Predicting In-Hospital Mortality in Severe COVID-19: A Systematic Review and External Validation of Clinical Prediction Rules
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria and Searches
2.2. Study Selection
2.3. Data Extraction and Synthesis
2.4. Risk of Bias Assessment
2.5. External Validation of Included Clinical Prediction Rules
3. Results
3.1. Models to Predict Risks of COVID-19-Related Mortality in Hospitalized Patients
3.2. Risk of Bias
3.3. Evaluation of Tool Performance in Predicting COVID-19-Related Mortality
3.4. External Validation in the Same New Cohort of Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; et al. Genomic Characterisation and Epidemiology of 2019 Novel Coronavirus: Implications for Virus Origins and Receptor Binding. Lancet 2020, 395, 565–574. [Google Scholar] [CrossRef]
- Zhou, J.; Huang, L.; Chen, J.; Yuan, X.; Shen, Q.; Dong, S.; Cheng, B.; Guo, T.-M. Clinical Features Predicting Mortality Risk in Older Patients with COVID-19. Curr. Med. Res. Opin. 2020, 36, 1753–1759. [Google Scholar] [CrossRef] [PubMed]
- Phelan, A.L.; Katz, R.; Gostin, L.O. The Novel Coronavirus Originating in Wuhan, China: Challenges for Global Health Governance. JAMA 2020, 323, 709–710. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; McGoogan, J.M. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72,314 Cases from the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef]
- Wynants, L.; Van Calster, B.; Collins, G.S.; Riley, R.D.; Heinze, G.; Schuit, E.; Bonten, M.M.J.; Dahly, D.L.; Damen, J.A.A.; Debray, T.P.A.; et al. Prediction Models for Diagnosis and Prognosis of COVID-19: Systematic Review and Critical Appraisal. BMJ 2020, 369, m1328. [Google Scholar] [CrossRef]
- Bleeker, S.E.; Moll, H.A.; Steyerberg, E.W.; Donders, A.R.T.; Derksen-Lubsen, G.; Grobbee, D.E.; Moons, K.G.M. External Validation Is Necessary in Prediction Research: A Clinical Example. J. Clin. Epidemiol. 2003, 56, 826–832. [Google Scholar] [CrossRef]
- Moons, K.G.M.; de Groot, J.A.H.; Bouwmeester, W.; Vergouwe, Y.; Mallett, S.; Altman, D.G.; Reitsma, J.B.; Collins, G.S. Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies: The CHARMS Checklist. PLoS Med. 2014, 11, e1001744. [Google Scholar] [CrossRef]
- Moons, K.G.M.; Wolff, R.F.; Riley, R.D.; Whiting, P.F.; Westwood, M.; Collins, G.S.; Reitsma, J.B.; Kleijnen, J.; Mallett, S. PROBAST: A Tool to Assess Risk of Bias and Applicability of Prediction Model Studies: Explanation and Elaboration. Ann. Intern. Med. 2019, 170, W1. [Google Scholar] [CrossRef]
- Maestre-Muñiz, M.M.; Arias, Á.; Arias-González, L.; Angulo-Lara, B.; Lucendo, A.J. Prognostic Factors at Admission for In-Hospital Mortality from COVID-19 Infection in an Older Rural Population in Central Spain. J. Clin. Med. 2021, 10, 318. [Google Scholar] [CrossRef]
- Maestre-Muñiz, M.M.; Arias, Á.; Mata-Vázquez, E.; Martín-Toledano, M.; López-Larramona, G.; Ruiz-Chicote, A.M.; Nieto-Sandoval, B.; Lucendo, A.J. Long-Term Outcomes of Patients with Coronavirus Disease 2019 at One Year after Hospital Discharge. J. Clin. Med. 2021, 10, 2945. [Google Scholar] [CrossRef]
- Weng, Z.; Chen, Q.; Li, S.; Li, H.; Zhang, Q.; Lu, S.; Wu, L.; Xiong, L.; Mi, B.; Liu, D.; et al. ANDC: An Early Warning Score to Predict Mortality Risk for Patients with Coronavirus Disease 2019. J. Transl. Med. 2020, 18, 328. [Google Scholar] [CrossRef] [PubMed]
- Ji, D.; Zhang, D.; Xu, J.; Chen, Z.; Yang, T.; Zhao, P.; Chen, G.; Cheng, G.; Wang, Y.; Bi, J.; et al. Prediction for Progression Risk in Patients with COVID-19 Pneumonia: The CALL Score. Clin. Infect. Dis. 2020, 71, 1393–1399. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Zhang, W.-F.; Gong, M.; Zhang, Y.; Chen, L.; Zhu, H.; Hu, C.; Kang, P.; Liu, L.; Zhu, H. Development and Validation of the HNC-LL Score for Predicting the Severity of Coronavirus Disease 2019. eBioMedicine 2020, 57, 102880. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, H.; Qiao, R.; Ge, Q.; Zhang, S.; Zhao, Z.; Tian, C.; Ma, Q.; Shen, N. Thrombo-Inflammatory Features Predicting Mortality in Patients with COVID-19: The FAD-85 Score. J. Int. Med. Res. 2020, 48, 030006052095503. [Google Scholar] [CrossRef] [PubMed]
