis
3.2. iNKT Cells from NAFLD Patients with Significant Fibrosis Presented Increased Early Activation Profile
3.3. iNKT Cells from NAFLD Patients Presented Increased Late Activation Profile
3.4. iNKT Cells from NAFLD Patients Presented Increased Cellular Stress
3.5. CD69+ and HLA-DR+ CD4+ T Cells Subset Is Increased in DILI Patients
3.6. CD69+ and HLA-DR+ CD8+ T Cells Subset Is Increased in NAFLD and DILI Patients
3.7. Correlations between the Activation Profile of Lymphocytes with Anthropometric/Biochemical Variables and Fatty Liver and Fibrosis Index
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eslam, M.; Sanyal, A.J.; George, J.; International Consensus Panel. MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology 2020, 158, 1999–2014. [Google Scholar] [CrossRef] [PubMed]
- Caballería, L.; Pera, G.; Auladell, M.A.; Torán, P.; Muñoz, L.; Miranda, D.; Alumà, A.; Casas, J.D.; Sánchez, C.; Gil, D.; et al. Prevalence and factors associated with the presence of nonalcoholic fatty liver disease in an adult population in Spain. Eur. J. Gastroenterol. Hepatol. 2010, 22, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Aron-Wisnewsky, J.; Vigliotti, C.; Witjes, J.; Le, P.; Holleboom, A.G.; Verheij, J.; Nieuwdorp, M.; Clément, K. Gut microbiota and human NAFLD: Disentangling microbial signatures from metabolic disorders. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 279–297. [Google Scholar] [CrossRef] [PubMed]
- Kazankov, K.; Jørgensen, S.M.D.; Thomsen, K.L.; Møller, H.J.; Vilstrup, H.; George, J.; Schuppan, D.; Grønbæk, H. The role of mac-rophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 145–159. [Google Scholar] [CrossRef]
- Rabinowich, L.; Shibolet, O. Drug Induced Steatohepatitis: An Uncommon Culprit of a Common Disease. BioMed Res. Int. 2015, 2015, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Aithal, G.P.; Watkins, P.B.; Andrade, R.J.; Larrey, D.; Molokhia, M.; Takikawa, H.; Hunt, C.M.; Wilke, R.A.; Avigan, M.; Kaplowitz, N.; et al. Case Definition and Phenotype Standardization in Drug-Induced Liver Injury. Clin. Pharmacol. Ther. 2011, 89, 806–815. [Google Scholar] [CrossRef]
- Chen, M.; Suzuki, A.; Borlak, J.; Andrade, R.J.; Lucena, M.I. Drug-induced liver injury: Interactions between drug properties and host factors. J. Hepatol. 2015, 63, 503–514. [Google Scholar] [CrossRef] [Green Version]
- Andrade, R.J.; Chalasani, N.; Björnsson, E.S.; Suzuki, A.; Kullak-Ublick, G.A.; Watkins, P.B.; Devarbhavi, H.; Merz, M.; Lucena, M.I.; Kaplowitz, N.; et al. Drug-induced liver injury. Nat. Rev. Dis. Primers 2019, 5, 58. [Google Scholar] [CrossRef] [Green Version]
- Jing, J.; Wang, R.L.; Zhao, X.Y.; Zhu, Y.; Niu, M.; Wang, L.F.; Song, X.A.; He, T.T.; Sun, Y.Q.; Xu, W.T.; et al. Association between the concurrence of pre-existing chronic liver disease and worse prognosis in patients with an herb- Polygonum multiflorum thunb. induced liver injury: A case-control study from a specialised liver disease center in China. BMJ Open 2019, 9, e023567. [Google Scholar] [CrossRef]
- Fromenty, B. Drug-induced liver injury in obesity. J. Hepatol. 2013, 58, 824–826. [Google Scholar] [CrossRef]
- Michaut, A.; Moreau, C.; Robin, M.-A.; Fromenty, B. Acetaminophen-induced liver injury in obesity and nonalcoholic fatty liver disease. Liver Int. 2014, 34, e171–e179. [Google Scholar] [CrossRef]
