Epigenetic Features in Uterine Leiomyosarcoma and Endometrial Stromal Sarcomas: An Overview of the Literature
Abstract
:1. Introduction
1.1. LMS Etiology, Prognosis, and Treatment
1.2. ESS Etiology, Prognosis, and Treatment
2. Genetics and Epigenetics Mechanisms in LMS and ESS
2.1. DNA Methylation
2.2. Chromatin Remodeling
2.3. Non-Coding RNA (ncRNAs)
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Uduwela, A.S.; Perera, M.A.K.; Aiqing, L.; Fraser, I.S. Endometrial-myometrial interface: Relationship to adenomyosis and changes in pregnancy. Obstet. Gynecol. Surv. 2000, 55, 390–400. [Google Scholar] [CrossRef]
- Commandeur, A.E.; Styer, A.K.; Teixeira, J.M. Epidemiological and genetic clues for molecular mechanisms involved in uterine leiomyoma development and growth. Hum. Reprod. Update 2015, 21, 593–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nothnick, W.B. Non-coding rnas in uterine development, function and disease. Adv. Exp. Med. Biol. 2016, 886, 171. [Google Scholar]
- Brany, D.; Dvorska, D.; Nachajova, M.; Slavik, P.; Burjanivova, T. Malignant tumors of the uterine corpus: Molecular background of their origin. Tumor Biol. 2015, 36, 6615–6621. [Google Scholar] [CrossRef]
- Kuperman, T.; Gavriel, M.; Gotlib, R.; Zhang, Y.; Jaffa, A.; Elad, D.; Grisaru, D. Tissue-engineered multi-cellular models of the uterine wall. Biomech. Model. Mechanobiol. 2020, 19, 1629–1639. [Google Scholar] [CrossRef] [PubMed]
- De Almeida, T.G.; da Cunha, I.W.; Maciel, G.A.R.; Baracat, E.C.; Carvalho, K.C. Clinical and molecular features of uterine sarcomas. Med. Exp. 2014, 1, 291–297. [Google Scholar] [CrossRef]
- Desar, I.M.E.; Ottevanger, P.B.; Benson, C.; van der Graaf, W.T.A. Systemic treatment in adult uterine sarcomas. Crit. Rev. Oncol. Hematol. 2018, 122, 10–20. [Google Scholar] [CrossRef]
- Koivisto-Korander, R.; Butzow, R.; Koivisto, A.-M.; Leminen, A. Immunohistochemical studies on uterine carcinosarcoma, leiomyosarcoma, and endometrial stromal sarcoma: Expression and prognostic importance of ten different markers. Tumour Biol. 2011, 32, 451–459. [Google Scholar] [CrossRef] [PubMed]
- American Cancer Society. What is Uterine Sarcoma? Available online: https://www.cancer.org/cancer/uterine-sarcoma/about/what-is-uterine-sarcoma.html (accessed on 21 April 2022).
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Analysis Tool American Cancer Society—Cancer Facts & Statistics. Available online: https://cancerstatisticscenter.cancer.org/#!/data-analysis/module/BmVYeqHT?type=barGraph (accessed on 15 April 2022).
- Parra-Herran, C.; Howitt, B.E. Uterine mesenchymal tumors: Update on classification, staging, and molecular features. Surg. Pathol. Clin. 2019, 12, 363–396. [Google Scholar] [CrossRef]
- Tsuyoshi, H.; Yoshida, Y. Molecular biomarkers for uterine leiomyosarcoma and endometrial stromal sarcoma. Cancer Sci. 2018, 109, 1743–1752. [Google Scholar] [CrossRef]
- Mbatani, N.; Olawaiye, A.B.; Prat, J. Uterine sarcomas. Int. J. Gynaecol. Obstet. 2018, 143, 51–58. [Google Scholar] [CrossRef] [Green Version]
- D’Angelo, E.; Prat, J. Uterine sarcomas: A review. Gynecol. Oncol. 2010, 116, 131–139. [Google Scholar] [CrossRef]
- American Cancer Society. Uterine Sarcoma Stages. Available online: https://www.cancer.org/cancer/uterine-sarcoma/detection-diagnosis-staging/staging.html (accessed on 21 April 2022).
- Roberts, M.E.; Aynardi, J.T.; Chu, C.S. Uterine leiomyosarcoma: A review of the literature and update on management options. Gynecol. Oncol. 2018, 151, 562–572. [Google Scholar] [CrossRef]
- Sociedade Brasileira de Patologia. Útero Neoplasias Mesenquimais do Corpo Uterino. Available online: http://www.sbp.org.br/mdlhisto/utero-neoplasias-mesenquimais-corpo-uterino/ (accessed on 20 January 2022).
- Laganà, A.S.; Vergara, D.; Favilli, A.; la Rosa, V.L.; Tinelli, A.; Gerli, S.; Noventa, M.; Vitagliano, A.; Triolo, O.; Rapisarda, A.M.C.; et al. Epigenetic and genetic landscape of uterine leiomyomas: A current view over a common gynecological disease. Arch. Gynecol. Obstet. 2017, 296, 855–867. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Chan, Y.-T.; Tan, H.-Y.; Li, S.; Wang, N.; Feng, Y. Epigenetic regulation in human cancer: The potential role of epi-drug in cancer therapy. Mol. Cancer 2020, 19, 79. [Google Scholar] [CrossRef]
- Navarro, A.; Yin, P.; Ono, M.; Monsivais, D.; Moravek, M.B.; Coon, J.S.V.; Dyson, M.T.; Wei, J.-J.; Bulun, S.E. 5-Hydroxymethylcytosine promotes proliferation of human uterine leiomyoma: A biological link to a new epigenetic modification in benign tumors. J. Clin. Endocrinol. Metab. 2014, 99, E2437. [Google Scholar] [CrossRef]
- De Almeida, B.C.; dos Anjos, L.G.; Uno, M.; Cunha, I.W.; Soares, F.A.; Baiocchi, G.; Baracat, E.C.; Carvalho, K.C. Let-7 miRNA’s expression profile and its potential prognostic role in uterine leiomyosarcoma. Cells 2019, 8, 1452. [Google Scholar] [CrossRef] [Green Version]
- Tantitamit, T.; Huang, K.-G.; Manopunya, M.; Yen, C.-F. Outcome and management of uterine leiomyosarcoma treated following surgery for presumed benign disease: Review of literature. Gynecol. Minim. Invasive Ther. 2018, 7, 47–55. [Google Scholar] [CrossRef]
- Benson, C.; Miah, A.B. Uterine sarcoma—Current perspectives. Int. J. Womens Health 2017, 9, 597–606. [Google Scholar] [CrossRef] [Green Version]
- Seagle, B.L.L.; Sobecki-Rausch, J.; Strohl, A.E.; Shilpi, A.; Grace, A.; Shahabi, S. Prognosis and treatment of uterine leiomyosarcoma: A national cancer database study. Gynecol. Oncol. 2017, 145, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Bogani, G.; Ditto, A.; Martineli, F.; Signorelli, M.; Chiappa, V.; Fonatella, C.; Sanfilippo, R.; Leone Roberti Maggiore, U.; Ferrero, S.; Lorusso, D.; et al. Role of bevacizumab in uterine leiomyosarcoma. Crit. Rev. Oncol. Hematol. 2018, 126, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Juhasz-Böss, I.; Gabriel, L.; Bohle, R.M.; Horn, L.C.; Solomayer, E.F.; Breitbach, G.P. Uterine leiomyosarcoma. Oncol. Res. Treat. 2018, 41, 680–686. [Google Scholar] [CrossRef] [PubMed]
