Evolution of Quantitative Optical Coherence Tomography Angiography Markers with Glycemic Control: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Clinical Assessment
2.3. Imaging Protocol
2.4. Post-Processing Workflow
2.5. Statistical Analysis
3. Results
3.1. Patient Demographics
3.2. Reproducibility of the Measurements
3.3. Course of Quantitative Retinal Traits
3.4. Subgroup Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Available online: https://www.who.int/Fr/News-Room/Fact-Sheets/Detail/Diabetes (accessed on 21 December 2021).
- de Carlo, T.E.; Chin, A.T.; Bonini Filho, M.A.; Adhi, M.; Branchini, L.; Salz, D.A.; Baumal, C.R.; Crawford, C.; Reichel, E.; Witkin, A.J.; et al. Detection of microvascular changes in eyes of patients with diabetes but not clinical diabetic retinopathy using optical coherence tomography angiography. Retina 2015, 35, 2364–2370. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Tang, F.; Wong, R.; Lok, J.; Szeto, S.K.H.; Chan, J.C.K.; Chan, C.K.M.; Tham, C.C.; Ng, D.S.; Cheung, C.Y. OCT Angiography Metrics Predict Progression of Diabetic Retinopathy and Development of Diabetic Macular Edema. Ophthalmology 2019, 126, 1675–1684. [Google Scholar] [CrossRef] [PubMed]
- Hainsworth, D.P.; Bebu, I.; Aiello, L.P.; Sivitz, W.; Gubitosi-Klug, R.; Malone, J.; White, N.H.; Danis, R.; Wallia, A.; Gao, X.; et al. Risk Factors for Retinopathy in Type 1 Diabetes: The DCCT/EDIC Study. Diabetes Care 2019, 42, 875–882. [Google Scholar] [CrossRef] [PubMed]
- Yau, J.W.Y.; Rogers, S.L.; Kawasaki, R.; Lamoureux, E.L.; Kowalski, J.W.; Bek, T.; Chen, S.-J.; Dekker, J.M.; Fletcher, A.; Grauslund, J.; et al. Global Prevalence and Major Risk Factors of Diabetic Retinopathy. Diabetes Care 2012, 35, 556–564. [Google Scholar] [CrossRef] [PubMed]
- Feldman-Billard, S.; Larger, É.; Massin, P. Early Worsening of Diabetic Retinopathy after Rapid Improvement of Blood Glucose Control in Patients with Diabetes. Diabetes Metab. 2018, 44, 4–14. [Google Scholar] [CrossRef]
- Henricsson, M.; Nilsson, A.; Janzon, L.; Groop, L. The Effect of Glycaemic Control and the Introduction of Insulin Therapy on Retinopathy in Noninsulindependent Diabetes Mellitus. Diabet. Med. 1997, 14, 123–131. [Google Scholar] [CrossRef]
- Gange, W.S.; Xu, B.Y.; Lung, K.; Toy, B.C.; Seabury, S.A. Rates of Eye Care and Diabetic Eye Disease among Insured Patients with Newly Diagnosed Type 2 Diabetes. Ophthalmol. Retin. 2021, 5, 160–168. [Google Scholar] [CrossRef]
- Lavia, C.; Feldman-Billard, S.; Erginay, A.; Guérin, O.; Virgili, G.; Gaudric, A.; Tadayoni, R.; Dupas, B. Rapid macular capillary loss in patients with uncontrolled type 1 diabetes. Retina 2020, 40, 1053–1061. [Google Scholar] [CrossRef]
- National Committee for Quality Assurance. Comprehensive Diabetes Care (CDC). Available online: https://www.Ncqa.Org/Hedis/Measures/Comprehensive-Diabetes-Care (accessed on 12 October 2020).