- Lammert, C.; Imler, T.; Teal, E.; Chalasani, N. Patients with Chronic Liver Disease Suggestive of Nonalcoholic Fatty Liver Disease May Be at Higher Risk for Drug-Induced Liver Injury. Clin. Gastroenterol. Hepatol. 2019, 17, 2814–2815. [Google Scholar] [CrossRef] [Green Version]
- Bessone, F.; Dirchwolf, M.; Rodil, M.A.; Razori, M.V.; Roma, M.G. Review article: Drug-induced liver injury in the context of nonalcoholic fatty liver disease—A physiopathological and clinical integrated view. Aliment. Pharmacol. Ther. 2018, 48, 892–913. [Google Scholar] [CrossRef]
- Kleiner, D.E.; Chalasani, N.P.; Lee, W.M.; Fontana, R.J.; Bonkovsky, H.L.; Watkins, P.B.; Hayashi, P.H.; Davern, T.J.; Navarro, V.; Reddy, R.; et al. Hepatic histological findings in suspected drug-induced liver injury: Systematic evaluation and clinical associations. Hepatolgy 2014, 59, 661–670. [Google Scholar] [CrossRef] [Green Version]
- Nati, M.; Chung, K.-J.; Chavakis, T. The Role of Innate Immune Cells in Nonalcoholic Fatty Liver Disease. J. Innate Immun. 2021, 2021, 1–11. [Google Scholar] [CrossRef]
- Dara, L.; Liu, Z.-X.; Kaplowitz, N. Mechanisms of adaptation and progression in idiosyncratic drug induced liver injury, clinical implications. Liver Int. 2016, 36, 158–165. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.; Upadhyay, P.; Nagarajan, P. Immunotherapy in Liver Diseases: A Balance between Immunity and Tolerance. Curr. Drug Metab. 2016, 17, 997–1005. [Google Scholar] [CrossRef]
- Brennan, P.J.; Brigl, M.; Brenner, M.B. Invariant natural killer T cells: An innate activation scheme linked to diverse effector functions. Nat. Rev. Immunol. 2013, 13, 101–117. [Google Scholar] [CrossRef]
- Maricic, I.; Marrero, I.; Eguchi, A.; Nakamura, R.; Johnson, C.D.; Dasgupta, S.; Hernandez, C.D.; Nguyen, P.S.; Swafford, A.D.; Knight, R.; et al. Differential Activation of Hepatic Invariant NKT Cell Subsets Plays a Key Role in Progression of Nonalcoholic Steatohepatitis. J. Immunol. 2018, 201, 3017–3035. [Google Scholar] [CrossRef] [Green Version]
- Nong, C.; Zou, M.; Xue, R.; Bai, L.; Liu, L.; Jiang, Z.; Sun, L.; Huang, X.; Zhang, L.; Wang, X. The role of invariant natural killer T cells in experimental xenobiotic-induced cholestatic hepatotoxicity. Biomed. Pharmacother. 2019, 122, 109579. [Google Scholar] [CrossRef]
- Cabrera, M.L.; Santis, A.G.; Fernández-Ruiz, E.; Blacher, R.; Esch, F.; Sánchez-Mateos, P.; Sánchez-Madrid, F. Molecular cloning, expression, and chromosomal localization of the human earliest lymphocyte activation antigen AIM/CD69, a new member of the C-type animal lectin superfamily of signal-transmitting receptors. J. Exp. Med. 1993, 178, 537–547. [Google Scholar] [CrossRef] [Green Version]
- Borrego, F.; Robertson, M.J.; Ritz, J.; Peña, J.; Solana, R. CD69 is a stimulatory receptor for natural killer cell and its cytotoxic effect is blocked by CD94 inhibitory receptor. Immunology 1999, 97, 159–165. [Google Scholar] [CrossRef]
- Reddy, M.; Eirikis, E.; Davis, C.; Davis, H.M.; Prabhakar, U. Comparative analysis of lymphocyte activation marker expression and cytokine secretion profile in stimulated human peripheral blood mononuclear cell cultures: An in vitro model to monitor cellular immune function. J. Immunol. Methods 2004, 293, 127–142. [Google Scholar] [CrossRef]