- Ray-Coquard, I.; Serre, D.; Reichardt, P.; Martín-Broto, J.; Bauer, S. Options for treating different soft tissue sarcoma subtypes. Future Oncol. 2018, 14, 25–49. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Yang, Y.; Zhang, Y.; Li, X. Construction and validation of nomograms for predicting the prognosis of uterine leiomyosarcoma: A population-based study. Med. Sci. Monit. 2020, 26, e922739-1. [Google Scholar] [CrossRef]
- Mittal, K.R.; Chen, F.; Wei, J.J.; Rijhvani, K.; Kurvathi, R.; Streck, D.; Dermody, J.; Toruner, G.A. Molecular and immunohistochemical evidence for the origin of uterine leiomyosarcomas from associated leiomyoma and symplastic leiomyoma-like areas. Mod. Pathol. 2009, 22, 1303–1311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yasutake, N.; Ohishi, Y.; Taguchi, K.; Hiraki, Y.; Oya, M.; Oshiro, Y.; Mine, M.; Iwasaki, T.; Yamamoto, H.; Kohashi, K.; et al. Insulin-like growth factor II messenger RNA-binding protein-3 is an independent prognostic factor in uterine leiomyosarcoma. Histopathology 2017, 12, 3218–3221. [Google Scholar] [CrossRef]
- Patel, D.; Handorf, E.; von Mehren, M.; Martin, L.; Movva, S. Adjuvant chemotherapy in uterine leiomyosarcoma: Trends and factors impacting usage. Sarcoma 2019, 2019, 3561501. [Google Scholar] [CrossRef] [PubMed]
- Mittal, K.; Joutovsky, A. Areas with benign morphologic and immunohistochemical features are associated with some uterine leiomyosarcomas. Gynecol. Oncol. 2007, 104, 362–365. [Google Scholar] [CrossRef] [PubMed]
- Banas, T.; Pitynski, K.; Okon, K.; Czerw, A. DNA fragmentation factors 40 and 45 (DFF40/DFF45) and B-cell lymphoma 2 (Bcl-2) protein are underexpressed in uterine leiomyosarcomas and may predict survival. OncoTargets Ther. 2017, 10, 4579–4589. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.R.W. Uterine fibroids—What’s new? F1000Research 2017, 6, 2109. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhang, C.; Hao, J.; Sung, C.J.; Quddus, M.R.; Steinhoff, M.M.; Lawrence, W.D. Use of X-chromosome inactivation pattern to determine the clonal origins of uterine leiomyoma and leiomyosarcoma. Hum. Pathol. 2006, 37, 1350–1356. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.; Park, S.B.; Park, H.J.; Lee, E.S. Ultrasound features of uterine sarcomas. Ultrasound Q. 2019, 35, 376–384. [Google Scholar] [CrossRef]
- Chen, L.; Yang, B. Immunohistochemical analysis of P16, P53, and Ki-67 expression in uterine smooth muscle tumors. Int. J. Gynecol. Pathol. 2008, 27, 326–332. [Google Scholar] [CrossRef]
- Loizzi, V.; Cormio, G.; Nestola, D.; Falagario, M.; Surgo, A.; Camporeale, A.; Putignano, G.; Selvaggi, L. Prognostic factors and outcomes in 28 cases of uterine leiomyosarcoma. Oncology 2011, 81, 91–97. [Google Scholar] [CrossRef]
- Devereaux, K.A.; Schoolmeester, J.K. Smooth muscle tumors of the female genital tract. Surg. Pathol. Clin. 2019, 12, 397–455. [Google Scholar] [CrossRef]
- Byar, K.L.; Fredericks, T. Uterine leiomyosarcoma. J. Adv. Pract. Oncol. 2022, 13, 70–76. [Google Scholar] [CrossRef]
- Hoang, H.L.T.; Ensor, K.; Rosen, G.; Leon Pachter, H.; Raccuia, J.S. Prognostic factors and survival in patients treated surgically for recurrent metastatic uterine leiomyosarcoma. Int. J. Surg. Oncol. 2014, 2014, 919323. [Google Scholar] [CrossRef] [Green Version]
- Friedman, C.F.; Hensley, M.L. Options for adjuvant therapy for uterine leiomyosarcoma. Curr. Treat. Options Oncol. 2018, 19, 7. [Google Scholar] [CrossRef]
- Stope, M.B.; Cernat, V.; Kaul, A.; Diesing, K. Functionality of the tumor suppressor microrna-1 in malignant tissue and cell line cells of uterine leiomyosarcoma. Anticancer Res. 2018, 1550, 1547–1550. [Google Scholar] [CrossRef]
- Rizzo, A.; Pantaleo, M.A.; Saponara, M.; Nannini, M. Current status of the adjuvant therapy in uterine sarcoma: A literature review. World J. Clin. Cases 2019, 7, 1753. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ren, H.; Wang, J. Outcome of adjuvant radiotherapy after total hysterectomy in patients with uterine leiomyosarcoma or carcinosarcoma: A SEER-based study. BMC Cancer 2019, 19, 697. [Google Scholar] [CrossRef] [Green Version]
- Amant, F.; Lorusso, D.; Mustea, A.; Duffaud, F.; Pautier, P. Management strategies in advanced uterine leiomyosarcoma: Focus on trabectedin. Sarcoma 2015, 2015, 704124. [Google Scholar] [CrossRef] [PubMed]
- Barlin, J.N.; Zhou, Q.C.; Leitao, M.M.; Bisogna, M.; Olvera, N.; Shih, K.K.; Jacobsen, A.; Schultz, N.; Tap, W.D.; Hensley, M.L.; et al. Molecular subtypes of uterine leiomyosarcoma and correlation with clinical outcome. Neoplasia 2015, 17, 183–189. [Google Scholar] [CrossRef] [Green Version]
- Ben-Ami, E.; Barysauskas, C.M.; Solomon, S.; Tahlil, K.; Malley, R.; Hohos, M.; Polson, K.; Loucks, M.; Severgnini, M.; Patel, T.; et al. Immunotherapy with single agent nivolumab for advanced leiomyosarcoma of the uterus: Results of a phase 2 study. Cancer 2017, 123, 3285–3290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elvin, J.A.; Gay, L.M.; Ort, R.; Shuluk, J.; Long, J.; Shelley, L.; Lee, R.; Chalmers, Z.R.; Frampton, G.M.; Ali, S.M.; et al. Clinical benefit in response to palbociclib treatment in refractory uterine leiomyosarcomas with a common CDKN2A alteration. Oncologist 2017, 22, 416–421. [Google Scholar] [CrossRef] [Green Version]
- American Cancer Society Survival. Rates for Uterine Sarcoma. Available online: https://www.cancer.org/cancer/uterine-sarcoma/detection-diagnosis-staging/survival-rates.html (accessed on 13 January 2022).
