The Role of [18F]F-Choline PET/CT in the Initial Management and Outcome Prediction of Prostate Cancer: A Real-World Experience from a Multidisciplinary Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. CI Acquisition and Interpretation
2.3. [18F]F-Choline PET/CT Acquisition and Interpretation
2.4. Outcome
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA. Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Beheshti, M.; Imamovic, L.; Broinger, G.; Vali, R.; Waldenberger, P.; Stoiber, F.; Nader, M.; Gruy, B.; Janetschek, G.; Langsteger, W. 18F choline PET0/CT in the preoperative staging of prostate cancer in patients with intermediate or high risk of extracapsular disease: A prospective study of 130 patients. Radiology 2010, 254, 925–933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mottet, N.; Cornford, P.; van den Bergh, R.C.N.; Briers, E.; De Santis, M.; Gillessen, S.; Grummet, J.; Henry, A.M.; van der Kwast, T.H.; Lam, T.B.; et al. EAU-EANM-ESTRO-ESUR-ISUP_SIOG Guidelines on Prostate Cancer 2022. Eur. Urol. 2022, 1–2. [Google Scholar]
- Evangelista, L.; Cimitan, M.; Zattoni, F.; Guttilla, A.; Zattoni, F.; Saladini, G. Comparison between conventional imaging (abdominal-pelvic computed tomography and bone scan) and [18F]choline positron emission tomography/computed tomography imaging for the initial staging of patients with intermediate- tohigh-risk prostate cancer: A re. Scand. J. Urol. 2015, 49, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Ives, E.P.; Burke, M.A.; Edmonds, P.R.; Gomella, L.G.; Halpern, E.J. Quantitative computed tomography perfusion of prostate cancer: Correlation with whole-mount pathology. Clin. Prostate Cancer 2005, 4, 109–112. [Google Scholar] [CrossRef] [PubMed]
- Hövels, A.M.; Heesakkers, R.A.M.; Adang, E.M.; Jager, G.J.; Strum, S.; Hoogeveen, Y.L.; Severens, J.L.; Barentsz, J.O. The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: A meta-analysis. Clin. Radiol. 2008, 63, 387–395. [Google Scholar] [CrossRef]
- Shen, G.; Deng, H.; Hu, S.; Jia, Z. Comparison of choline-PET/CT, MRI, SPECT, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: A meta-analysis. Skelet. Radiol. 2014, 43, 1503–1513. [Google Scholar] [CrossRef]
- Caglar, M.; Tuncel, M.; Yildiz, E.; Karabulut, E. Bone scintigraphy as a gatekeeper for the detection of bone metastases in patients with prostate cancer: Comparison with Ga-68 PSMA PET/CT. Ann. Nucl. Med. 2020, 34, 932–941. [Google Scholar] [CrossRef]
- Ravi Kumar, A.S.; Lawrentschuk, N.; Hofman, M.S. Prostate-specific membrane antigen PET/computed tomography for staging prostate cancer. Curr. Opin. Urol. 2020, 30, 628–634. [Google Scholar] [CrossRef]
- Mapelli, P.; Picchio, M. Initial prostate cancer diagnosis and disease staging—The role of choline-PET–CT. Nat. Rev. Urol. 2015, 12, 510–518. [Google Scholar] [CrossRef] [PubMed]
- Evangelista, L.; Cuppari, L.; Zattoni, F.; Mansi, L.; Bombardieri, E. The future of choline PET in the era of prostate specific membrane antigen. Q. J. Nucl. Med. Mol. Imaging 2019, 63, 19–28. [Google Scholar] [CrossRef] [PubMed]
- De Giorgi, U.; Caroli, P.; Scarpi, E.; Conteduca, V.; Burgio, S.L.; Menna, C.; Moretti, A.; Galassi, R.; Rossi, L.; Amadori, D.; et al. 18F-Fluorocholine PET/CT for early response assessment in patients with metastatic castration-resistant prostate cancer treated with enzalutamide. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 1276–1283. [Google Scholar] [CrossRef] [PubMed]