- Bihan, H.; Laurent, S.; Sass, C.; Nguyen, G.; Huot, C.; Moulin, J.J.; Guegen, R.; Le Toumelin, P.; Le Clesiau, H.; La Rosa, E.; et al. Association Among Individual Deprivation, Glycemic Control, and Diabetes Complications: The EPICES Score. Diabetes Care 2005, 28, 2680–2685. [Google Scholar] [CrossRef]
- American Diabetes Association Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes—2021. Diabetes Care 2021, 44, S111–S124. [CrossRef]
- Mitsui, Y. Diabetic retinopathy study. Report Number 6. Design, methods, and baseline results. Report Number 7. A modification of the Airlie House classification of diabetic retinopathy. Prepared by the Diabetic Retinopathy. Nippon Ganka Gakkai Zasshi 1975, 79, 1651–1664. [Google Scholar] [PubMed]
- Shoji, T.; Yoshikawa, Y.; Kanno, J.; Ishii, H.; Ibuki, H.; Kimura, I.; Shinoda, K. Reproducibility of Macular Vessel Density Calculations via Imaging with Two Different Swept-Source Optical Coherence Tomography Angiography Systems. Transl. Vis. Sci. Technol. 2018, 7, 9. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, T.M.; Marques, J.P.; Soares, M.; Simão, S.; Melo, P.; Martins, A.; Figueira, J.; Murta, J.N.; Silva, R. Macular OCT-Angiography Parameters to Predict the Clinical Stage of Nonproliferative Diabetic Retinopathy: An Exploratory Analysis. Eye 2019, 33, 1240–1247. [Google Scholar] [CrossRef] [PubMed]
- Sandoval-Garcia, E.; McLachlan, S.; Price, A.H.; MacGillivray, T.J.; Strachan, M.W.J.; Wilson, J.F.; Price, J.F. Retinal Arteriolar Tortuosity and Fractal Dimension Are Associated with Long-Term Cardiovascular Outcomes in People with Type 2 Diabetes. Diabetologia 2021, 64, 2215–2227. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Chou, Y.; Zhao, X.; Yang, J.; Chen, Y. Early Detection of Microvascular Impairments with Optical Coherence Tomography Angiography in Diabetic Patients without Clinical Retinopathy: A Meta-Analysis. Am. J. Ophthalmol. 2021, 222, 226–237. [Google Scholar] [CrossRef]
- Zekavat, S.M.; Raghu, V.K.; Trinder, M.; Ye, Y.; Koyama, S.; Honigberg, M.C.; Yu, Z.; Pampana, A.; Urbut, S.; Haidermota, S.; et al. Deep Learning of the Retina Enables Phenome- and Genome-Wide Analyses of the Microvasculature. Circulation 2021, 145, 134–150. [Google Scholar] [CrossRef]
- Kaizu, Y.; Nakao, S.; Arima, M.; Wada, I.; Yamaguchi, M.; Sekiryu, H.; Hayami, T.; Ishikawa, K.; Ikeda, Y.; Sonoda, K. Capillary Dropout Is Dominant in Deep Capillary Plexus in Early Diabetic Retinopathy in Optical Coherence Tomography Angiography. Acta Ophthalmol. 2019, 97, e811–e812. [Google Scholar] [CrossRef]
- Ye, J.; Wang, M.; Shen, M.; Huang, S.; Xue, A.; Lin, J.; Fan, Y.; Wang, J.; Lu, F.; Shao, Y. Deep Retinal Capillary Plexus Decreasing Correlated with the Outer Retinal Layer Alteration and Visual Acuity Impairment in Pathological Myopia. Investig. Ophthalmol. Vis. Sci. 2020, 61, 45. [Google Scholar] [CrossRef]
- Um, T.; Seo, E.J.; Kim, Y.J.; Yoon, Y.H. Optical Coherence Tomography Angiography Findings of Type 1 Diabetic Patients with Diabetic Retinopathy, in Comparison with Type 2 Patients. Graefes. Arch. Clin. Exp. Ophthalmol. 2020, 258, 281–288. [Google Scholar] [CrossRef]