- Kobayashi, H.; Uekuri, C.; Akasaka, J.; Ito, F.; Shigemitsu, A.; Koike, N.; Shigetomi, H. The biology of uterine sarcomas: A review and update. Mol. Clin. Oncol. 2013, 1, 599–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baek, M.-H.; Park, J.-Y.; Park, Y.; Kim, K.-R.; Kim, D.-Y.; Suh, D.-S.; Kim, J.-H.; Kim, Y.-M.; Kim, Y.-T.; Nam, J.-H. Androgen receptor as a prognostic biomarker and therapeutic target in uterine leiomyosarcoma. J. Gynecol. Oncol. 2018, 29, e30. [Google Scholar] [CrossRef] [Green Version]
- Slomovitz, B.M.; Taub, M.C.; Huang, M.; Levenback, C.; Coleman, R.L. A randomized phase II study of letrozole vs. observation in patients with newly diagnosed uterine leiomyosarcoma (uLMS). Gynecol. Oncol. Rep. 2019, 27, 1. [Google Scholar] [CrossRef]
- Chiang, S.; Oliva, E. Recent developments in uterine mesenchymal neoplasms. Histopathology 2013, 62, 124–137. [Google Scholar] [CrossRef]
- Ducie, J.A.; Leitao, M.M., Jr. The role of adjuvant therapy in uterine leiomyosarcoma. Expert Rev. Anticancer Ther. 2016, 16, 45. [Google Scholar] [CrossRef] [PubMed]
- Zang, Y.; Dong, M.; Zhang, K.; Gao, C.; Guo, F.; Wang, Y.; Xue, F. Hormonal therapy in uterine sarcomas. Cancer Med. 2019, 8, 1339–1349. [Google Scholar] [CrossRef] [Green Version]
- Oliva, E.; Zaloudek, C.J.; Soslow, R.A. Mesenchymal tumors of the uterus. In Blaustein’s Pathology of the Female Genital Tract; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 535–647. [Google Scholar]
- Gockley, A.A.; Rauh-Hain, J.A.; del Carmen, M.G. Uterine leiomyosarcoma: A review article. Int. J. Gynecol. Cancer 2014, 24, 1538–1542. [Google Scholar] [CrossRef] [PubMed]
- Arend, R.C.; Toboni, M.D.; Montgomery, A.M.; Burger, R.A.; Olawaiye, A.B.; Monk, B.J.; Herzog, T.J. Systemic treatment of metastatic/recurrent uterine leiomyosarcoma: A changing paradigm. Oncologist 2018, 23, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parra-Herran, C.; Schoolmeester, J.K.; Yuan, L.; Dal Cin, P.; Fletcher, C.D.; Quade, B.J.; Nucci, M.R. Myxoid leiomyosarcoma of the uterus: A clinicopathologic analysis of 30 cases and review of the literature with reappraisal of its distinction from other uterine myxoid mesenchymal neoplasms. Am. J. Surg. Pathol. 2016, 40, 285–301. [Google Scholar] [CrossRef]
- Prayson, R.A.; Goldblum, J.R.; Hart, W.R. Epithelioid smooth-muscle tumors of the uterus: A clinicopathologic study of 18 patients. Am. J. Surg. Pathol. 1997, 21, 383–391. [Google Scholar] [CrossRef]
- Guled, M.; Pazzaglia, L.; Borze, I.; Mosakhani, N.; Novello, C.; Benassi, M.S.; Knuutila, S. Differentiating soft tissue leiomyosarcoma and undifferentiated pleomorphic sarcoma: A miRNA analysis. Genes Chromosomes Cancer 2014, 53, 693–702. [Google Scholar] [CrossRef] [PubMed]
- Ptáková, N.; Miesbauerová, M.; Kos, J.; Grossmann, P.; Henrieta, Š. Immunohistochemical and selected genetic reflex testing of all uterine leiomyosarcomas and STUMPs for ALK gene rearrangement may provide an effective screening tool in identifying uterine ALK-rearranged mesenchymal tumors. Virchows Arch. 2018, 473, 583–590. [Google Scholar] [CrossRef] [PubMed]
- DeLair, D. Pathology of gynecologic cancer. In Management of Gynecological Cancers in Older Women; Springer: London, UK, 2013; pp. 21–38. [Google Scholar]
- Dos Anjos, L.G.; da Cunha, I.W.; Baracat, E.C.; Carvalho, K.C. Genetic and epigenetic features in uterine smooth muscle tumors: An update. Clin. Oncol. 2019, 4, 1637. [Google Scholar]
- An, Y.; Wang, S.; Li, S.; Zhang, L.; Wang, D.; Wang, H.; Zhu, S.; Zhu, W.; Li, Y.; Chen, W.; et al. Distinct molecular subtypes of uterine leiomyosarcoma respond differently to chemotherapy treatment. BMC Cancer 2017, 17, 17639. [Google Scholar] [CrossRef]
- Cui, R.; Wright, J.; Hou, J. Uterine leiomyosarcoma: A review of recent advances in molecular biology, clinical management and outcome. BJOG Int. J. Obstet. Gynaecol. 2017, 124, 1028–1037. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.Y.; Chang, S.-J.; Chang, K.-H.; Yoon, J.-H.; Kim, J.H.; Kim, B.-G.; Bae, D.-S.; Ryu, H.-S. Uterine leiomyosarcoma: 14-year two-center experience of 31 cases. Cancer Res. Treat. 2009, 41, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Cordoba, A.; Prades, J.; Basson, L.; Robin, Y.M.; Taïeb, S.; Narducci, F.; Hudry, D.; Bresson, L.; Chevalier, A.; le Tinier, F.; et al. Adjuvant management of operated uterine sarcomas: A single institution experience. Cancer Radiother. 2019, 23, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Ricci, S.; Giuntoli, R.L.; Eisenhauer, E.; Lopez, M.A.; Krill, L.; Tanner, E.J.; Gehrig, P.A.; Havrilesky, L.J.; Secord, A.A.; Levinson, K.; et al. Does adjuvant chemotherapy improve survival for women with early-stage uterine leiomyosarcoma? Gynecol. Oncol. 2013, 131, 629–633. [Google Scholar] [CrossRef] [PubMed]
- Micci, F.; Heim, S.; Panagopoulos, I. Molecular pathogenesis and prognostication of “low-grade’’ and ‘high-grade’ endometrial stromal sarcoma. Genes Chromosomes Cancer 2021, 60, 160–167. [Google Scholar] [CrossRef]
- Puliyath, G.; Nair, M.K. Endometrial stromal sarcoma: A review of the literature. Indian J. Med. Paediatr. Oncol. 2012, 33, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Angelos, D.; Anastasios, L.; Dimosthenis, M.; Roxani, D.; Alexis, P.; Konstantinos, D. Endometrial stromal sarcoma presented as endometrial polyp: A rare case. Gynecol. Surg. 2020, 17, 1–3. [Google Scholar] [CrossRef]
- Jabeen, S.; Anwar, S.; Fatima, N. Endometrial stromal sarcoma: A rare entity. J. Coll. Physicians Surg. Pak. 2015, 25, 216–217. [Google Scholar]
- WHO Classification of Tumours Editorial Board. Female Genital Tumours: WHO Classification of Tumours, 5th ed.; IARC Publications: Lyon, France, 2020. [Google Scholar]