- Tomkinson, B.E.; Wagner, D.K.; Nelson, D.L.; Sullivan, J.L. Activated lymphocytes during acute Epstein-Barr virus infection. J. Immunol. 1987, 139, 3802–3807. [Google Scholar]
- Laurence, A.; Tato, C.M.; Davidson, T.S.; Kanno, Y.; Chen, Z.; Yao, Z.; Blank, R.B.; Meylan, F.; Siegel, R.; Hennighausen, L.; et al. Interleukin-2 Signaling via STAT5 Constrains T Helper 17 Cell Generation. Immunology 2007, 26, 371–381. [Google Scholar] [CrossRef] [Green Version]
- Andrade, R.J.; Lucena, M.I.; Alonso, A.; García-Cortés, M.; García-Ruiz, E.; Benitez, R.; Fernández, M.C.; Pelaez, G.; Romero, M.; Corpas, R.; et al. HLA class II genotype influences the type of liver injury in drug-induced idiosyncratic liver disease. Hepatology 2004, 39, 1603–1612. [Google Scholar] [CrossRef]
- Bauer, S.; Groh, V.; Wu, J.; Steinle, A.; Phillips, J.H.; Lanier, L.L.; Spies, T. Activation of NK Cells and T Cells by NKG2D, a Receptor for Stress-Inducible MICA. Science 1999, 285, 727–729. [Google Scholar] [CrossRef]
- Radaeva, S.; Sun, R.; Jaruga, B.; Nguyen, V.T.; Tian, Z.; Gao, B. Natural Killer Cells Ameliorate Liver Fibrosis by Killing Activated Stellate Cells in NKG2D-Dependent and Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand–Dependent Manners. Gastroenterology 2006, 130, 435–452. [Google Scholar] [CrossRef]
- Andrade, R.J.; Lucena, M.I.; Fernández, M.C.; Pelaez, G.; Pachkoria, K.; García-Ruiz, E.; García-Muñoz, B.; González-Grande, R.; Pizarro, A.; Durán, J.A.; et al. Drug-Induced Liver Injury: An Analysis of 461 Incidences Submitted to the Spanish Registry Over a 10-Year Period. Gastroenterology 2005, 129, 512–521. [Google Scholar] [CrossRef]
- Chalasani, N.; Younossi, Z.; LaVine, J.E.; Charlton, M.; Cusi, K.; Rinella, M.; Harrison, S.A.; Brunt, E.M.; Sanyal, A.J. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018, 67, 328–357. [Google Scholar] [CrossRef]
- Angulo, P.; Kleiner, D.E.; Dam-Larsen, S.; Adams, L.A.; Björnsson, E.S.; Charatcharoenwitthaya, P.; Mills, P.R.; Keach, J.C.; Lafferty, H.D.; Stahler, A.; et al. Liver Fibrosis, but No Other Histologic Features, Is Associated with Long-term Outcomes of Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology 2015, 149, 389–397.e10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaswala, D.H.; Lai, M.; Afdhal, N.H. Fibrosis Assessment in Nonalcoholic Fatty Liver Disease (NAFLD) in 2016. Dig. Dis. Sci. 2016, 61, 1356–1364. [Google Scholar] [CrossRef] [PubMed]
- Bedogni, G.; Bellentani, S.; Miglioli, L.; Masutti, F.; Passalacqua, M.; Castiglione, A.; Tiribelli, C. The Fatty Liver Index: A simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006, 6, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angulo, P.; Hui, J.M.; Marchesini, G.; Bugianesi, E.; George, J.; Farrell, G.C.; Enders, F.; Saksena, S.; Burt, A.D.; Bida, J.P.; et al. The NAFLD fibrosis score: A noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology 2007, 45, 846–854. [Google Scholar] [CrossRef] [PubMed]
- Sterling, R.K.; Lissen, E.; Clumeck, N.; Sola, R.; Correa, M.C.; Montaner, J.; Sulkowski, M.S.; Torriani, F.J.; Dieterich, D.T.; Thomas, D.L.; et al. APRICOT Clinical Investigators. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology 2006, 43, 1317–1325. [Google Scholar] [CrossRef] [PubMed]