- Glunde, K.; Bhujwalla, Z.M.; Ronen, S.M. Choline metabolism in malignant transformation. Nat. Rev. Cancer 2011, 11, 835–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urso, L.; Lancia, F.; Ortolan, N.; Frapoli, M.; Rauso, M.; Artioli, P.; Cittanti, C.; Uccelli, L.; Frassoldati, A.; Evangelista, L.; et al. 18F-Choline PET/CT or PET/MR and the evaluation of response to systemic therapy in prostate cancer: Are we ready? Clin. Transl. Imaging 2022, 1, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hofman, M.S.; Lawrentschuk, N.; Francis, R.J.; Tang, C.; Vela, I.; Thomas, P.; Rutherford, N.; Martin, J.M.; Frydenberg, M.; Shakher, R.; et al. Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): A prospective, randomised, multicentre study. Lancet 2020, 395, 1208–1216. [Google Scholar] [CrossRef]
- Calais, J.; Ceci, F.; Eiber, M.; Hope, T.A.; Hofman, M.S.; Rischpler, C.; Bach-Gansmo, T.; Nanni, C.; Savir-Baruch, B.; Elashoff, D.; et al. 18F-fluciclovine PET-CT and 68Ga-PSMA-11 PET-CT in patients with early biochemical recurrence after prostatectomy: A prospective, single-centre, single-arm, comparative imaging trial. Lancet Oncol. 2019, 20, 1286–1294. [Google Scholar] [CrossRef]
- Bravaccini, S.; Puccetti, M.; Bocchini, M.; Ravaioli, S.; Celli, M.; Scarpi, E.; De Giorgi, U.; Tumedei, M.M.; Raulli, G.; Cardinale, L.; et al. PSMA expression: A potential ally for the pathologist in prostate cancer diagnosis. Sci. Rep. 2018, 8, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Ceci, F.; Rovera, G.; Iorio, G.C.; Guarneri, A.; Chiofalo, V.; Passera, R.; Oderda, M.; Dall’Armellina, S.; Liberini, V.; Grimaldi, S.; et al. Event-free survival after 68 Ga-PSMA-11 PET/CT in recurrent hormone-sensitive prostate cancer (HSPC) patients eligible for salvage therapy. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 3257–3268. [Google Scholar] [CrossRef]
- Rovera, G.; Grimaldi, S.; Dall’Armellina, S.; Passera, R.; Oderda, M.; Iorio, G.C.; Guarneri, A.; Gontero, P.; Ricardi, U.; Deandreis, D. Predictors of Bone Metastases at 68Ga-PSMA-11 PET/CT in Hormone-Sensitive Prostate Cancer (HSPC) Patients with Early Biochemical Recurrence or Persistence. Diagnostics 2022, 12, 1309. [Google Scholar] [CrossRef]
- Malaspina, S.; De Giorgi, U.; Kemppainen, J.; Del Sole, A.; Paganelli, G. 68Ga-PSMA-PET: Added value and future applications in comparison to the current use of choline-PET and mpMRI in the workup of prostate cancer. Radiol. Medica 2018, 123, 952–965. [Google Scholar] [CrossRef] [PubMed]
- Metser, U.; Berlin, A.; Halankar, J.; Murphy, G.; Jhaveri, K.S.; Ghai, S.; Tau, N. 18F-fluorocholine PET whole-body MRI in the staging of high-risk prostate cancer. Am. J. Roentgenol. 2018, 210, 635–640. [Google Scholar] [CrossRef] [PubMed]
- Niziers, V.; Boissier, R.; Borchiellini, D.; Deville, J.L.; Khoury, C.; Durand, M.; Toledano, H.; Albert, T.; Branger, N.; Bandelier, Q.; et al. “Real-world” evaluation of 18F-Choline PET/CT practices in prostate cancer patients and impact on changes in therapeutic strategy. Urol. Oncol. Semin. Orig. Investig. 2020, 38, e1–e2. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, M.H.; Bouchelouche, K.; Høilund-Carlsen, P.F.; Petersen, H.; Gerke, O.; Steffansen, S.I.; Marcussen, N.; Svolgaard, N.; Vach, W.; Geertsen, U.; et al. [18 F] fluoromethylcholine (FCH) positron emission tomography/computed tomography (PET/CT) for lymph node staging of prostate cancer: A prospective study of 210 patients. BJU Int. 2012, 110, 1666–1671. [Google Scholar] [CrossRef] [PubMed]
