Lipids and Lipoproteins in Health and Disease
Funding
Conflicts of Interest
References
- Lee, C.-K.; Liao, C.-W.; Meng, S.-W.; Wu, W.-K.; Chiang, J.-Y.; Wu, M.-S. Lipids and lipoproteins in health and disease: Focus on targeting atherosclerosis. Biomedicines 2021, 9, 985. [Google Scholar] [CrossRef]
- Mezentsev, A.; Bezsonov, E.; Kashirskikh, D.; Baig, M.; Eid, A.; Orekhov, A. Proatherogenic sialidases and desialylated lipoproteins: 35 years of research and current state from bench to bedside. Biomedicines 2021, 9, 600. [Google Scholar] [CrossRef]
- Mushenkova, N.V.; Bezsonov, E.E.; Orekhova, V.A.; Popkova, T.V.; Starodubova, A.V.; Orekhov, A.N. Recognition of oxidized lipids by macrophages and its role in atherosclerosis development. Biomedicines 2021, 9, 915. [Google Scholar] [CrossRef] [PubMed]
- Kindt, N.; Journé, F.; Carlier, S.; Trelcat, A.; Scalia, A.; Saussez, S. Effect of oxidized low-density lipoprotein on head and neck squamous cell carcinomas. Biomedicines 2021, 9, 513. [Google Scholar] [CrossRef] [PubMed]
- Trakaki, A.; Marsche, G. Current understanding of the immunomodulatory activities of high-density lipoproteins. Biomedicines 2021, 9, 587. [Google Scholar] [CrossRef]
- Stadler, J.; Lackner, S.; Mörkl, S.; Trakaki, A.; Scharnagl, H.; Borenich, A.; Wonisch, W.; Mangge, H.; Zelzer, S.; Meier-Allard, N.; et al. Obesity affects HDL metabolism, composition and subclass distribution obesity affects HDL metabolism, composition and subclass distribution. Biomedicines 2021, 9, 242. [Google Scholar] [CrossRef] [PubMed]
- Jebari-Benslaiman, S.; Uribe, K.B.; Benito-Vicente, A.; Galicia-Garcia, U.; Larrea-Sebal, A.; Alloza, I.; Vandenbroeck, K.; Ostolaza, H.; Martín, C. Cholesterol Efflux Efficiency of Reconstituted HDL Is Affected by Nanoparticle Lipid Composition. Biomedicines 2020, 8, 373. [Google Scholar] [CrossRef]
- Akhmedov, S.; Afanasyev, S.; Trusova, M.; Postnikov, P.; Rogovskaya, Y.; Grakova, E.; Kopeva, K.; Paz, R.C.; Balakin, S.; Wiesmann, H.-P.; et al. Chemically Modified Biomimetic Carbon-Coated Iron Nanoparticles for Stent Coatings: In Vitro Cytocompatibility and In Vivo Structural Changes in Human Atherosclerotic Plaques. Biomedicines 2021, 9, 802. [Google Scholar] [CrossRef]
- Ballout, R.A.; Kong, H.; Sampson, M.; Otvos, J.D.; Cox, A.L.; Agbor-Enoh, S.; Remaley, A.T. The NIH Lipo-COVID study: A pilot NMR investigation of lipoprotein subfractions and other metabolites in patients with severe COVID-19. Biomedicines 2021, 9, 1090. [Google Scholar] [CrossRef]
- Jeong, S.; Jun, J.; Kim, J.; Park, H.; Cho, Y.-P.; Kim, G. Expression of miRNAs Targeting ATP Binding Cassette Transporter 1 (ABCA1) among Patients with Significant Carotid Artery Stenosis. Biomedicines 2021, 9, 920. [Google Scholar] [CrossRef]
- Coggi, D.; Frigerio, B.; Bonomi, A.; Ruscica, M.; Ferri, N.; Sansaro, D.; Ravani, A.; Ferrante, P.; Damigella, M.; Veglia, F.; et al. Relationship between circulating PCSK9 and markers of subclinical atherosclerosis—The IMPROVE Study. Biomedicines 2021, 9, 841. [Google Scholar] [CrossRef] [PubMed]
- Simo, O.; Berrougui, H.; Fulop, T.; Khalil, A. The susceptibility to diet-induced atherosclerosis is exacerbated with aging in C57B1/6 mice. Biomedicines 2021, 9, 487. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.-Y.; Hsu, S.; Su, T.-C. Association between vitamin D deficiency and high serum levels of small dense LDL in middle-aged adults. Biomedicines 2021, 9, 464. [Google Scholar] [CrossRef] [PubMed]