- Li, J.Q.; Welchowski, T.; Schmid, M.; Letow, J.; Wolpers, C.; Pascual-Camps, I.; Holz, F.G.; Finger, R.P. Prevalence, Incidence and Future Projection of Diabetic Eye Disease in Europe: A Systematic Review and Meta-Analysis. Eur. J. Epidemiol. 2020, 35, 11–23. [Google Scholar] [CrossRef]
- American Diabetes Association. Diabetes Control and Complications Trial (DCCT): Results of Feasibility Study. The DCCT Research Group. Diabetes Care 1987, 10, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Dupas, B.; Minvielle, W.; Bonnin, S.; Couturier, A.; Erginay, A.; Massin, P.; Gaudric, A.; Tadayoni, R. Association Between Vessel Density and Visual Acuity in Patients with Diabetic Retinopathy and Poorly Controlled Type 1 Diabetes. JAMA Ophthalmol. 2018, 136, 721. [Google Scholar] [CrossRef] [PubMed]
- Bain, S.C.; Klufas, M.A.; Ho, A.; Matthews, D.R. Worsening of Diabetic Retinopathy with Rapid Improvement in Systemic Glucose Control: A Review. Diabetes Obes. Metab. 2019, 21, 454–466. [Google Scholar] [CrossRef] [PubMed]
- Papachristoforou, E.; Lambadiari, V.; Maratou, E.; Makrilakis, K. Association of Glycemic Indices (Hyperglycemia, Glucose Variability, and Hypoglycemia) with Oxidative Stress and Diabetic Complications. J. Diabetes Res. 2020, 2020, 7489795. [Google Scholar] [CrossRef] [PubMed]
- Marso, S.P.; Bain, S.C.; Consoli, A.; Eliaschewitz, F.G.; Jódar, E.; Leiter, L.A.; Lingvay, I.; Rosenstock, J.; Seufert, J.; Warren, M.L.; et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 1834–1844. [Google Scholar] [CrossRef] [PubMed]
- Gaborit, B.; Julla, J.-B.; Besbes, S.; Proust, M.; Vincentelli, C.; Alos, B.; Ancel, P.; Alzaid, F.; Garcia, R.; Mailly, P.; et al. Glucagon-like Peptide 1 Receptor Agonists, Diabetic Retinopathy and Angiogenesis: The AngioSafe Type 2 Diabetes Study. J. Clin. Endocrinol. Metab. 2020, 105, e1549–e1560. [Google Scholar] [CrossRef] [PubMed]
- Vilsbøll, T.; Bain, S.C.; Leiter, L.A.; Lingvay, I.; Matthews, D.; Simó, R.; Helmark, I.C.; Wijayasinghe, N.; Larsen, M. Semaglutide, Reduction in Glycated Haemoglobin and the Risk of Diabetic Retinopathy. Diabetes Obes. Metab. 2018, 20, 889–897. [Google Scholar] [CrossRef]
- La Spina, C.; Carnevali, A.; Marchese, A.; Querques, G.; Bandello, F. Reproducibility and reliability of optical coherence tomography angiography for foveal avascular zone evaluation and measurement in different settings. Retina 2017, 37, 1636–1641. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Value |
---|---|
Age | 51.1 (±2.3) |
Gender (male) | 26 (74%) |
T1D | 7 (20%) |
T2D | 28 (80%) |
Duration of diabetes (years) | 3.6 (±1.0) |
Baseline HbA1c (%) | 13.1% (±2.0) |
Hypertension | 18 (51%) |
Dyslipidemia | 26 (74%) |
Peripheral artery disease | 3 (8.5%) |
Chronic kidney disease | 10 (28%) |
Mild diabetic retinopathy | 8 (22.8%) |
Moderate diabetic retinopathy | 2 (5. 7%) |
FAZA | AI | VD–SCP | VD–DCP | FD | |
---|---|---|---|---|---|
Pearson correlation coefficient | 0.995 | 0.933 | 0.995 | 0.991 | 0.997 |
n | 14 | 14 | 14 | 14 | 14 |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