- Schiavina, R.; Bianchi, L.; Bianchi, F.M.; Borghesi, M.; Pultrone, C.V.; Dababneh, H.; Castellucci, P.; Ceci, F.; Nanni, C.; Gaudiano, C.; et al. Preoperative Staging With 11 C-Choline PET/CT Is Adequately Accurate in Patients With Very High-Risk Prostate Cancer. Clin. Genitourin. Cancer 2018, 16, 305–317. [Google Scholar] [CrossRef]
- Heck, M.M.; Souvatzoglou, M.; Retz, M.; Nawroth, R.; Kübler, H.; Maurer, T.; Thalgott, M.; Gramer, B.M.; Weirich, G.; Rondak, I.-C.; et al. Prospective comparison of computed tomography, diffusion-weighted magnetic resonance imaging and [11C]choline positron emission tomography/computed tomography for preoperative lymph node staging in prostate cancer patients. Eur. J. Nucl. Med. Mol. Imaging 2013, 41, 694–701. [Google Scholar] [CrossRef]
- Van Den Bergh, L.; Lerut, E.; Haustermans, K.; Deroose, C.M.; Oyen, R.; Isebaert, S.; Budiharto, T.; Ameye, F.; Mottaghy, F.M.; Bogaerts, K.; et al. Final analysis of a prospective trial on functional imaging for nodal staging in patients with prostate cancer at high risk for lymph node involvement. Urol. Oncol. Semin. Orig. Investig. 2015, 33, e23–e109. [Google Scholar] [CrossRef]
- Budiharto, T.; Joniau, S.; Lerut, E.; Van Den Bergh, L.; Mottaghy, F.; Deroose, C.M.; Oyen, R.; Ameye, F.; Bogaerts, K.; Haustermans, K.; et al. Prospective Evaluation of 11C-Choline Positron Emission Tomography/Computed Tomography and Diffusion-Weighted Magnetic Resonance Imaging for the Nodal Staging of Prostate Cancer with a High Risk of Lymph Node Metastases. Eur. Urol. 2011, 60, 125–130. [Google Scholar] [CrossRef]
- Uprimny, C.; Kroiss, A.S.; Decristoforo, C.; Fritz, J.; von Guggenberg, E.; Kendler, D.; Scarpa, L.; di Santo, G.; Roig, L.G.; Maffey-Steffan, J.; et al. 68Ga-PSMA-11 PET/CT in primary staging of prostate cancer: PSA and Gleason score predict the intensity of tracer accumulation in the primary tumour. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 941–949. [Google Scholar] [CrossRef]
- Jansen, B.H.E.; Bodar, Y.J.L.; Zwezerijnen, G.J.C.; Meijer, D.; van der Voorn, J.P.; Nieuwenhuijzen, J.A.; Wondergem, M.; Roeleveld, T.A.; Boellaard, R.; Hoekstra, O.S.; et al. Pelvic lymph-node staging with 18F-DCFPyL PET/CT prior to extended pelvic lymph-node dissection in primary prostate cancer—The SALT trial-. Eur. J. Nucl. Med. Mol. Imaging 2020, 48, 509–520. [Google Scholar] [CrossRef]
- Ferraro, D.A.; Lehner, F.; Becker, A.S.; Kranzbühler, B.; Kudura, K.; Mebert, I.; Messerli, M.; Hermanns, T.; Eberli, D.; Burger, I.A.; et al. Improved oncological outcome after radical prostatectomy in patients staged with 68 Ga-PSMA-11 PET: A single-center retrospective cohort comparison. Eur. J. Nucl. Med. Mol. Imaging 2020, 48, 1219–1228. [Google Scholar] [CrossRef] [PubMed]
- Laudicella, R.; Rüschoff, J.H.; Ferraro, D.A.; Brada, M.D.; Hausmann, D.; Mebert, I.; Maurer, A.; Hermanns, T.; Eberli, D.; Rupp, N.J.; et al. Infiltrative growth pattern of prostate cancer is associated with lower uptake on PSMA PET and reduced diffusion restriction on mpMRI. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 3917–3928. [Google Scholar] [CrossRef] [PubMed]