- Knight, S.R.; Ho, A.; Pius, R.; Buchan, I.; Carson, G.; Drake, T.M.; Dunning, J.; Fairfield, C.J.; Gamble, C.; Green, C.A.; et al. Risk Stratification of Patients Admitted to Hospital with COVID-19 Using the ISARIC WHO Clinical Characterisation Protocol: Development and Validation of the 4C Mortality Score. BMJ 2020, 370, m3339. [Google Scholar] [CrossRef]
- Soto-Mota, A.; Marfil-Garza, B.A.; Martínez Rodríguez, E.; Barreto Rodríguez, J.O.; López Romo, A.E.; Alberti Minutti, P.; Alejandre Loya, J.V.; Pérez Talavera, F.E.; Ávila Cervera, F.J.; Velazquez Burciaga, A.; et al. The Low-harm Score for Predicting Mortality in Patients Diagnosed with COVID-19: A Multicentric Validation Study. J. Am. Coll. Emerg. Physicians Open 2020, 1, 1436–1443. [Google Scholar] [CrossRef]
- Foieni, F.; Sala, G.; Mognarelli, J.G.; Suigo, G.; Zampini, D.; Pistoia, M.; Ciola, M.; Ciampani, T.; Ultori, C.; Ghiringhelli, P. Derivation and Validation of the Clinical Prediction Model for COVID-19. Intern. Emerg. Med. 2020, 15, 1409–1414. [Google Scholar] [CrossRef]
- Abdulaal, A.; Patel, A.; Charani, E.; Denny, S.; Alqahtani, S.A.; Davies, G.W.; Mughal, N.; Moore, L.S.P. Comparison of Deep Learning with Regression Analysis in Creating Predictive Models for SARS-CoV-2 Outcomes. BMC Med. Inform. Decis. Mak. 2020, 20, 299. [Google Scholar] [CrossRef]
- An, C.; Lim, H.; Kim, D.-W.; Chang, J.H.; Choi, Y.J.; Kim, S.W. Machine Learning Prediction for Mortality of Patients Diagnosed with COVID-19: A Nationwide Korean Cohort Study. Sci. Rep. 2020, 10, 18716. [Google Scholar] [CrossRef]
- Chen, H.; Chen, R.; Yang, H.; Wang, J.; Hou, Y.; Hu, W.; Yu, J.; Li, H. Development and Validation of a Nomogram Using on Admission Routine Laboratory Parameters to Predict In-hospital Survival of Patients with COVID-19. J. Med. Virol. 2021, 93, 2332–2339. [Google Scholar] [CrossRef]
- Chen, R.; Liang, W.; Jiang, M.; Guan, W.; Zhan, C.; Wang, T.; Tang, C.; Sang, L.; Liu, J.; Ni, Z.; et al. Risk Factors of Fatal Outcome in Hospitalized Subjects with Coronavirus Disease 2019 from a Nationwide Analysis in China. Chest 2020, 158, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.; Hu, L.; Wang, Y.; Huang, L.; Zhao, L.; Zhang, C.; Liu, X.; Xu, R.; Liu, F.; Li, J.; et al. Diagnostic Performance of Initial Blood Urea Nitrogen Combined with D-Dimer Levels for Predicting in-Hospital Mortality in COVID-19 Patients. Int. J. Antimicrob. Agents 2020, 56, 106110. [Google Scholar] [CrossRef] [PubMed]
- Clift, A.K.; Coupland, C.A.C.; Keogh, R.H.; Diaz-Ordaz, K.; Williamson, E.; Harrison, E.M.; Hayward, A.; Hemingway, H.; Horby, P.; Mehta, N.; et al. Living Risk Prediction Algorithm (QCOVID) for Risk of Hospital Admission and Mortality from Coronavirus 19 in Adults: National Derivation and Validation Cohort Study. BMJ 2020, 371, m3731. [Google Scholar] [CrossRef]
- Gao, Y.; Cai, G.-Y.; Fang, W.; Li, H.-Y.; Wang, S.-Y.; Chen, L.; Yu, Y.; Liu, D.; Xu, S.; Cui, P.-F.; et al. Machine Learning Based Early Warning System Enables Accurate Mortality Risk Prediction for COVID-19. Nat. Commun. 2020, 11, 5033. [Google Scholar] [CrossRef] [PubMed]
- Kamran, S.M.; Mirza, Z.-H.; Moeed, H.A.; Naseem, A.; Hussain, M.; Fazal, I.; Saeed, F.; Alamgir, W.; Saleem, S.; Riaz, S. CALL Score and RAS Score as Predictive Models for Coronavirus Disease 2019. Cureus 2020, 12, e11368. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Liang, H.; Ou, L.; Chen, B.; Chen, A.; Li, C.; Li, Y.; Guan, W.; Sang, L.; Lu, J.; et al. Development and Validation of a Clinical Risk Score to Predict the Occurrence of Critical Illness in Hospitalized Patients with COVID-19. JAMA Intern. Med. 2020, 180, 1081–1089. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Z.; Jiang, W.; Wang, J.; Zhu, M.; Song, J.; Wang, X.; Su, Y.; Xiang, G.; Ye, M.; et al. Clinical Predictors of COVID-19 Disease Progression and Death: Analysis of 214 Hospitalised Patients from Wuhan, China. Clin. Respir. J. 2021, 15, 293–309. [Google Scholar] [CrossRef]
- Lorente, L.; Martín, M.M.; Argueso, M.; Solé-Violán, J.; Perez, A.; Marcos y Ramos, J.A.; Ramos-Gómez, L.; López, S.; Franco, A.; González-Rivero, A.F.; et al. Association between Red Blood Cell Distribution Width and Mortality of COVID-19 Patients. Anaesth. Crit. Care Pain Med. 2020, 40, 100777. [Google Scholar] [CrossRef]
- Ma, X.; Li, A.; Jiao, M.; Shi, Q.; An, X.; Feng, Y.; Xing, L.; Liang, H.; Chen, J.; Li, H.; et al. Characteristic of 523 COVID-19 in Henan Province and a Death Prediction Model. Front. Public Health 2020, 8, 475. [Google Scholar] [CrossRef]