- Zappacosta, R.; Fanfani, F.; Zappacosta, B.; Sablone, F.; Pansa, L.; Liberati, M.; Rosini, S. Uterine sarcomas: An updated overview part 2: Endometrial stromal tumor. In Neoplasm; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Prat, J.; Mbatani, N. Uterine sarcomas. Int. J. Gynaecol. Obstet. 2015, 131, S105–S110. [Google Scholar] [CrossRef]
- Hoang, L.; Chiang, S.; Lee, C.H. Endometrial stromal sarcomas and related neoplasms: New developments and diagnostic considerations. Pathology 2018, 50, 162–177. [Google Scholar] [CrossRef]
- Subbaraya, S.; Murthy, S.S.; Devi, G.S. Immunohistochemical and molecular characterization of endometrial stromal sarcomas. Clin. Pathol. 2020, 13, 2632010X20916736. [Google Scholar] [CrossRef] [PubMed]
- Conklin, C.M.J.; Longacre, T.A. Endometrial stromal tumors: The new who classification. Adv. Anat. Pathol. 2014, 21, 383–393. [Google Scholar] [CrossRef] [PubMed]
- Gangireddy, M.; Chan Gomez, J.; Kanderi, T.; Joseph, M.; Kundoor, V. Recurrence of endometrial stromal sarcoma, two decades post-treatment. Cureus 2020, 12, e9249. [Google Scholar] [CrossRef]
- DuPont, N.C.; Disaia, P.J. Recurrent endometrial stromal sarcoma: Treatment with a progestin and gonadotropin releasing hormone agonist. Sarcoma 2010, 2010, 353679. [Google Scholar] [CrossRef] [Green Version]
- Serkies, K.; Pawłowska, E.; Jassem, J. Systemic therapy for endometrial stromal sarcomas: Current treatment options. Ginekol. Pol. 2016, 87, 594–597. [Google Scholar] [CrossRef] [Green Version]
- Tuyaerts, S.; Amant, F. Endometrial stromal sarcomas: A Revision of their potential as targets for immunotherapy. Vaccines 2018, 6, 56. [Google Scholar] [CrossRef] [PubMed]
- Nomura, Y.; Tamura, D. Detection of MEAF6-PHF1 translocation in an endometrial stromal nodule. Genes Chromosomes Cancer 2020, 59, 702–708. [Google Scholar] [CrossRef]
- Ali, R.H.; Rouzbahman, M. Endometrial stromal tumours revisited: An update based on the 2014 WHO classification. J. Clin. Pathol. 2015, 68, 325–332. [Google Scholar] [CrossRef]
- Han, L.; Liu, Y.J.; Ricciotti, R.W.; Mantilla, J.G. A novel MBTD1-PHF1 gene fusion in endometrial stromal sarcoma: A case report and literature review. Genes Chromosomes Cancer 2020, 59, 428–432. [Google Scholar] [CrossRef]
- Da Costa, L.T.; dos Anjos, L.G.; Kagohara, L.T.; Torrezan, G.T.; de Paula, C.A.A.; Baracat, E.C.; Carraro, D.M.; Carvalho, K.C. The mutational repertoire of uterine sarcomas and carcinosarcomas in a Brazilian cohort: A preliminary study. Clinics 2021, 76, 1–15. [Google Scholar] [CrossRef]
- Mansor, S.; Kuick, C.H.; Lim-Tan, S.K.; Leong, M.Y.; Lim, T.Y.K.; Chang, K.T.E. 28. Novel fusion MAGED2-PLAG1 in endometrial stromal sarcoma. Pathology 2020, 52, S142–S143. [Google Scholar] [CrossRef] [Green Version]
- Makise, N.; Sekimizu, M.; Kobayashi, E.; Yoshida, H.; Fukayama, M.; Kato, T.; Kawai, A.; Ichikawa, H.; Yoshida, A. Low-grade endometrial stromal sarcoma with a novel MEAF6-SUZ12 fusion. Virchows Arch. 2019, 475, 527–531. [Google Scholar] [CrossRef]
- Brunetti, M.; Gorunova, L.; Davidson, B.; Heim, S.; Panagopoulos, I.; Micci, F. Identification of an EPC2-PHF1 fusion transcript in low-grade endometrial stromal sarcoma. Oncotarget 2018, 9, 19203–19208. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.H.; Nucci, M.R. Endometrial stromal sarcoma—The new genetic paradigm. Histopathology 2015, 67, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Chiang, S.; Lee, C.H.; Stewart, C.J.R.; Oliva, E.; Hoang, L.N.; Ali, R.H.; Hensley, M.L.; Arias-Stella, J.A., 3rd; Frosina, D.; Jungbluth, A.A.; et al. BCOR is a robust diagnostic immunohistochemical marker of genetically diverse high-grade endometrial stromal sarcoma, including tumors exhibiting variant morphology. Mod. Pathol. 2017, 30, 1251–1261. [Google Scholar] [CrossRef] [Green Version]
- Akaev, I.; Yeoh, C.C.; Rahimi, S. Update on endometrial stromal tumours of the uterus. Diagnostics 2021, 11, 429. [Google Scholar] [CrossRef]
- Dickson, B.C.; Lum, A.; Swanson, D.; Bernardini, M.Q.; Colgan, T.J.; Shaw, P.A.; Yip, S.; Lee, C.H. Novel EPC1 gene fusions in endometrial stromal sarcoma. Genes Chromosomes Cancer 2018, 57, 598–603. [Google Scholar] [CrossRef]
- Cotzia, P.; Benayed, R.; Mullaney, K.; Oliva, E.; Felix, A.; Ferreira, J.; Soslow, R.A.; Antonescu, C.R.; Ladanyi, M.; Chiang, S. Undifferentiated uterine sarcomas represent under-recognized high-grade endometrial stromal sarcomas. Am. J. Surg. Pathol. 2019, 43, 662–669. [Google Scholar] [CrossRef]
- Momeni-Boroujeni, A.; Mohammad, N.; Wolber, R.; Yip, S.; Köbel, M.; Dickson, B.C.; Hensley, M.L.; Leitao, M.M.; Antonescu, C.R.; Benayed, R.; et al. Targeted RNA expression profiling identifies high-grade endometrial stromal sarcoma as a clinically relevant molecular subtype of uterine sarcoma. Mod. Pathol. 2021, 34, 1008–1016. [Google Scholar] [CrossRef]
- Murakami, I.; Tanaka, K.; Shiraishi, J.; Yamashita, H. SMARCA4-deficient undifferentiated uterine sarcoma: A case report. Gynecol. Obstet. Case Rep. 2021, 7, 128. [Google Scholar]
- Boyle, W.; Williams, A.; Sundar, S.; Yap, J.; Taniere, P.; Rehal, P.; Ganesan, R. TMP3-NTRK1 rearranged uterine sarcoma: A case report. Case Rep. Womens Health 2020, 28, e00246. [Google Scholar] [CrossRef] [PubMed]
- Chiang, S.; Cotzia, P. NTRK fusions define a novel uterine sarcoma subtype with features of fibrosarcoma. Am. J. Surg. Pathol. 2018, 42, 791–798. [Google Scholar] [CrossRef] [PubMed]
- Nebbioso, A.; Tambaro, F.P.; Dell’Aversana, C.; Altucci, L. Cancer epigenetics: Moving forward. PLoS Genet. 2018, 14, e1007362. [Google Scholar] [CrossRef]
- Jones, P.A.; Laird, P.W. Cancer epigenetics comes of age. Nat. Genet. 1999, 21, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Cavalli, G.; Heard, E. Advances in epigenetics link genetics to the environment and disease. Nature 2019, 571, 489–499. [Google Scholar] [CrossRef] [Green Version]