- Bourliere, M.; Penaranda, G.; Renou, C.; Botta-Fridlund, D.; Tran, A.; Portal, I.; LeComte, L.; Castellani, P.; Rosenthal-Allieri, M.A.; Gerolami, R.; et al. Validation and comparison of indexes for fibrosis and cirrhosis prediction in chronic hepatitis C patients: Proposal for a pragmatic approach classification without liver biopsies. J. Viral Hepat. 2006, 13, 659–670. [Google Scholar] [CrossRef] [PubMed]
- Lopez, S.; García-Serrano, S.; Gutierrez-Repiso, C.; Rodríguez-Pacheco, F.; Ho-Plagaro, A.; Fernández, C.S.; Alba, G.; Cejudo-Guillen, M.; Rodríguez-Cañete, A.; Valdes, S.; et al. Tissue-Specific Phenotype and Activation of iNKT Cells in Morbidly Obese Subjects: Interaction with Adipocytes and Effect of Bariatric Surgery. Obes. Surg. 2018, 28, 2774–2782. [Google Scholar] [CrossRef]
- Bonkovsky, H.L.; Severson, T.; Nicoletti, P.; Barnhart, H.; Serrano, J.; Chalasani, N.; Fontana, R.J.; Watkins, P.B.; Navarro, V.; Stolz, A.; et al. Genetic Polymorphisms Implicated in Nonalcoholic Liver Disease or Selected Other Disorders Have No Influence on Drug-Induced Liver Injury. Hepatol. Commun. 2019, 3, 1032–1035. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V. NKT-cell subsets: Promoters and protectors in inflammatory liver disease. J. Hepatol. 2013, 59, 618–620. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Li, L.; Li, Y.; Li, Y.; Sha, Y.; Wen, S.; You, Q.; Liu, L.; Shi, M.; Zhou, H. Intravital imaging of interactions between iNKT and kupffer cells to clear free lipids during steatohepatitis. Theranostics 2021, 11, 2149–2169. [Google Scholar] [CrossRef]
- Chandra, S.; Kronenberg, M. Activation and Function of iNKT and MAIT Cells. Adv. Immunol. 2015, 127, 145–201. [Google Scholar] [CrossRef]
- Zou, M.; Nong, C.; Yu, Z.; Cai, H.; Jiang, Z.; Xue, R.; Huang, X.; Sun, L.; Zhang, L.; Wang, X. The role of invariant natural killer T cells and associated immunoregulatory factors in triptolide-induced cholestatic liver injury. Food Chem. Toxicol. 2020, 146, 111777. [Google Scholar] [CrossRef]
- Bovens, A.A.; Wesselink, T.H.; Behr, F.M.; Kragten, N.A.M.; van Lier, R.A.W.; van Gisbergen, K.P.J.M.; Stark, R. Murine iNKT cells are depleted by liver damage via activation of P2RX7. Eur. J. Immunol. 2020, 50, 1515–1524. [Google Scholar] [CrossRef]
- Singh, A.K.; Tripathi, P.; Cardell, S.L. Type II NKT Cells: An Elusive Population with Immunoregulatory Properties. Front. Immunol. 2018, 9, 1969. [Google Scholar] [CrossRef]
- Sutti, S.; Jindal, A.; Locatelli, I.; Vacchiano, M.; Gigliotti, L.; Bozzola, C.; Albano, E. Adaptive immune responses triggered by oxidative stress contribute to hepatic inflammation in NASH. Hepatology 2014, 59, 886–897. [Google Scholar] [CrossRef]
- Robles-Diaz, M.; Garcia-Cortes, M.; Medina-Caliz, I.; Gonzalez-Jimenez, A.; Gonzalez-Grande, R.; Navarro, J.M.; Castiella, A.; Zapata, E.M.; Romero-Gomez, M.; Blanco, S.; et al. The value of serum aspartate aminotransferase and gamma-glutamyl transpetidase as biomarkers in hepatotoxicity. Liver Int. 2015, 35, 2474–2482. [Google Scholar] [CrossRef]