- Ma, X.; Ng, M.; Xu, S.; Xu, Z.; Qiu, H.; Liu, Y.; Lyu, J.; You, J.; Zhao, P.; Wang, S.; et al. Development and Validation of Prognosis Model of Mortality Risk in Patients with COVID-19. Epidemiol. Infect. 2020, 148, e168. [Google Scholar] [CrossRef]
- Ma, X.; Wang, H.; Huang, J.; Geng, Y.; Jiang, S.; Zhou, Q.; Chen, X.; Hu, H.; Li, W.; Zhou, C.; et al. A Nomogramic Model Based on Clinical and Laboratory Parameters at Admission for Predicting the Survival of COVID-19 Patients. BMC Infect. Dis. 2020, 20, 899. [Google Scholar] [CrossRef] [PubMed]
- Pan, D.; Cheng, D.; Cao, Y.; Hu, C.; Zou, F.; Yu, W.; Xu, T. A Predicting Nomogram for Mortality in Patients with COVID-19. Front. Public Health 2020, 8, 461. [Google Scholar] [CrossRef] [PubMed]
- Pan, P.; Li, Y.; Xiao, Y.; Han, B.; Su, L.; Su, M.; Li, Y.; Zhang, S.; Jiang, D.; Chen, X.; et al. Prognostic Assessment of COVID-19 in the Intensive Care Unit by Machine Learning Methods: Model Development and Validation. J. Med. Internet Res. 2020, 22, e23128. [Google Scholar] [CrossRef] [PubMed]
- Park, J.G.; Kang, M.K.; Lee, Y.R.; Song, J.E.; Kim, N.Y.; Kweon, Y.O.; Tak, W.Y.; Jang, S.Y.; Lee, C.; Kim, B.S.; et al. Fibrosis-4 Index as a Predictor for Mortality in Hospitalised Patients with COVID-19: A Retrospective Multicentre Cohort Study. BMJ Open 2020, 10, e041989. [Google Scholar] [CrossRef]
- Salto-Alejandre, S.; Roca-Oporto, C.; Martín-Gutiérrez, G.; Avilés, M.D.; Gómez-González, C.; Navarro-Amuedo, M.D.; Praena-Segovia, J.; Molina, J.; Paniagua-García, M.; García-Delgado, H.; et al. A Quick Prediction Tool for Unfavourable Outcome in COVID-19 Inpatients: Development and Internal Validation. J. Infect. 2021, 82, e11–e15. [Google Scholar] [CrossRef]
- Santos-Lozano, A.; Calvo-Boyero, F.; López-Jiménez, A.; Cueto-Felgueroso, C.; Castillo-García, A.; Valenzuela, P.L.; Arenas, J.; Lucia, A.; Martín, M.A.; COVID-19 Hospital ’12 Octubre’ Clinical Biochemisty Study Group. Can Routine Laboratory Variables Predict Survival in COVID-19? An Artificial Neural Network-Based Approach. Clin. Chem. Lab. Med. 2020, 58, e299–e302. [Google Scholar] [CrossRef]
- Turcotte, J.J.; Meisenberg, B.R.; MacDonald, J.H.; Menon, N.; Fowler, M.B.; West, M.; Rhule, J.; Qureshi, S.S.; MacDonald, E.B. Risk Factors for Severe Illness in Hospitalized COVID-19 Patients at a Regional Hospital. PLoS ONE 2020, 15, e0237558. [Google Scholar] [CrossRef]
- Vaid, A.; Somani, S.; Russak, A.J.; De Freitas, J.K.; Chaudhry, F.F.; Paranjpe, I.; Johnson, K.W.; Lee, S.J.; Miotto, R.; Richter, F.; et al. Machine Learning to Predict Mortality and Critical Events in a Cohort of Patients with COVID-19 in New York City: Model Development and Validation. J. Med. Internet Res. 2020, 22, e24018. [Google Scholar] [CrossRef]
- Varol, Y.; Hakoglu, B.; Kadri Cirak, A.; Polat, G.; Komurcuoglu, B.; Akkol, B.; Atasoy, C.; Bayramic, E.; Balci, G.; Ataman, S.; et al. The Impact of Charlson Comorbidity Index on Mortality from SARS-CoV-2 Virus Infection and A Novel COVID-19 Mortality Index: CoLACD. Int. J. Clin. Pract. 2021, 75, e13858. [Google Scholar] [CrossRef]
- Wang, B.; Zhong, F.; Zhang, H.; An, W.; Liao, M.; Cao, Y. Risk Factor Analysis and Nomogram Construction for Non-Survivors among Critical Patients with COVID-19. Jpn. J. Infect. Dis. 2020, 73, 452–458. [Google Scholar] [CrossRef]
- Wang, R.; He, M.; Yin, W.; Liao, X.; Wang, B.; Jin, X.; Ma, Y.; Yue, J.; Bai, L.; Liu, D.; et al. The Prognostic Nutritional Index Is Associated with Mortality of COVID-19 Patients in Wuhan, China. J. Clin. Lab. Anal. 2020, 34, e23566. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Zhou, S.; Wang, Y.; Lv, W.; Wang, S.; Wang, T.; Li, X. A Prediction Model of Outcome of SARS-CoV-2 Pneumonia Based on Laboratory Findings. Sci. Rep. 2020, 10, 14042. [Google Scholar] [CrossRef] [PubMed]
- Yadaw, A.S.; Li, Y.; Bose, S.; Iyengar, R.; Bunyavanich, S.; Pandey, G. Clinical Features of COVID-19 Mortality: Development and Validation of a Clinical Prediction Model. Lancet Digit. Health 2020, 2, e516–e525. [Google Scholar] [CrossRef]