- Verma, M.; Rogers, S.; Divi, R.L.; Schully, S.D.; Nelson, S.; Su, L.J.; Ross, S.A.; Pilch, S.; Winn, D.M.; Khoury, M.J. Epigenetic research in cancer epidemiology: Trends, opportunities, and challenges. Cancer Epidemiol. Biomark. Prev. 2014, 23, 223–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herceg, Z.; Vaissière, T. Epigenetic mechanisms and cancer an interface between the environment and the genome. Epigenetics 2011, 6, 804–819. [Google Scholar] [CrossRef]
- Werner, R.J.; Kelly, A.D.; Issa, J.P.J. Epigenetics and precision oncology. Cancer J. 2017, 23, 262–269. [Google Scholar] [CrossRef]
- Kanwal, R.; Gupta, K.; Gupta, S. Cancer epigenetics: An introduction. Methods Mol. Biol. 2015, 1238, 3–25. [Google Scholar] [CrossRef]
- Topper, M.J.; Vaz, M.; Marrone, K.A.; Brahmer, J.R.; Baylin, S.B. The emerging role of epigenetic therapeutics in immuno-oncology. Nat. Rev. Clin. Oncol. 2020, 17, 75–90. [Google Scholar] [CrossRef]
- Wei, J.W.; Huang, K.; Yang, C.; Kang, C.S. Non-coding RNAs as regulators in epigenetics (Review). Oncol. Rep. 2017, 37, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, A.; Minucci, S. Alterations of histone modifications in cancer. In Epigenetics in Human Disease; Elsevier: Amsterdam, The Netherlands, 2018; pp. 141–217. [Google Scholar] [CrossRef]
- Zhao, Z.; Shilatifard, A. Epigenetic modifications of histones in cancer. Genome Biol. 2019, 20, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Caplakova, V.; Babusikova, E.; Blahovcova, E.; Balharek, T.; Zelieskova, M.; Hatok, J. DNA methylation machinery in the endometrium and endometrial cancer. Anticancer Res. 2016, 36, 4407–4420. [Google Scholar] [CrossRef] [Green Version]
- Kagohara, L.T.; Stein-O’Brien, G.L.; Kelley, D.; Flam, E.; Wick, H.C.; Danilova, L.V.; Easwaran, H.; Favorov, A.V.; Qian, J.; Gaykalova, D.A.; et al. Epigenetic regulation of gene expression in cancer: Techniques, resources and analysis. Brief Funct. Genom. 2018, 17, 49–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feinberg, A.P.; Vogelstein, B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 1983, 301, 89–92. [Google Scholar] [CrossRef]
- Fischer, C.D.C.; Hu, Y.; Morreale, M.; Lin, W.Y.; Wali, A.; Thakar, M.; Karunasena, E.; Sen, R.; Cai, Y.; Murphy, L.; et al. Treatment with epigenetic agents profoundly inhibits tumor growth in leiomyosarcoma. Oncotarget 2018, 9, 19379–19395. [Google Scholar] [CrossRef] [Green Version]
- Bird, A.P. DNA methylation–how important in gene control? Nature 1984, 307, 503–504. [Google Scholar] [CrossRef]
- Gnyszka, A.; Jastrzebski, Z.; Flis, S. DNA methyltransferase inhibitors and their emerging role in epigenetic therapy of cancer. Anticancer Res. 2013, 33, 2989–2996. [Google Scholar]
- Garcia, N.; Al-Hendy, A.; Baracat, E.C.; Carvalho, K.C.; Yang, Q. Targeting hedgehog pathway and DNA methyltransferases in uterine leiomyosarcoma cells. Cells 2020, 10, 53. [Google Scholar] [CrossRef]
- Ferriss, J.S.; Atkins, K.A.; Lachance, J.A.; Modesitt, S.C.; Jazaeri, A.A. Temozolomide in advanced and recurrent uterine leiomyosarcoma and correlation with O6-methylguanine DNA methyltransferase expression a case series. Int. J. Gynecol. Cancer 2010, 20, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Bujko, M.; Kowalewska, M.; Danska-Bidzinska, A.; Bakula-Zalewska, E.; Siedecki, J.A.; Bidzinski, M. The promoter methylation and expression of the O6-methylguanine-DNA methyltransferase gene in uterine sarcoma and carcinosarcoma. Oncol. Lett. 2012, 4, 551–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romero-Garcia, S.; Prado-Garcia, H.; Carlos-Reyes, A. Role of DNA methylation in the resistance to therapy in solid tumors. Front. Oncol. 2020, 10, 1152. [Google Scholar] [CrossRef]
- Braný, D.; Dvorská, D.; Grendár, M.; Ňachajová, M.; Szépe, P.; Lasabová, Z.; Žúbor, P.; Višňovský, J.; Halášová, E. Different methylation levels in the KLF4, ATF3 and DLEC1 genes in the myometrium and in corpus uteri mesenchymal tumours as assessed by MS-HRM. Pathol. Res. Pract. 2019, 215, 152465. [Google Scholar] [CrossRef]
- Hasan, N.M.; Sharma, A.; Ruzgar, N.M.; Deshpande, H.; Olino, K.; Khan, S.; Ahuja, N. Epigenetic signatures differentiate uterine and soft tissue leiomyosarcoma. Oncotarget 2021, 12, 1566–1579. [Google Scholar] [CrossRef] [PubMed]
- Baylin, S.B. DNA methylation and gene silencing in cancer. Nat. Clin. Pract. Oncol. 2005, 2, S4–S11. [Google Scholar] [CrossRef] [PubMed]
- Xing, D.; Scangas, G.; Nitta, M.; He, L.; Xu, A.; Ioffe, Y.J.M.; Aspuria, P.J.; Hedvat, C.Y.; Anderson, M.L.; Oliva, E.; et al. A role for BRCA1 in uterine leiomyosarcoma. Cancer Res. 2009, 69, 8231–8235. [Google Scholar] [CrossRef] [Green Version]
- Roncati, L.; Barbolini, G.; Sartori, G.; Siopis, E.; Pusiol, T.; Maiorana, A. Loss of CDKN2A promoter methylation coincides with the epigenetic transdifferentiation of uterine myosarcomatous cells. Int. J. Gynecol. Pathol. 2016, 35, 309–315. [Google Scholar] [CrossRef]
- Kommoss, F.K.F.; Stichel, D.; Schrimpf, D.; Kriegsmann, M.; Tessier-Cloutier, B.; Talhouk, A.; McAlpine, J.N.; Chang, K.T.E.; Sturm, D.; Pfister, S.M.; et al. DNA methylation-based profiling of uterine neoplasms: A novel tool to improve gynecologic cancer diagnostics. J. Cancer Res. Clin. Oncol. 2020, 146, 97–104. [Google Scholar] [CrossRef]
- Kommoss, F.K.; Chang, K.T.; Stichel, D.; Banito, A.; Jones, D.T.; Heilig, C.E.; Fröhling, S.; Sahm, F.; Stenzinger, A.; Hartmann, W.; et al. Endometrial stromal sarcomas with BCOR-rearrangement harbor MDM2 amplifications. J. Pathol. Clin. Res. 2020, 6, 178–184. [Google Scholar] [CrossRef]