- Stephens, C.; Robles-Diaz, M.; Medina-Caliz, I.; Garcia-Cortes, M.; Ortega-Alonso, A.; Sanabria-Cabrera, J.; Gonzalez-Jimenez, A.; Alvarez-Alvarez, I.; Slim, M.; Jimenez-Perez, M.; et al. Comprehensive analysis and insights gained from long-term expe-rience of the Spanish DILI Registry. J. Hepatol. 2021, 75, 86–97. [Google Scholar] [CrossRef]
- Brigl, M.; Brenner, M.B. How invariant natural killer T cells respond to infection by recognizing microbial or endogenous lipid antigens. Semin. Immunol. 2010, 22, 79–86. [Google Scholar] [CrossRef]
- Huang, W.; He, W.; Shi, X.; He, X.; Dou, L.; Gao, Y. The Role of CD1d and MR1 Restricted T Cells in the Liver. Front. Immunol. 2018, 9, 2424. [Google Scholar] [CrossRef] [Green Version]
- De Munck, T.J.I.; Xu, P.; Verwijs, H.J.A.; Masclee, A.A.M.; Jonkers, D.; Verbeek, J.; Koek, G.H. Intestinal permeability in human non-alcoholic fatty liver disease: A systematic review and meta-analysis. Liver Int. 2020, 40, 2906–2916. [Google Scholar] [CrossRef]
- Stiglund, N.; Strand, K.; Cornillet, M.; Stål, P.; Thorell, A.; Zimmer, C.L.; Näslund, E.; Karlgren, S.; Nilsson, H.; Mellgren, G.; et al. Retained NK Cell Phenotype and Functionality in Non-alcoholic Fatty Liver Disease. Front. Immunol. 2019, 10. [Google Scholar] [CrossRef]
- Hansen, C.H.; Holm, T.L.; Krych, Ł.; Andresen, L.; Nielsen, D.S.; Rune, I.; Hansen, A.K.; Skov, S. Gut microbiota regulates NKG2D ligand expression on intestinal epithelial cells. Eur. J. Immunol. 2013, 43, 447–457. [Google Scholar] [CrossRef]
- Murri, M.; García-Fuentes, E.; García-Almeida, J.M.; Garrido-Sánchez, L.; Mayas, M.D.; Bernal, R.; Tinahones, F.J. Changes in oxidative stress and insulin resistance in morbidly obese patients after bariatric surgery. Obes Surg. 2010, 20, 363–368. [Google Scholar] [CrossRef]
- Barbarroja, N.; Lopez-Pedrera, C.; Mayas, M.D.; Garcia-Fuentes, E.; Garrido-Sánchez, L.; Macias-Gonzalez, M.; El Bekay, R.; Vidal-Puig, A.; Tinahones, F.J. The obese healthy paradox: Is inflammation the answer? Biochem. J. 2010, 430, 141–149. [Google Scholar] [CrossRef] [Green Version]
- Nicoletti, P.; Aithal, G.; Bjornsson, E.S.; Andrade, R.J.; Sawle, A.; Arrese, M.; Barnhart, H.X.; Bondon-Guitton, E.; Hayashi, P.H.; Bessone, F.; et al. Association of Liver Injury from Specific Drugs, or Groups of Drugs, with Polymorphisms in HLA and Other Genes in a Genome-Wide Association Study. Gastroenterology 2017, 152, 1078–1089. [Google Scholar] [CrossRef] [Green Version]
- Stephens, C.; Lucena, M.I.; Andrade, R.J. Genetic risk factors in the development of idiosyncratic drug-induced liver injury. Expert Opin. Drug Metab. Toxicol. 2021, 17, 153–169. [Google Scholar] [CrossRef]
- Cueto-Sanchez, A.; Niu, H.; Del Campo-Herrera, E.; Robles-Díaz, M.; Sanabria-Cabrera, J.; Ortega-Alonso, A.; Garcia-Cortes, M.; Gonzalez-Grande, R.; Jimenez-Perez, M.; Ruiz-Cabello, F.; et al. Lymphocyte Profile and Immune Checkpoint Expression in Drug-Induced Liver Injury: An Immunophenotyping Study. Clin. Pharmacol. Ther. 2021, 110, 1604–1612. [Google Scholar] [CrossRef]
- Jee, A.; Sernoskie, S.; Uetrecht, J. Idiosyncratic Drug-Induced Liver Injury: Mechanistic and Clinical Challenges. Int. J. Mol. Sci. 2021, 22, 2954. [Google Scholar] [CrossRef]