- Pizzuto, D.A.; Triumbari, E.K.A.; Morland, D.; Boldrini, L.; Gatta, R.; Treglia, G.; Bientinesi, R.; De Summa, M.; De Risi, M.; Caldarella, C.; et al. 18F-Fluoroethylcholine PET/CT Radiomic Analysis for Newly Diagnosed Prostate Cancer Patients: A Monocentric Study. Int. J. Mol. Sci. 2022, 23, 9120. [Google Scholar] [CrossRef] [PubMed]
- Evangelista, L.; Urso, L.; Caracciolo, M.; Stracuzzi, F.; Panareo, S.; Cistaro, A.; Catalano, O. FDG PET/CT Volume-Based Quantitative Data and Survival Analysis in Breast Cancer Patients: A Systematic Review of the Literature. Curr. Med. Imaging Former. Curr. Med. Imaging Rev. 2022. [Google Scholar] [CrossRef]
- Laudicella, R.; Skawran, S.; Ferraro, D.A.; Mühlematter, U.J.; Maurer, A.; Grünig, H.; Rüschoff, H.J.; Rupp, N.; Donati, O.; Eberli, D.; et al. Quantitative imaging parameters to predict the local staging of prostate cancer in intermediate- to high-risk patients. Insights Imaging 2022, 13, 1–10. [Google Scholar] [CrossRef]
- Tseng, J.R.; Yang, L.Y.; Lin, Y.C.; Liu, C.Y.; Pang, S.T.; Hong, J.H.; Yen, T.C.; Wang, L.J. Metabolic volumetric parameters in 11 C-Choline PET/MR are superior PET imaging biomarkers for primary high-risk prostate cancer. Contrast Media Mol. Imaging 2018, 2018. [Google Scholar] [CrossRef]
- Kim, Y.I.; Cheon, G.J.; Paeng, J.C.; Cho, J.Y.; Kwak, C.; Kang, K.W.; Chung, J.K.; Kim, E.E.; Lee, D.S. Usefulness of MRI-assisted metabolic volumetric parameters provided by simultaneous 18F-fluorocholine PET/MRI for primary prostate cancer characterization. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 1247–1256. [Google Scholar] [CrossRef]
- Sepulcri, M.; Fusella, M.; Cuppari, L.; Zorz, A.; Paiusco, M.; Evangelista, L. Value of 18F-fluorocholine PET/CT in predicting response to radical radiotherapy in patients with localized prostate cancer. Clin. Transl. Radiat. Oncol. 2021, 30, 71–77. [Google Scholar] [CrossRef]
Variables | |
---|---|
Patients enrolled, number | 82 |
Median age (range), years | 72 (56–86) |
Median BMI (range) | 27 (22–36) |
Rectal examination Negative Positive Doubt NA | 30 (36.6%) 17 (20.7%) 5 (6.1%) 30 (36.6%) |
Familiarity No Yes NA | 33 (40.2%) 5 (6.1%) 44 (46.3%) |
Median baseline PSA (range), in ng/mL | 8.73 (1.81–56.5) |
MRmp imaging No Yes | 20 (24.4%) 62 (75.6%) |
MRmp results Negative Positive | 0 62 |
Gleason score <7 =7 >7 NA | 15 (18.3%) 40 (48.8%) 24 (29.3%) 3 (3.7%) |
ISUP 1 2 3 4 5 NA | 14 (17.1%) 21 (25.6%) 19 (23.2%) 17 (20.7%) 8 (9.8%) 3 (4.9%) |
CT imaging No Yes | 30 (36.6%) 52 (63.4%) |
CT imaging results Negative Positive for N Positive for M Positive for NM NA | 42 (51.2%) 8 (8%) 1 (1.2%) 1 (1.2%) 30 (36.6%) |
BS imaging No Yes | 22 (26.8%) 60 (73.2%) |
BS imaging results Negative Positive Doubt | 50 (61%) 4 (4.9%) 5 (6.1%) |
PET imaging No Yes | 35 (42.7%) 47 (57.3%) |
PET imaging results Positive on T Positive on M Positive on TN Positive on TNM | 28 (59.6%) 2 (4.3%) 11 (23.4%) 6 (12.8%) |
Median MTV_WB (range) | 10.58 (2.04–279.79) |
Median TLCKA_WB (range) | 54.14 (7.58–8677) |
Variables | |
---|---|
Type of therapy Surgery RT Surveillance Multimodality therapy Systemic therapy NA | 33 (40.2%) 22 (26.8%) 6 (7.3%) 6 (7.3%) 13 (15.9%) 2 (2.4%) |
Change of therapy after PET imaging (only for group B) No Yes | 30 (85.7%) 5 (14.3%) |