- Surdu, A.; Pînzariu, O.; Ciobanu, D.-M.; Negru, A.-G.; Căinap, S.-S.; Lazea, C.; Iacob, D.; Săraci, G.; Tirinescu, D.; Borda, I.; et al. Vitamin D and its role in the lipid metabolism and the development of atherosclerosis. Biomedicines 2021, 9, 172. [Google Scholar] [CrossRef] [PubMed]
- Gencer, S.; Döring, Y.; Jansen, Y.; Bayasgalan, S.; Schengel, O.; Müller, M.; Peters, L.; Weber, C.; van der Vorst, E. Adipocyte-specific ACKR3 regulates lipid levels in adipose tissue. Biomedicines 2021, 9, 394. [Google Scholar] [CrossRef] [PubMed]
- Rovira-Llopis, S.; Díaz-Rúa, R.; Valle, C.G.-D.; Iannantuoni, F.; Abad-Jimenez, Z.; Bosch-Sierra, N.; Panadero-Romero, J.; Victor, V.; Rocha, M.; Morillas, C.; et al. Characterization of differentially expressed circulating miRNAs in metabolically healthy versus unhealthy obesity. Biomedicines 2021, 9, 321. [Google Scholar] [CrossRef] [PubMed]
- Astudillo, A.; Meana, C.; Bermúdez, M.; Pérez-Encabo, A.; Balboa, M.; Balsinde, J. Release of anti-inflammatory palmitoleic acid and its positional isomers by mouse peritoneal macrophages. Biomedicines 2020, 8, 480. [Google Scholar] [CrossRef]
- Korneva, V.A.; Kuznetsova, T.Y.; Julius, U. Modern approaches to lower lipoprotein(a) concentrations and consequences for cardiovascular diseases. Biomedicines 2021, 9, 1271. [Google Scholar] [CrossRef]
- O’Brien, S.; Neylon, O.; O’Brien, T. Dyslipidaemia in type 1 diabetes: Molecular mechanisms and therapeutic opportunities. Biomedicines 2021, 9, 826. [Google Scholar] [CrossRef]
- Kumari, A.; Kristensen, K.K.; Ploug, M.; Winther, A.-M.L. The importance of lipoprotein lipase regulation in atherosclerosis. Biomedicines 2021, 9, 782. [Google Scholar] [CrossRef]
- Irene, G.-R.; César, M.; Fernando, C.; Ana, C. SR-B1, a key receptor involved in the progression of cardiovascular disease: A perspective from mice and human genetic studies. Biomedicines 2021, 9, 612. [Google Scholar] [CrossRef] [PubMed]
- Kiepura, A.; Stachyra, K.; Olszanecki, R. Anti-atherosclerotic potential of free fatty acid receptor 4 (FFAR4). Biomedicines 2021, 9, 467. [Google Scholar] [CrossRef]
- Cismaru, G.; Serban, T.; Tirpe, A. Ultrasound methods in the evaluation of atherosclerosis: From pathophysiology to clinic. Biomedicines 2021, 9, 418. [Google Scholar] [CrossRef]
- Suárez-Rivero, J.M.; Pastor-Maldonado, C.J.; Povea-Cabello, S.; Álvarez-Córdoba, M.; Villalón-García, I.; Talaverón-Rey, M.; Suárez-Carrillo, A.; Munuera-Cabeza, M.; Sánchez-Alcázar, J.A. From Mitochondria to Atherosclerosis: The Inflammation Path. Biomedicines 2021, 9, 258. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bezsonov, E.E.; Sobenin, I.A.; Orekhov, A.N. Lipids and Lipoproteins in Health and Disease. Biomedicines 2022, 10, 87. https://doi.org/10.3390/biomedicines10010087
Bezsonov EE, Sobenin IA, Orekhov AN. Lipids and Lipoproteins in Health and Disease. Biomedicines. 2022; 10(1):87. https://doi.org/10.3390/biomedicines10010087
Chicago/Turabian StyleBezsonov, Evgeny E., Igor A. Sobenin, and Alexander N. Orekhov. 2022. "Lipids and Lipoproteins in Health and Disease" Biomedicines 10, no. 1: 87. https://doi.org/10.3390/biomedicines10010087
APA StyleBezsonov, E. E., Sobenin, I. A., & Orekhov, A. N. (2022). Lipids and Lipoproteins in Health and Disease. Biomedicines, 10(1), 87. https://doi.org/10.3390/biomedicines10010087