- Yan, L.; Zhang, H.-T.; Goncalves, J.; Xiao, Y.; Wang, M.; Guo, Y.; Sun, C.; Tang, X.; Jing, L.; Zhang, M.; et al. An Interpretable Mortality Prediction Model for COVID-19 Patients. Nat. Mach. Intell. 2020, 2, 283–288. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, M.; Duan, L.; Wu, F.; Hu, G.; Wang, Z.; Huang, Q.; Liao, T.; Xu, J.; Ma, Y.; et al. Development and Validation of a Risk Factor-Based System to Predict Short-Term Survival in Adult Hospitalized Patients with COVID-19: A Multicenter, Retrospective, Cohort Study. Crit. Care 2020, 24, 438. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, A.; Hou, W.; Graham, J.M.; Li, H.; Richman, P.S.; Thode, H.C.; Singer, A.J.; Duong, T.Q. Prediction Model and Risk Scores of ICU Admission and Mortality in COVID-19. PLoS ONE 2020, 15, e0236618. [Google Scholar] [CrossRef]
- Zinellu, A.; Arru, F.; De Vito, A.; Sassu, A.; Valdes, G.; Scano, V.; Zinellu, E.; Perra, R.; Madeddu, G.; Carru, C.; et al. The De Ritis Ratio as Prognostic Biomarker of In-hospital Mortality in COVID-19 Patients. Eur. J. Clin. Investig. 2021, 51, e13427. [Google Scholar] [CrossRef]
- Hu, C.; Liu, Z.; Jiang, Y.; Shi, O.; Zhang, X.; Xu, K.; Suo, C.; Wang, Q.; Song, Y.; Yu, K.; et al. Early Prediction of Mortality Risk among Patients with Severe COVID-19, Using Machine Learning. Int. J. Epidemiol. 2020, 49, 1918–1929. [Google Scholar] [CrossRef]
- Bello-Chavolla, O.Y.; Bahena-López, J.P.; Antonio-Villa, N.E.; Vargas-Vázquez, A.; González-Díaz, A.; Márquez-Salinas, A.; Fermín-Martínez, C.A.; Naveja, J.J.; Aguilar-Salinas, C.A. Predicting Mortality Due to SARS-CoV-2: A Mechanistic Score Relating Obesity and Diabetes to COVID-19 Outcomes in Mexico. J. Clin. Endocrinol. Metab. 2020, 105, 2752–2761. [Google Scholar] [CrossRef]
- Torres-Macho, J.; Ryan, P.; Valencia, J.; Pérez-Butragueño, M.; Jiménez, E.; Fontán-Vela, M.; Izquierdo-García, E.; Fernandez-Jimenez, I.; Álvaro-Alonso, E.; Lazaro, A.; et al. The PANDEMYC Score. An Easily Applicable and Interpretable Model for Predicting Mortality Associated with COVID-19. J. Clin. Med. 2020, 9, 3066. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, Y.; Zhao, X.; Wang, L.; Liu, F.; Wang, T.; Ye, D.; Lv, Y. Diagnostic Performance of a Blood Urea Nitrogen to Creatinine Ratio-Based Nomogram for Predicting In-Hospital Mortality in COVID-19 Patients. Risk Manag. Healthc. Policy 2021, 14, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Magro, B.; Zuccaro, V.; Novelli, L.; Zileri, L.; Celsa, C.; Raimondi, F.; Gori, M.; Cammà, G.; Battaglia, S.; Genova, V.G.; et al. Predicting In-Hospital Mortality from Coronavirus Disease 2019: A Simple Validated App for Clinical Use. PLoS ONE 2021, 16, e0245281. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Zhan, Z.; Li, J.; Shui, W.; Wang, C.; Xing, Y.; Zhang, C. Development of a Predictive Model for Mortality in Hospitalized Patients with COVID-19. Disaster Med. Public Health Prep. 2022, 16, 1398–1406. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Li, G.; Chen, L.; Shu, C.; Song, J.; Wang, W.; Wang, Y.; Chen, Q.; Jin, G.; Liu, T.; et al. Association of Liver Abnormalities with In-Hospital Mortality in Patients with COVID-19. J. Hepatol. 2020, 74, 1295–1302. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, Q.; Zhang, X.; Liu, S.; Chen, W.; You, J.; Chen, Q.; Li, M.; Chen, Z.; Chen, L.; et al. Clinical Utility of a Nomogram for Predicting 30-Days Poor Outcome in Hospitalized Patients with COVID-19: Multicenter External Validation and Decision Curve Analysis. Front. Med. 2020, 7, 590460. [Google Scholar] [CrossRef]
- Acar, H.C.; Can, G.; Karaali, R.; Börekçi, Ş.; Balkan, İ.İ.; Gemicioğlu, B.; Konukoğlu, D.; Erginöz, E.; Erdoğan, M.S.; Tabak, F. An Easy-to-Use Nomogram for Predicting in-Hospital Mortality Risk in COVID-19: A Retrospective Cohort Study in a University Hospital. BMC Infect. Dis. 2021, 21, 148. [Google Scholar] [CrossRef]
- Bellan, M.; Azzolina, D.; Hayden, E.; Gaidano, G.; Pirisi, M.; Acquaviva, A.; Aimaretti, G.; Aluffi Valletti, P.; Angilletta, R.; Arioli, R.; et al. Simple Parameters from Complete Blood Count Predict In-Hospital Mortality in COVID-19. Dis. Markers 2021, 2021, 8863053. [Google Scholar] [CrossRef] [PubMed]
- Besutti, G.; Ottone, M.; Fasano, T.; Pattacini, P.; Iotti, V.; Spaggiari, L.; Bonacini, R.; Nitrosi, A.; Bonelli, E.; Canovi, S.; et al. The Value of Computed Tomography in Assessing the Risk of Death in COVID-19 Patients Presenting to the Emergency Room. Eur. Radiol. 2021, 31, 9164–9175. [Google Scholar] [CrossRef]