- Mak, A.; Uetrecht, J. The Role of CD8 T Cells in Amodiaquine-Induced Liver Injury in PD1-/- Mice Cotreated with Anti-CTLA-4. Chem. Res. Toxicol. 2015, 28, 1567–1573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Healthy Control | NAFLD F ≤ 1 | NAFLD F ≥ 2 | DILI | p-Value | |
---|---|---|---|---|---|
N (men/women) | 28 (11/17) | 6 (3/3) | 15 (7/8) | 8 (1/7) | <0.001 |
Age (years) | 40 ± 11 | 48 ± 11 a | 56 ± 11 a | 47 ± 15 a,c | <0.001 |
Weight (kg) | 67 ± 12 | 79 ± 14 a | 84 ± 10 a | 68 ± 12 b,c | <0.001 |
BMI (kg/m2) | 23 ± 2 | 28 ± 4 a | 31 ± 3 a | 24 ± 3 b,c | <0.001 |
Glucose (mg/dL) | 82 (76–88) | 98 (89–107) a | 106 (91–121) a | 94 (89–99) a,c | <0.001 |
Cholesterol (mg/dL) | 166 ± 36 | 197 ± 28 a | 191 ± 40 a | 184 ± 67 | <0.047 |
Triglycerides (mg/dL) | 85 ± 31 | 118 ± 59 a | 156 ± 87 a | 186 ± 100 a | <0.001 |
Insulin (μU/mL) | 5.7 (4.1–7.3) | 11.3 (6.3–16.3) a | 17.8 (8.8–26.8) a | 11.4 (2.4–20.4) | <0.001 |
HOMA-IR | 1.1 (0.7–0.5) | 2.9 (2.7–4.1) a | 6.7 (4.2–9.3) a,b | 4.4 (0.9–7.9) | <0.001 |
AST (IU/L) | 20 (16–24) | 33 (24–42) a | 48 (29–67) a,b | 96 (41–151) a,b,c | <0.001 |
ALT (IU/L) | 22 (14–30) | 58 (20–96) a | 74 (44–104) a | 202 (52–352) a,b,c | <0.001 |
GGT (IU/L) | 13 (9–17) | 44 (5–83) a | 96 (56–136) a | 105 (15–195) a | <0.001 |
ALP (IU/L) | 48 (36–60) | 74 (63–85) a | 75 (55–95) a | 178 (103–253) a,b,c | <0.001 |
Hepatic Parameters Fibrosis | |||||
FLI | 18 ± 20 | 64 ± 28 a | 83 ± 19 a,b | Nc | <0.001 |
NAFLD FS | −3.1 ± 0.7 | −2.0 ± 0.8 a | −1.1 ± 1.4 a,b | Nc | 0.001 |
FIB4 | 0.67 (0.45–0.89) | 0.94 (0.65–0.1.23) | 1.42 (1.02–1.82) a | Nc | <0.001 |
APRI | 0.24 (0.17–0.31) | 0.43 (0.28–0.58) a | 0.64 (0.5–0.78) a | Nc | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caballano-Infantes, E.; García-García, A.; Lopez-Gomez, C.; Cueto, A.; Robles-Diaz, M.; Ortega-Alonso, A.; Martín-Reyes, F.; Alvarez-Alvarez, I.; Arranz-Salas, I.; Ruiz-Cabello, F.; et al. Differential iNKT and T Cells Activation in Non-Alcoholic Fatty Liver Disease and Drug-Induced Liver Injury. Biomedicines 2022, 10, 55. https://doi.org/10.3390/biomedicines10010055
Caballano-Infantes E, García-García A, Lopez-Gomez C, Cueto A, Robles-Diaz M, Ortega-Alonso A, Martín-Reyes F, Alvarez-Alvarez I, Arranz-Salas I, Ruiz-Cabello F, et al. Differential iNKT and T Cells Activation in Non-Alcoholic Fatty Liver Disease and Drug-Induced Liver Injury. Biomedicines. 2022; 10(1):55. https://doi.org/10.3390/biomedicines10010055
Chicago/Turabian StyleCaballano-Infantes, Estefanía, Alberto García-García, Carlos Lopez-Gomez, Alejandro Cueto, Mercedes Robles-Diaz, Aida Ortega-Alonso, Flores Martín-Reyes, Ismael Alvarez-Alvarez, Isabel Arranz-Salas, Francisco Ruiz-Cabello, and et al. 2022. "Differential iNKT and T Cells Activation in Non-Alcoholic Fatty Liver Disease and Drug-Induced Liver Injury" Biomedicines 10, no. 1: 55. https://doi.org/10.3390/biomedicines10010055
APA StyleCaballano-Infantes, E., García-García, A., Lopez-Gomez, C., Cueto, A., Robles-Diaz, M., Ortega-Alonso, A., Martín-Reyes, F., Alvarez-Alvarez, I., Arranz-Salas, I., Ruiz-Cabello, F., Lucena, I. M., García-Fuentes, E., Andrade, R. J., & García-Cortes, M. (2022). Differential iNKT and T Cells Activation in Non-Alcoholic Fatty Liver Disease and Drug-Induced Liver Injury. Biomedicines, 10(1), 55. https://doi.org/10.3390/biomedicines10010055