Biochemical recurrence No Yes NA | 67 (81.7%) 13 (15.9%) 2 (2.4%) |
Median time of biochemical recurrence (range), month | 16.23 (1.3–51.87) |
Variables | Group A | Group B | Group C | p Value |
---|---|---|---|---|
Only CI (n = 35, 42.7%) | CI + PET (n = 35, 42.7%) | Only PET (n = 12, 14.6%) | ||
Mean age (±SD) | 70 ± 7 | 73 ± 6 | 69 ± 7 | 0.137 |
Familiarity No Yes NA | 19 (54.3%) 4 (11.4%) 12 (34.3%) | 10 (28.6%) 1 (2.8%) 24 (68.6%) | 4 (33.3%) 0 8 (66.7%) | 0.569 |
Mean baseline PSA (±SD), in ng/mL | 8.2 ± 4.9 | 15.9 ± 13.9 | 8.9 ± 5.1 | 0.005 |
Gleason score <7 =7 >7 NA | 9 (25.7%) 21 (60%) 3 (8.6%) 2 (5.7%) | 4 (11.4%) 13 (37.1%) 16 (45.7%) 2 (5.7%) | 2 (16.7%) 6 (50%) 4 (33.3%) 0 | 0.013 |
ISUP 1 2 3 4 5 NA | 9 (25.7%) 14 (40%) 7 (20%) 2 (5.7%) 1 (2.8%) 2 (5.7%) | 4 (11.4%) 5 (14.3%) 8 (22.9%) 13 (37.1%) 4 (11.4%) 1 (2.8%) | 1 (8.3%) 2 (16.7%) 4 (33.3%) 2 (16.7%) 3 (25%) 0 | 0.013 |
Type of therapy Surgery RT Surveillance Multimodality therapy Systemic therapy NA | 14 (40%) 9 (25.7%) 3 (8.6%) 3 (8.6%) 5 (14.3%) 1 (2.8%) | 14 (40%) 11 (31.4%) 2 (5.7%) 2 (5.7%) 5 (14.3%) 1 (2.8%) | 5 (41.7%) 2 (16.7%) 1 (8.3%) 1 (8.3%) 3 (25%) 0 | 0.984 |
Recurrence No Yes NA | 31 (88.6%) 4 (11.4%) 0 | 26 (74.3%) 8 (22.9%) 1 (2.8%) | 10 (83.4%) 1 (8.3%) 1 (8.3%) | 0.311 |
Mean BCR-free survival (± SD) | 15.5 ± 7.5 | 23.5 ± 12.2 | 30.8 ± 17.8 | 0.006 |
No Recurrence (n = 36) | Recurrence (n = 9) | p Value | |
---|---|---|---|
MTV (primary lesion) | 8.75 ± 5.91 | 12.87 ± 9.54 | 0.110 |
TLCKA (primary lesion) | 47.05 ± 27.44 | 74.10 ± 47.31 | 0.030 |
SUVmax (primary lesion) | 11.1 ± 3.9 | 12.3 ± 3.4 | 0.428 |
MTV_WB | 19.1 ± 47.3 | 23.1 ± 22.6 | 0.881 |
TLCKA_WB | 323 ± 261 | 129 ± 51 | 0.703 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urso, L.; Rocca, G.C.; Borgia, F.; Lancia, F.; Malorgio, A.; Gagliano, M.; Zanetto, M.; Uccelli, L.; Cittanti, C.; Ippolito, C.; et al. The Role of [18F]F-Choline PET/CT in the Initial Management and Outcome Prediction of Prostate Cancer: A Real-World Experience from a Multidisciplinary Approach. Biomedicines 2022, 10, 2463. https://doi.org/10.3390/biomedicines10102463
Urso L, Rocca GC, Borgia F, Lancia F, Malorgio A, Gagliano M, Zanetto M, Uccelli L, Cittanti C, Ippolito C, et al. The Role of [18F]F-Choline PET/CT in the Initial Management and Outcome Prediction of Prostate Cancer: A Real-World Experience from a Multidisciplinary Approach. Biomedicines. 2022; 10(10):2463. https://doi.org/10.3390/biomedicines10102463
Chicago/Turabian StyleUrso, Luca, Giovanni Christian Rocca, Francesca Borgia, Federica Lancia, Antonio Malorgio, Mauro Gagliano, Mauro Zanetto, Licia Uccelli, Corrado Cittanti, Carmelo Ippolito, and et al. 2022. "The Role of [18F]F-Choline PET/CT in the Initial Management and Outcome Prediction of Prostate Cancer: A Real-World Experience from a Multidisciplinary Approach" Biomedicines 10, no. 10: 2463. https://doi.org/10.3390/biomedicines10102463
APA StyleUrso, L., Rocca, G. C., Borgia, F., Lancia, F., Malorgio, A., Gagliano, M., Zanetto, M., Uccelli, L., Cittanti, C., Ippolito, C., Evangelista, L., & Bartolomei, M. (2022). The Role of [18F]F-Choline PET/CT in the Initial Management and Outcome Prediction of Prostate Cancer: A Real-World Experience from a Multidisciplinary Approach. Biomedicines, 10(10), 2463. https://doi.org/10.3390/biomedicines10102463