- Chen, B.; Gu, H.-Q.; Liu, Y.; Zhang, G.; Yang, H.; Hu, H.; Lu, C.; Li, Y.; Wang, L.; Liu, Y.; et al. A Model to Predict the Risk of Mortality in Severely Ill COVID-19 Patients. Comput. Struct. Biotechnol. J. 2021, 19, 1694–1700. [Google Scholar] [CrossRef]
- Chowdhury, M.E.H.; Rahman, T.; Khandakar, A.; Al-Madeed, S.; Zughaier, S.M.; Doi, S.A.R.; Hassen, H.; Islam, M.T. An Early Warning Tool for Predicting Mortality Risk of COVID-19 Patients Using Machine Learning. Cogn. Comput. 2021, 1–16, online ahead of print. [Google Scholar] [CrossRef]
- Dong, Y.-M.; Sun, J.; Li, Y.-X.; Chen, Q.; Liu, Q.-Q.; Sun, Z.; Pang, R.; Chen, F.; Xu, B.-Y.; Manyande, A.; et al. Development and Validation of a Nomogram for Assessing Survival in Patients with COVID-19 Pneumonia. Clin. Infect. Dis. 2021, 72, 652–660. [Google Scholar] [CrossRef] [PubMed]
- Ebell, M.H.; Cai, X.; Lennon, R.; Tarn, D.M.; Mainous, A.G.; Zgierska, A.E.; Barrett, B.; Tuan, W.-J.; Maloy, K.; Goyal, M.; et al. Development and Validation of the COVID-NoLab and COVID-SimpleLab Risk Scores for Prognosis in 6 US Health Systems. J. Am. Board Fam. Med. 2021, 34, S127–S135. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Zhang, B.; Fu, M.; Li, M.; Yuan, X.; Zhu, Y.; Peng, J.; Guo, H.; Lu, Y. Clinical and Inflammatory Features Based Machine Learning Model for Fatal Risk Prediction of Hospitalized COVID-19 Patients: Results from a Retrospective Cohort Study. Ann. Med. 2021, 53, 257–266. [Google Scholar] [CrossRef]
- Harmouch, F.; Shah, K.; Hippen, J.T.; Kumar, A.; Goel, H. Is It All in the Heart? Myocardial Injury as Major Predictor of Mortality among Hospitalized COVID-19 Patients. J. Med. Virol. 2021, 93, 973–982. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Song, C.; Liu, E.; Liu, X.; Wu, H.; Lin, H.; Liu, Y.; Li, Q.; Xu, Z.; Ren, X.; et al. Establishment of Routine Clinical Indicators-Based Nomograms for Predicting the Mortality in Patients with COVID-19. Front. Med. 2021, 8, 706380. [Google Scholar] [CrossRef]
- Jiang, M.; Li, C.; Zheng, L.; Lv, W.; He, Z.; Cui, X.; Dietrich, C.F. A Biomarker-Based Age, Biomarkers, Clinical History, Sex (ABCS)-Mortality Risk Score for Patients with Coronavirus Disease 2019. Ann. Transl. Med. 2021, 9, 230. [Google Scholar] [CrossRef]
- Ke, Z.; Li, L.; Wang, L.; Liu, H.; Lu, X.; Zeng, F.; Zha, Y. Radiomics Analysis Enables Fatal Outcome Prediction for Hospitalized Patients with Coronavirus Disease 2019 (COVID-19). Acta Radiol. 2022, 63, 319–327. [Google Scholar] [CrossRef]
- Kim, D.H.; Park, H.C.; Cho, A.; Kim, J.; Yun, K.; Kim, J.; Lee, Y.-K. Age-Adjusted Charlson Comorbidity Index Score Is the Best Predictor for Severe Clinical Outcome in the Hospitalized Patients with COVID-19 Infection. Medicine 2021, 100, e25900. [Google Scholar] [CrossRef]
- Li, J.; Yang, L.; Zeng, Q.; Li, Q.; Yang, Z.; Han, L.; Huang, X.; Chen, E. Determinants of Mortality of Patients with COVID-19 in Wuhan, China: A Case-Control Study. Ann. Palliat. Med. 2021, 10, 3937–3950. [Google Scholar] [CrossRef]
- Li, L.; Fang, X.; Cheng, L.; Wang, P.; Li, S.; Yu, H.; Zhang, Y.; Jiang, N.; Zeng, T.; Hou, C.; et al. Development and Validation of a Prognostic Nomogram for Predicting In-Hospital Mortality of COVID-19: A Multicenter Retrospective Cohort Study of 4086 Cases in China. Aging 2021, 13, 3176–3189. [Google Scholar] [CrossRef]
- Moon, H.J.; Kim, K.; Kang, E.K.; Yang, H.-J.; Lee, E. Prediction of COVID-19-Related Mortality and 30-Day and 60-Day Survival Probabilities Using a Nomogram. J. Korean Med. Sci. 2021, 36, e248. [Google Scholar] [CrossRef] [PubMed]
- Ottenhoff, M.C.; Ramos, L.A.; Potters, W.; Janssen, M.L.F.; Hubers, D.; Hu, S.; Fridgeirsson, E.A.; Piña-Fuentes, D.; Thomas, R.; van der Horst, I.C.C.; et al. Predicting Mortality of Individual Patients with COVID-19: A Multicentre Dutch Cohort. BMJ Open 2021, 11, e047347. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, N.; Zaboli, A.; Ciccariello, L.; Bernhart, O.; Troi, C.; Fanni Canelles, M.; Ammari, C.; Fioretti, A.; Turcato, G. Nomogramm zur Risikostratifizierung von COVID-19-Patienten mit interstitieller Pneumonie in der Notaufnahme: Eine retrospektive multizentrische Studie. Med. Klin. Intensivmed. Notfallmed. 2022, 117, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Rahman, T.; Al-Ishaq, F.A.; Al-Mohannadi, F.S.; Mubarak, R.S.; Al-Hitmi, M.H.; Islam, K.R.; Khandakar, A.; Hssain, A.A.; Al-Madeed, S.; Zughaier, S.M.; et al. Mortality Prediction Utilizing Blood Biomarkers to Predict the Severity of COVID-19 Using Machine Learning Technique. Diagnostics 2021, 11, 1582. [Google Scholar] [CrossRef]