- Li, J.; Xing, X.; Li, D.; Zhang, B.; Mutch, D.G.; Hagemann, I.S.; Wang, T. Whole-Genome DNA methylation profiling identifies epigenetic signatures of uterine carcinosarcoma. Neoplasia 2017, 19, 100–111. [Google Scholar] [CrossRef]
- Chiang, S.; Oliva, E. Cytogenetic and molecular aberrations in endometrial stromal tumors. Hum. Pathol. 2011, 42, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Kurihara, S.; Oda, Y.; Ohishi, Y.; Kaneki, E.; Kobayashi, H.; Wake, N.; Tsuneyoshi, M. Coincident expression of β-catenin and cyclin D1 in endometrial stromal tumors and related high-grade sarcomas. Mod. Pathol. 2010, 23, 225–234. [Google Scholar] [CrossRef] [Green Version]
- Hrzenjak, A.; Dieber-Rotheneder, M.; Moinfar, F.; Petru, E.; Zatloukal, K. Molecular mechanisms of endometrial stromal sarcoma and undifferentiated endometrial sarcoma as premises for new therapeutic strategies. Cancer Lett. 2014, 354, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Matsukura, H.; Aisaki, K.I.; Igarashi, K.; Matsushima, Y.; Kanno, J.; Muramatsu, M.; Sudo, K.; Sato, N. Genistein promotes DNA demethylation of the steroidogenic factor 1 (SF-1) promoter in endometrial stromal cells. Biochem. Biophys. Res. Commun. 2011, 412, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Maekawa, R.; Tamura, I.; Shinagawa, M.; Mihara, Y.; Sato, S.; Okada, M.; Taketani, T.; Tamura, H.; Sugino, N. Genome-wide DNA methylation analysis revealed stable DNA methylation status during decidualization in human endometrial stromal cells. BMC Genom. 2019, 20, 324. [Google Scholar] [CrossRef] [Green Version]
- Tamura, I.; Maekawa, R.; Jozaki, K.; Ohkawa, Y.; Takagi, H.; Doi-Tanaka, Y.; Shirafuta, Y.; Mihara, Y.; Taketani, T.; Sato, S.; et al. Transcription factor C/EBPβ induces genome-wide H3K27ac and upregulates gene expression during decidualization of human endometrial stromal cells. Mol. Cell. Endocrinol. 2021, 520, 111085. [Google Scholar] [CrossRef]
- Nie, J.; Liu, X.; Sun-Wei, G. Promoter hypermethylation of progesterone receptor isoform B (PR-B) in adenomyosis and its rectification by a histone deacetylase inhibitor and a demethylation agent. Reprod. Sci. 2010, 17, 995–1005. [Google Scholar] [CrossRef]
- Gillette, T.G.; Hill, J.A. Readers, writers, and erasers: Chromatin as the whiteboard of heart disease. Circ. Res. 2015, 116, 1245–1253. [Google Scholar] [CrossRef] [Green Version]
- Luger, K.; Hansen, J.C. Nucleosome and chromatin fiber dynamics. Curr. Opin. Struct. Biol. 2005, 5, 188–196. [Google Scholar] [CrossRef]
- Mastoraki, A.; Schizas, D.; Vlachou, P.; Melissaridou, N.M.; Charalampakis, N.; Fioretzaki, R.; Kole, C.; Savvidou, O.; Vassiliu, P.; Pikoulis, E. Assessment of synergistic contribution of histone deacetylases in prognosis and therapeutic management of sarcoma. Mol. Diagn. Ther. 2020, 24, 557–569. [Google Scholar] [CrossRef]
- Gujral, P.; Mahajan, V.; Lissaman, A.C.; Ponnampalam, A.P. Histone acetylation and the role of histone deacetylases in normal cyclic endometrium. Reprod. Biol. Endocrinol. 2020, 18, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Bannister, A.J.; Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 2011, 21, 381–395. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; Rao, C.M. Epigenetic tools (the writers, the readers and the erasers) and their implications in cancer therapy. Eur. J. Pharmacol. 2018, 837, 8–24. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.; Zhang, Y. The diverse functions of histone lysine methylation. Nat. Rev. Mol. Cell Biol. 2005, 6, 838–849. [Google Scholar] [CrossRef] [PubMed]
- Grimaldi, G.; Christian, M.; Steel, J.H.; Henriet, P.; Poutanen, M.; Brosens, J.J. Down-Regulation of the histone methyltransferase EZH2 contributes to the epigenetic programming of decidualizing human endometrial stromal cells. Mol. Endocrinol. 2011, 25, 1892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, M.; Wu, X.; Chu, P.; Chow, W.A. Fatty acid synthase reprograms the epigenome in uterine leiomyosarcomas. PLoS ONE 2017, 12, e0179692. [Google Scholar] [CrossRef] [Green Version]
- Dunican, D.S.; Mjoseng, H.K.; Duthie, L.; Flyamer, I.M.; Bickmore, W.A.; Meehan, R.R. Bivalent promoter hypermethylation in cancer is linked to the H327me3/H3K4me3 ratio in embryonic stem cells. BMC Biol. 2020, 18, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piunti, A.; Shilatifard, A. The roles of polycomb repressive complexes in mammalian development and cancer. Nat. Rev. Mol. Cell Biol. 2021, 22, 326–345. [Google Scholar] [CrossRef]
- Kim, H.; Ekram, M.B.; Bakshi, A.; Kim, J. AEBP2 as a transcriptional activator and its role in cell migration. Genomics 2015, 105, 108–115. [Google Scholar] [CrossRef]
- Tan, J.Z.; Yan, Y.; Wang, X.X.; Jiang, Y.; Xu, H.E. EZH2: Biology, disease, and structure-based drug discovery. Acta Pharmacol. Sin. 2014, 35, 161–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piunti, A.; Smith, E.R.; Morgan, M.A.J.; Ugarenko, M.; Khaltyan, N.; Helmin, K.A.; Ryan, C.A.; Murray, D.C.; Rickels, R.A.; Yilmaz, B.D.; et al. CATACOMB: An endogenous inducible gene that antagonizes H3K27 methylation activity of Polycomb repressive complex 2 via an H3K27M-like mechanism. Sci. Adv. 2019, 5, 2887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dewaele, B.; Przybyl, J.; Quattrone, A.; Ferreiro, J.F.; Vanspauwen, V.; Geerdens, E.; Gianfelici, V.; Kalender, Z.; Wozniak, A.; Moerman, P.; et al. Identification of a novel, recurrent MBTD1-CXorf67 fusion in low-grade endometrial stromal sarcoma. Int. J. Cancer 2014, 134, 1112–1122. [Google Scholar] [CrossRef] [PubMed]
- Levine, S.S.; Weiss, A.; Erdjument-Bromage, H.; Shao, Z.; Tempst, P.; Kingston, R.E. The core of the polycomb repressive complex is compositionally and functionally conserved in flies and humans. Mol. Cell. Biol. 2002, 22, 6070. [Google Scholar] [CrossRef] [PubMed]