FAZA | AI | VD–SCP | VD–DCP | FD | |
---|---|---|---|---|---|
Pearson correlation coefficient | 0.948 | 0.879 | 0.868 | 0.837 | 0.855 |
n | 32 | 32 | 32 | 32 | 32 |
p | <0.001 | 0.002 | <0.001 | <0.001 | <0.001 |
Baseline | M3 | Δ mean | n | p | |
---|---|---|---|---|---|
AI | 1.31 ± 0.20 | 1.34 ± 0.20 | 0.03 | 35 | <0.01 |
FAZA (mm2) | 0.300 ± 0.131 | 0.310 ± 0.135 | 0.010 | 35 | <0.001 |
VD–SCP (%) | 36.9 ± 1.1 | 37.0 ± 1.2 | 0.1 | 35 | 0.24 |
FD (%) | 1.66 ± 0.01 | 1.66 ± 0.01 | 0.00 | 35 | 0.44 |
VD–DCP (%) | 28.8 ± 5.7 | 27.8 ± 5.5 | −0.9 | 35 | 0.014 |
Baseline | M3 | Δ mean | n | p | |
---|---|---|---|---|---|
AI | 1.28 ± 0.09 | 1.27 ± 0.08 | 0.01 | 15 | 0.54 |
FAZA (mm2) | 0.284 ± 0.136 | 0.283 ± 0.133 | 0.001 | 15 | 0.53 |
VD–SCP (%) | 37.9 ± 0.9 | 37.8 ± 1.0 | 0.12 | 15 | 0.24 |
FD (%) | 1.67 ± 0.00 | 1.67 ± 0.01 | 0 | 15 | 0.75 |
VD–DCP (%) | 30.3 (±4.37) | 29.9 (±4.1) | −0.4 | 15 | 0.328 |
FAZA | VD-DCP | AI | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Value | p | Confidence Interval 95% | R2 | Value | p | Confidence Interval 95% | R2 | Value | p | Confidence Interval 95% | R2 | |
Age | 0.375 | 0.036 | (0.026; 0.724) | 0.330 | −0.039 | 0.828 | (−0.398; 0.321) | 0.286 | −0.208 | 0.292 | (−0.605; 0.189) | 0.131 |
Sex | 0.115 | 0.516 | (−0.243; 0.473) | 0.136 | 0.457 | (−0.233; 0.506) | −0.122 | 0.545 | (−0.530; 0.286) | |||
Diabetes duration | −0.093 | 0.620 | (−0.471; 0.286) | 0.477 | 0.018 | (0.086; 0.867) | −0.036 | 0.865 | (−0.467; 0.395) | |||
HbA1c Baseline | 0.589 | 0.045 | (0.014; 1.163) | −0.511 | 0.088 | (−1.104; 0.081) | −0.428 | 0.191 | (−1.082; 0.226) | |||
HbA1c decrease | −0.077 | 0.792 | (−0.667; 0.513) | 0.853 | 0.008 | (0.244, 1.462) | 0.443 | 0.188 | (−0.229; 1.115) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz, T.; Dutour, A.; Denis, D.; Comet, A.; Eisinger, M.; Houssays, M.; Darmon, P.; Boullu, S.; Soghomonian, A.; David, T.; et al. Evolution of Quantitative Optical Coherence Tomography Angiography Markers with Glycemic Control: A Pilot Study. Biomedicines 2022, 10, 2421. https://doi.org/10.3390/biomedicines10102421
Ruiz T, Dutour A, Denis D, Comet A, Eisinger M, Houssays M, Darmon P, Boullu S, Soghomonian A, David T, et al. Evolution of Quantitative Optical Coherence Tomography Angiography Markers with Glycemic Control: A Pilot Study. Biomedicines. 2022; 10(10):2421. https://doi.org/10.3390/biomedicines10102421
Chicago/Turabian StyleRuiz, Thibault, Anne Dutour, Danièle Denis, Alban Comet, Martin Eisinger, Marie Houssays, Patrice Darmon, Sandrine Boullu, Astrid Soghomonian, Thierry David, and et al. 2022. "Evolution of Quantitative Optical Coherence Tomography Angiography Markers with Glycemic Control: A Pilot Study" Biomedicines 10, no. 10: 2421. https://doi.org/10.3390/biomedicines10102421
APA StyleRuiz, T., Dutour, A., Denis, D., Comet, A., Eisinger, M., Houssays, M., Darmon, P., Boullu, S., Soghomonian, A., David, T., Gaborit, B., & Gascon, P. (2022). Evolution of Quantitative Optical Coherence Tomography Angiography Markers with Glycemic Control: A Pilot Study. Biomedicines, 10(10), 2421. https://doi.org/10.3390/biomedicines10102421