- Rahman, T.; Khandakar, A.; Hoque, M.E.; Ibtehaz, N.; Kashem, S.B.; Masud, R.; Shampa, L.; Hasan, M.M.; Islam, M.T.; Al-Maadeed, S.; et al. Development and Validation of an Early Scoring System for Prediction of Disease Severity in COVID-19 Using Complete Blood Count Parameters. IEEE Access 2021, 9, 120422–120441. [Google Scholar] [CrossRef]
- Sánchez-Montañés, M.; Rodríguez-Belenguer, P.; Serrano-López, A.J.; Soria-Olivas, E.; Alakhdar-Mohmara, Y. Machine Learning for Mortality Analysis in Patients with COVID-19. Int. J. Environ. Res. Public Health 2020, 17, 8386. [Google Scholar] [CrossRef]
- Wang, H.; Ai, H.; Fu, Y.; Li, Q.; Cui, R.; Ma, X.; Ma, Y.; Wang, Z.; Liu, T.; Long, Y.; et al. Development of an Early Warning Model for Predicting the Death Risk of Coronavirus Disease 2019 Based on Data Immediately Available on Admission. Front. Med. 2021, 8, 699243. [Google Scholar] [CrossRef]
- Wang, K.; Zuo, P.; Liu, Y.; Zhang, M.; Zhao, X.; Xie, S.; Zhang, H.; Chen, X.; Liu, C. Clinical and Laboratory Predictors of In-Hospital Mortality in Patients with Coronavirus Disease-2019: A Cohort Study in Wuhan, China. Clin. Infect. Dis. 2020, 71, 2079–2088. [Google Scholar] [CrossRef]
- Xiao, F.; Sun, R.; Sun, W.; Xu, D.; Lan, L.; Li, H.; Liu, H.; Xu, H. Radiomics Analysis of Chest CT to Predict the Overall Survival for the Severe Patients of COVID-19 Pneumonia. Phys. Med. Biol. 2021, 66, 105008. [Google Scholar] [CrossRef]
- Yu, J.; Nie, L.; Wu, D.; Chen, J.; Yang, Z.; Zhang, L.; Li, D.; Zhou, X. Prognostic Value of a Clinical Biochemistry-Based Nomogram for Coronavirus Disease 2019. Front. Med. 2021, 7, 597791. [Google Scholar] [CrossRef]
- Xiao, M.; Hou, M.; Liu, X.; Li, Z.; Zhao, Q. Clinical characteristics of 71 patients with coronavirus disease 2019. J. Cent. South Univ. Med. Sci. 2020, 45, 790–796. [Google Scholar] [CrossRef]
- Magro, F.; Gionchetti, P.; Eliakim, R.; Ardizzone, S.; Armuzzi, A.; Barreiro-de Acosta, M.; Burisch, J.; Gecse, K.B.; Hart, A.L.; Hindryckx, P.; et al. Third European Evidence-Based Consensus on Diagnosis and Management of Ulcerative Colitis. Part 1: Definitions, Diagnosis, Extra-Intestinal Manifestations, Pregnancy, Cancer Surveillance, Surgery, and Ileo-Anal Pouch Disorders. J. Crohns Colitis 2017, 11, 649–670. [Google Scholar] [CrossRef] [PubMed]
- Dorjee, K.; Kim, H.; Bonomo, E.; Dolma, R. Prevalence and Predictors of Death and Severe Disease in Patients Hospitalized Due to COVID-19: A Comprehensive Systematic Review and Meta-Analysis of 77 Studies and 38,000 Patients. PLoS ONE 2020, 15, e0243191. [Google Scholar] [CrossRef]
- Zhao, Q.; Meng, M.; Kumar, R.; Wu, Y.; Huang, J.; Lian, N.; Deng, Y.; Lin, S. The Impact of COPD and Smoking History on the Severity of COVID-19: A Systemic Review and Meta-Analysis. J. Med. Virol. 2020, 92, 1915–1921. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, A.; Seth, A.; Srivast, N.; Imeokparia, M.; Rai, S. Coronavirus (COVID-19): A Systematic Review and Meta-Analysis to Evaluate the Significance of Demographics and Comorbidities. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Ho, J.S.Y.; Fernando, D.I.; Chan, M.Y.; Sia, C.H. Obesity in COVID-19: A Systematic Review and Meta-Analysis. Ann. Acad. Med. Singap. 2020, 49, 996–1008. [Google Scholar] [CrossRef]
- Zhao, B.-C.; Liu, W.-F.; Lei, S.-H.; Zhou, B.-W.; Yang, X.; Huang, T.-Y.; Deng, Q.-W.; Xu, M.; Li, C.; Liu, K.-X. Prevalence and Prognostic Value of Elevated Troponins in Patients Hospitalised for Coronavirus Disease 2019: A Systematic Review and Meta-Analysis. J. Intensive Care 2020, 8, 88. [Google Scholar] [CrossRef]
- Del Zompo, F.; De Siena, M.; Ianiro, G.; Gasbarrini, A.; Pompili, M.; Ponziani, F.R. Prevalence of Liver Injury and Correlation with Clinical Outcomes in Patients with COVID-19: Systematic Review with Meta-Analysis. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 13072–13088. [Google Scholar] [CrossRef]
- Silver, S.A.; Beaubien-Souligny, W.; Shah, P.S.; Harel, S.; Blum, D.; Kishibe, T.; Meraz-Munoz, A.; Wald, R.; Harel, Z. The Prevalence of Acute Kidney Injury in Patients Hospitalized with COVID-19 Infection: A Systematic Review and Meta-Analysis. Kidney Med. 2020, 3, 83–93.e1. [Google Scholar] [CrossRef]