- Oliviero, G.; Munawar, N.; Watson, A.; Streubel, G.; Manning, G.; Bardwell, V.; Bracken, A.P.; Cagney, G. The variant polycomb repressor complex 1 component PCGF1 interacts with a pluripotency sub-network that includes DPPA4, a regulator of embryogenesis. Sci. Rep. 2015, 5, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Astolfi, A.; Fiore, M.; Melchionda, F.; Indio, V.; Bertuccio, S.N.; Pession, A. BCOR involvement in cancer. Epigenomics 2019, 11, 835. [Google Scholar] [CrossRef] [Green Version]
- Panagopoulos, I.; Thorsen, J.; Gorunova, L.; Haugom, L.; Bjerkehagen, B.; Davidson, B.; Heim, S.; Micci, F. Fusion of the ZC3H7B and BCOR genes in endometrial stromal sarcomas carrying an X;22-translocation. Genes Chromosomes Cancer 2013, 52, 610–618. [Google Scholar] [CrossRef]
- Chase, A.; Cross, N.C. Aberrations of EZH2 in cancer. Clin. Cancer Res. 2011, 17, 2613–2618. [Google Scholar] [CrossRef] [Green Version]
- Micci, F.; Gorunova, L.; Agostini, A.; Johannessen, L.E.; Brunetti, M.; Davidson, B.; Heim, S.; Panagopoulos, I. Cytogenetic and molecular profile of endometrial stromal sarcoma. Genes Chromosomes Cancer 2016, 55, 834–846. [Google Scholar] [CrossRef]
- Aldera, A.P.; Govender, D. Gene of the month: BCOR. J. Clin. Pathol. 2020, 73, 314–317. [Google Scholar] [CrossRef]
- Juckett, L.T.; Lin, D.I.; Madison, R.; Ross, J.S.; Schrock, A.B.; Ali, S. A pan-cancer landscape analysis reveals a subset of endometrial stromal and pediatric tumors defined by internal tandem duplications of BCOR. Oncology 2019, 96, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Allen, A.J.; Ali, S.M.; Gowen, K.; Elvin, J.A.; Pejovic, T. A recurrent endometrial stromal sarcoma harbors the novel fusion JAZF1-BCORL1. Gynecol. Oncol. Rep. 2017, 20, 51–53. [Google Scholar] [CrossRef] [PubMed]
- Monaghan, L.; Massett, M.E.; Bunschoten, R.P.; Hoose, A.; Pirvan, P.-A.; Liskamp, R.M.J.; Jørgensen, H.G.; Huang, X. The emerging role of H3K9me3 as a potential therapeutic target in acute myeloid leukemia. Front. Oncol. 2019, 9, 705. [Google Scholar] [CrossRef] [Green Version]
- Brahmi, M.; Franceschi, T.; Treilleux, I.; Pissaloux, D.; Ray-Coquard, I.; Dufresne, A.; Vanacker, H.; Carbonnaux, M.; Meeus, P.; Sunyach, M.P.; et al. Molecular classification of endometrial stromal sarcomas using RNA sequencing defines nosological and prognostic subgroups with different natural history. Cancers 2020, 12, 2604. [Google Scholar] [CrossRef]
- Przybyl, J.; Kidzinski, L.; Hastie, T.; Debiec-Rychter, M.; Nusse, R.; van de Rijn, M. Gene expression profiling of low-grade endometrial stromal sarcoma indicates fusion protein-mediated activation of the Wnt signaling pathway. Gynecol. Oncol. 2018, 149, 388–393. [Google Scholar] [CrossRef]
- Itoh, Y.; Takada, Y.; Yamashita, Y.; Suzuki, T. Recent progress on small molecules targeting epigenetic complexes. Curr. Opin. Chem. Biol. 2022, 67, 102130. [Google Scholar] [CrossRef] [PubMed]
- Piunti, A.; Pasini, D. Epigenetic factors in cancer development: Polycomb group proteins. Future Oncol. 2011, 7, 57–75. [Google Scholar] [CrossRef]
- Gao, J.; Yang, T.; Wang, X.; Zhang, Y.; Wang, J.; Zhang, B.; Tang, D.; Liu, Y.; Gao, T.; Lin, Q.; et al. Identification and characterization of a subpopulation of CD133+ cancer stem-like cells derived from SK-UT-1 cells. Cancer Cell Int. 2021, 8, 157. [Google Scholar] [CrossRef]
- Zhang, N.; Zeng, Z.; Li, S.; Wang, F.; Huang, P. High expression of EZH2 as a marker for the differential diagnosis of malignant and benign myogenic tumors. Sci. Rep. 2018, 8, 12331. [Google Scholar] [CrossRef] [Green Version]
- Micci, F.; Brunetti, M.; Cin, P.D.; Nucci, M.R.; Gorunova, L.; Heim, S.; Panagopoulos, I. Fusion of the genes BRD8 and PHF1 in endometrial stromal sarcoma. Genes Chromosomes Cancer 2017, 56, 841–845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hrzenjak, A. JAZF1/SUZ12 gene fusion in endometrial stromal sarcomas. Orphanet J. Rare Dis. 2016, 11, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Hodge, J.C.; Bedroske, P.P.; Pearce, K.E.; Sukov, W.R. Molecular cytogenetic analysis of JAZF1, PHF1, and YWHAE in endometrial stromal tumors: Discovery of genetic complexity by fluorescence in situ Hybridization. J. Mol. Diagn. 2016, 18, 516–526. [Google Scholar] [CrossRef] [Green Version]
- Tavares, M.; Khandelwal, G.; Mutter, J.; Viiri, K.; Beltran, M.; Brosens, J.J.; Jenner, R.G. JAZF1-SUZ12 dysregulates PRC2 function and gene expression during cell differentiation. bioRxiv 2021, 15, 440052. [Google Scholar] [CrossRef] [PubMed]
- Sudarshan, D.; Avvakumov, N.; Lalonde, M.-E.; Alerasool, N.; Jacquet, K.; Mameri, A.; Rousseau, J.; Lambert, J.-P.; Paquet, E.; Setty, S.T.; et al. Recurrent chromosomal translocations in sarcomas create a mega-complex that mislocalizes NuA4/TIP60 to polycomb target loci. bioRxiv 2021, 26, 436670. [Google Scholar] [CrossRef]
- Davidson, B.; Matias-Guiu, X.; Lax, S.F. The clinical, morphological, and genetic heterogeneity of endometrial stromal sarcoma. Virchows Arch. 2020, 476, 489–490. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Ou, W.B.; Mariño-Enriquez, A.; Zhu, M.; Mayeda, M.; Wang, Y.; Guo, X.; Brunner, A.L.; Amant, F.; French, C.A.; et al. 14-3-3 fusion oncogenes in high-grade endometrial stromal sarcoma. Proc. Natl. Acad. Sci. USA 2012, 109, 929–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panagopoulos, I.; Micci, F.; Thorsen, J.; Gorunova, L.; Eibak, A.M.; Bjerkehagen, B.; Davidson, B.; Heim, S. Novel fusion of MYST/Esa1-associated factor 6 and PHF1 in endometrial stromal sarcoma. PLoS ONE 2012, 7, e39354. [Google Scholar] [CrossRef] [Green Version]