- Ruan, Q.; Yang, K.; Wang, W.; Jiang, L.; Song, J. Clinical Predictors of Mortality Due to COVID-19 Based on an Analysis of Data of 150 Patients from Wuhan, China. Intensive Care Med. 2020, 46, 846–848. [Google Scholar] [CrossRef] [Green Version]
- Steyerberg, E. Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating; Springer: London, UK, 2009; pp. 95–112. [Google Scholar]
- Zhang, H.; Shi, T.; Wu, X.; Zhang, X.; Wang, K.; Bean, D.; Dobson, R.; Teo, J.T.; Sun, J.; Zhao, P.; et al. Risk Prediction for Poor Outcome and Death in Hospital In-Patients with COVID-19: Derivation in Wuhan, China and External Validation in London, UK. medRxiv 2020. [Google Scholar] [CrossRef]
Clinical Prediction Tool; Author, Journal, Year Reference | N | Mean Score (Standard Deviation; Rank) | Risk Categories | AUROC (95% CI) | Cut-Off Point | Sensitivity (95% CI) | Specificity (95% CI) | PPV (95% CI) | NPV (95% CI) | |
---|---|---|---|---|---|---|---|---|---|---|
Acar HC. BMC Infect Dis 2021 [56] | 84 | 21.1 (8.6; 4 to 42) | Low risk | 27 (32.1%) | 0.806 (0.710–0.901) | <17 points >38 points | 100% 12.5% | 28.1% 98.5% | 39.7% 66.7% | 100% 82.7% |
High risk | 3 (3.6%) | |||||||||
Bello-Chavolla OY. J Clin Endocrinol Metab 2020 [49] | 444 | 9.85 (3.1; 6 to 16) | Low risk | 4 (0.9%) | 0.672 (0.620–0.724) | ≤0 points | 100% (97.4–100) | 1.3% (0.5–3.4) | 32.3% (28.1–36.8) | 100% (51–100) |
Mild risk | 19 (4.3%) | ≤3 points | 98.6% (95–99.6) | 7% (4.6–10.4) | 33.3% (28.9–37.9) | 91.3% (73.2–97.6) | ||||
Moderate risk | 17 (3.8%) | ≤6 points | 95.1% (90.2–97.6) | 10.9% (7.9–14.9) | 33.4% (29–38.2) | 82.5% (68–91.3) | ||||
High risk | 111 (25%) | ≥10 points | 83.8% (76.9–89) | 42.4% (36.9–48) | 40.6% (35.1–46.3) | 84.8% (78.2–89.6) | ||||
Very high risk | 293 (66%) | |||||||||
Cheng A. Int J Antimicrob Agents 2020 [22] | 328 | 7.07 (5.7; 1.39 to 37.28) | Low risk | 238 (72.8%) | 0.654 (0.588–0.720) | BUN ≥ 4.6 and D-Dimer ≥ 0.845 | 46.1% (36.1–56.4) | 79.8% (74.3–84.4) | 46.1% (36.1–56.4) | 79.8% (74.3–84.4) |
High risk | 89 (27.2%) | |||||||||
Chowdhury MHE. Cognit Comput 2021 [60] | Low risk | 3 (1.1%) | 0.798 (0.736–0.859) | <10.4 pts | 100% (94.9–100) | 1.9% (0.7–4.7) | 25.2% (20.5–30.6) | 100% (51–100) | ||
286 | 15.13 (2.2; 9 to 22.3) | Moderate risk | 28 (9.8%) | 10.4–12.65 | ||||||
High risk | 254 (89.1%) | >12.65 pts | 97.2% (90.3–99.2) | 14% (10–19.2) | 27.2% (22.1–32.9) | 93.8 (79.9–98.3) | ||||
Ebell MH. J Am Board Fam Med 2021 [62] | 438 | NoLab: 5.76 (2; 3 to 10) | Low risk | 0 | 0.748 (0.700–0.796) | 0–1 pts | − | − | − | − |
Moderate risk | 256 (58.4%) | 2–5 pts | 65.9% (57.7–73.3) | 69.7% (64.2–74.6) | 50% (42.8–57.2) | 81.6% (76.4–85.9) | ||||
High risk | 182 (41.6%) | ≥6 pts | ||||||||
420 | SimpleLab: 14.3 (5.4; 6 to 29) | Low risk | 33 (7.9%) | 0.752 (0.702–0.803) | 0–7 pts | 98.5% (94.6–99.6) | 10.7% (7.6–14.8) | 33.1% (28.6–37.9 | 93.9 (80.4–98.3) | |
Moderate risk | 108 (25.7%) | 8–11 pts | 89.2% (82.7–93.5) | 43.8% (38.2–49.5) | 41.6% (35.9–47.4) | 90.1% (84–94) | ||||
High risk | 279 (66.4%) | ≥12 pts | ||||||||
Hu C. Int J Epidemiol 2020 [48] | 324 | Risk Score −1.71 (2.1; −19.7 to 2.5) | >50% | 278 (85.8%) | 0.679 (0.614–0.745) | 50% | 25.3% (17.3–35.3) | 89.9% (85.4–93.1) | 47.8% (34.1–61.9) | 76.6% (71.3–81.2) |
Probability of death 24.2 (21; 0 to 92.5) | <50% | 46 (14.2%) | ||||||||
Ji D. Clin Infect Dis. 2020 [12] | 334 | 10.88 (2; 5 to 13) | Low risk | 15 (4.5%) | 0.670 (0.608–0.732) | 6 | 100% (95.5–100) | 5.6% (3.4–9.1) | 25.7% (21.2–30.8) | 100% (78.5–100) |
Intermediate risk | 41 (12.3%) | |||||||||
High risk | 278 (83.2%) | 9 | 98.8% (93.4–99.8) | 21.5% (16.9–27) | 29.1% (24.1–34.7) | 98.2% (90.4–99.7) | ||||
Kamran SM. Cureos. 2020 [25] | 358 | 6.58 (1.5; 3 to 10) | Low risk | 304 (84.9%) | 0.756 (0.702–0.809) | 9 points | 32.7% (24.7–41.9) | 92.7% 88.8–95.4) | 66.7% (53.4–77.8) | 75.7% (70.5–80.1) |
High risk | 54 (15.1%) | |||||||||
Low risk | 56 (13.4%) | 0.765 (0.717–0.813) | ≤3 points | 97.7% (93.4–99.2 | 18.4% (14.4–23.3) | 34.9% (30.2–40) | 94.6% (85.4–98.2) | |||
Knight SR. BMJ. 2020 [15] | 417 | 8.60 (4; 0 to 18) | Moderate risk | 131 (31.4%) | ≤8 points | 79.8% (72.1–85.9) | 55.9% (50.1–61.5) | 44.8% (38.5–51.2) | 86.1% (80.4–90.3) | |
High risk | 230 (51.2%) | ≤14 points | 12.4% (7.8–19.2) | 96.9% (94.2–98.3) | 64% (44.5–79.8) | 71.2% (66.5–75.4) | ||||
Liang W. JAMA Intern Med 2020 [26] | 304 | 162.8 (37.2; 70.5 to 268) | − | − | 0.795 (0.739–0.850) | − | − | − | − | |
Lorente L. Anaesth Crit Care Pain Med 2020 [28] | 438 | 14.69 (2; 121 to 28.6) | Low risk | 58 (123.2%) | 0.636 (0.582–0.689) | >13% | 95% (90–97.5) | 17.1% (13.2–21.7) | 34.7% (30.1–39.7) | 87.9% (77.1–94) |
High risk | 380 (86.8%) | |||||||||
Ma X. Epidemiol Infect 2020 [30] | 326 | 0.4148 (2.4; −6.41 to 8.89) | − | − | 0.800 (0.744–0.857) | − | − | − | − | − |
Moon HJ. J Korean Med Sci. 2021 [71] | 444 | LR: 196.3 (41.2; 59 to 271.5) | 0.689 (0.639–0.740) | − | − | − | − | |||
444 | CR: 186.4 (37.3; 60.6 to 255.2) | 0.688 (0.638–0.739) | − | − | − | − | ||||
Park JG. BMJ Open. 2020 [34] | 331 | 3.24 (5.8; 0.18 to 89.01) | Low risk | 293 (88.5%) | 0.725 (0.667–0.782) | ≥4.95 | 22.3% (15.1–31.8) | 92.8% (88.8–95.5) | 55.3% (39.7–69.9) | 75.1% (69.8–79.7) |
High risk | 38 (11.5%) | |||||||||
Salto-Alejandre S. J Infection. 2020 [35] | 321 | −0.87 (1.98; −4.6 to 3.1) | Low risk | 234 (72.9%) | 0.654 (0.587–0.720) | >0.5 | 38.5% (28.4–49.6) | 76.5% (70.8–81.4) | 34.5% (25.3–44.9) | 79.5% (73.9–84.2) |
High risk | 87 (27.1%) | |||||||||
Soto-Mota A et al. J Am Coll Emerg Physicians Open 2020 [16] | 298 | 55.79 (32.3; 0 to 100) | >65 | 153 (51.3%) | 0.710 (0.646–0.774) | >65 | 68.3% (57.6–77.4) | 41.2% (34.8–47.5) | 30.6% (24.4–37.6) | 77.4% (68.9–84.1) |
<65 | 145 (48.7%) | |||||||||
Torres-Macho J et al. J Clin Med. 2020 [50] | 444 | 265.3 (46.9; 124 to 391) | − | − | 0.798 (0.756–0.840) | − | − | − | − | − |
Turcotte JJ. PLoS One. 2020 [40] | 426 | 15.4 (1.7; 12.8 to 20.5) | − | − | 0.672 (0.618–0.726) | - | − | − | − | − |
Varol Y. Int J Clin Pract. 2020 [39] | 438 | 3.9 (1.2; 0 to 5) | Low risk | 59 (13.5%) | 0.703 (0.653–0.753 | >2.5 | 98.6% (94.9–99.6) | 19.1% (15–23.9) | 36.1% (31.5–41.1) | 96.6% (88.5–99.1) |
High risk | 379 (86.5%) | |||||||||
Wang J. J Int Med Res. 2020 [14] | 208 | 83.1 (18.5; 23.3 to 167.3) | Low risk | 108 (51.9%) | 0.732 (0.651–0.813) | 85 | 78% (63.3–88) | 40.7% (33.6–48.3) | 24.4% (17.9–32.4) | 88.3% (79.3–93.7) |
High risk | 100 (48.1%) | |||||||||
Weng Z. J Transl Med 2020 [11] | 320 | 90.28 (34; 12.1 to 223.9) | Low risk | 44 (13.8%) | 0.670 (0.606–0.735) | <59 | 95.3% (88.6–98.2) | 17.1% (12.8–22.4) | 29.7% (24.6–35.4) | 90.9% (78.8–96.4) |
Moderate risk | 193 (60.3%) | |||||||||
High risk | 83 (25.9%) | >101 | 44.2% (34.2–54.7) | 80.8% (75.2–85.3) | 45.8% (35.5–56.5) | 79.7% (74.2–84.4) | ||||
Xiao LS. EBioMedicine 2020 [13] | 321 | 0.145 (1.3; −2.60 to 2.06) | Low risk | 47 (14.6%) | 0.562 (0.493–0.632) | ≥−1.508 | 90.9% (82.4–95.5) | 83.6% (78.4–87.7) | 63.6% (54.3–72) | 96.7% (93.3–98.4) |
High risk | 274 (85.4%) | |||||||||
Zhang S. Critical Care 2020 [45] | 305 | 146.8 (32.7; 19.3 to 202.5) | − | − | 0.709 (0.644–0.774) | − | − | − | − | − |
Zinellu A. Eur J Clin Invest 2020 [47] | 331 | 1.44 (0.66; 0.28 to 5.88) | Low risk | 212 (64%) | 0.670 (0.607–0.733) | >1.49 | 54.3% (44.2–64) | 71.3% (65.2–76.7) | 42.9% (34.3–51.8) | 79.7% (73.8–84.6) |
High risk | 119 (36%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maestre-Muñiz, M.M.; Arias, Á.; Lucendo, A.J. Predicting In-Hospital Mortality in Severe COVID-19: A Systematic Review and External Validation of Clinical Prediction Rules. Biomedicines 2022, 10, 2414. https://doi.org/10.3390/biomedicines10102414
Maestre-Muñiz MM, Arias Á, Lucendo AJ. Predicting In-Hospital Mortality in Severe COVID-19: A Systematic Review and External Validation of Clinical Prediction Rules. Biomedicines. 2022; 10(10):2414. https://doi.org/10.3390/biomedicines10102414
Chicago/Turabian StyleMaestre-Muñiz, Modesto M., Ángel Arias, and Alfredo J. Lucendo. 2022. "Predicting In-Hospital Mortality in Severe COVID-19: A Systematic Review and External Validation of Clinical Prediction Rules" Biomedicines 10, no. 10: 2414. https://doi.org/10.3390/biomedicines10102414
APA StyleMaestre-Muñiz, M. M., Arias, Á., & Lucendo, A. J. (2022). Predicting In-Hospital Mortality in Severe COVID-19: A Systematic Review and External Validation of Clinical Prediction Rules. Biomedicines, 10(10), 2414. https://doi.org/10.3390/biomedicines10102414