- Fiskus, W.; Pranpat, M.; Balasis, M.; Herger, B.; Rao, R.; Chinnaiyan, A.; Atadja, P.; Bhalla, K. Histone deacetylase inhibitors deplete enhancer of zeste 2 and associated polycomb repressive complex 2 proteins in human acute leukemia cells. Mol. Cancer Ther. 2006, 5, 3096–3104. [Google Scholar] [CrossRef] [Green Version]
- Di Giorgio, E.; Dalla, E.; Franforte, E.; Paluvai, H.; Minisini, M.; Trevisanut, M.; Picco, R.; Brancolini, C. Different class IIa HDACs repressive complexes regulate specific epigenetic responses related to cell survival in leiomyosarcoma cells. Nucleic Acids Res. 2020, 48, 646–664. [Google Scholar] [CrossRef] [Green Version]
- Park, S.Y.; Kim, J.S. A short guide to histone deacetylases including recent progress on class II enzymes. Exp. Mol. Med. 2020, 52, 204–212. [Google Scholar] [CrossRef] [Green Version]
- Choy, E.; Ballman, K.; Chen, J.; Dickson, M.A.; Chugh, R.; George, S.; Okuno, S.; Pollock, R.; Patel, R.M.; Hoering, A.; et al. SARC018-SPORE02: Phase II study of mocetinostat administered with gemcitabine for patients with metastatic leiomyosarcoma with progression or relapse following prior treatment with gemcitabine-containing therapy. Sarcoma 2018, 2018, 2068517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, H.; Ike, C.; Parma, J.; Masand, R.P.; Mach, C.M.; Anderson, M.L. Molecular targets and emerging therapeutic options for uterine leiomyosarcoma. Sarcoma 2016, 2016, 7018106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baek, M.-H.; Park, J.-Y.; Rhim, C.C.; Kim, J.-H.; Park, Y.; Kim, K.-R.; Nam, J.-H. Investigation of new therapeutic targets in undifferentiated endometrial sarcoma. Gynecol. Obstet. Investig. 2017, 82, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Rafehi, H.; Karagiannis, T.C.; El-Osta, A. Pharmacological histone deacetylation distinguishes transcriptional regulators. Curr. Top. Med. Chem. 2017, 17, 1611–1622. [Google Scholar] [CrossRef] [PubMed]
- Monga, V.; Swami, U.; Tanas, M.; Bossler, A.; Mott, S.L.; Smith, B.J.; Milhem, M. A phase I/II study targeting angiogenesis using bevacizumab combined with chemotherapy and a histone deacetylase inhibitor (Valproic acid) in advanced sarcomas. Cancers 2018, 10, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yen, M.S.; Chen, J.R.; Wang, P.H.; Wen, K.C.; Chen, Y.J.; Ng, H.T. Uterine sarcoma part III—Targeted therapy: The taiwan association of gynecology (TAG) systematic review. Taiwan. J. Obstet. Gynecol. 2016, 55, 625–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quan, P.; Moinfar, F.; Kufferath, I.; Absenger, M.; Kueznik, T.; Denk, H.; Zatloukal, K.; Haybaeck, J. Effects of targeting endometrial stromal sarcoma cells via histone deacetylase and PI3K/AKT/mTOR signaling. Anticancer Res. 2014, 34, 2883–2897. [Google Scholar]
- Tang, F.; Choy, E.; Tu, C.; Hornicek, F.; Duan, Z. Therapeutic applications of histone deacetylase inhibitors in sarcoma. Cancer Treat. Rev. 2017, 59, 33–45. [Google Scholar] [CrossRef]
- Rikiishi, H. Autophagic and apoptotic effects of HDAC inhibitors on cancer cells. J. Biomed. Biotechnol. 2011, 2011, 830260. [Google Scholar] [CrossRef] [Green Version]
- Fröhlich, L.F.; Mrakovcic, M.; Smole, C.; Lahiri, P.; Zatloukal, K. Epigenetic silencing of apoptosis-inducing gene expression can be efficiently overcome by combined saha and trail treatment in uterine sarcoma cells. PLoS ONE 2014, 9, e91558. [Google Scholar] [CrossRef]
- Lin, C.Y.; Chao, A.; Wu, R.C.; Lee, L.Y.; Ueng, S.H.; Tsai, C.L.; Lee, Y.S.; Peng, M.T.; Yang, L.Y.; Huang, H.; et al. Synergistic effects of pazopanib and hyperthermia against uterine leiomyosarcoma growth mediated by downregulation of histone acetyltransferase 1. J. Mol. Med. 2020, 98, 1175–1188. [Google Scholar] [CrossRef]
- Sawicka, A.; Seiser, C. Histone H3 phosphorylation—A versatile chromatin modification for different occasions. Biochimie 2012, 94, 2193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veras, E.; Malpica, A.; Deavers, M.T.; Silva, E.G. Mitosis-specific marker phospho-histone h3 in the assessment of mitotic index in uterine smooth muscle tumors: A pilot study. Int. J. Gynecol. Pathol. 2009, 28, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.K.; Barton, M.C. Bromodomain Histone Readers and Cancer. J. Mol. Biol. 2017, 429, 2003–2010. [Google Scholar] [CrossRef] [PubMed]
- Fujisawa, T.; Filippakopoulos, P. Functions of bromodomain-containing proteins and their roles in homeostasis and cancer. Nat. Rev. Mol. Cell Biol. 2017, 18, 246–262. [Google Scholar] [CrossRef]
- Sima, X.; He, J.; Peng, J.; Xu, Y.; Zhang, F.; Deng, L. The genetic alteration spectrum of the SWI/SNF complex: The oncogenic roles of BRD9 and ACTL6A. PLoS ONE 2019, 14, e0222305. [Google Scholar] [CrossRef] [Green Version]
- Barma, N.; Stone, T.C.; Carmona Echeverria, L.M.; Heavey, S. Exploring the Value of BRD9 as a Biomarker, Therapeutic Target and Co-Target in Prostate Cancer. Biomolecules 2021, 11, 1794. [Google Scholar] [CrossRef]
- Wang, X.; Wang, S.; Troisi, E.C.; Howard, T.P.; Haswell, J.R.; Wolf, B.K.; Hawk, W.H.; Ramos, P.; Oberlick, E.M.; Tzvetkov, E.P.; et al. BRD9 defines a SWI/SNF sub-complex and constitutes a specific vulnerability in malignant rhabdoid tumors. Nat. Commun. 2019, 10, 1881. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Liao, Y.; Tang, L. Targeting BRD9 for Cancer Treatment: A New Strategy. OncoTargets Ther. 2020, 13, 13191–13200. [Google Scholar] [CrossRef]
- Bell, C.M.; Raffeiner, P.; Hart, J.R.; Vogt, P.K. PIK3CA Cooperates with KRAS to Promote MYC Activity and Tumorigenesis via the Bromodomain Protein BRD9. Cancers 2019, 11, 1634. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Wang, Y.; Li, Q.; Fei, X.; Ma, H.; Hu, R. miR-140-3p functions as a tumor suppressor in squamous cell lung cancer by regulating BRD9. Cancer Lett. 2019, 446, 81–89. [Google Scholar] [CrossRef]
- Del Gaudio, N.; Di Costanzo, A.; Liu, N.Q.; Conte, L.; Migliaccio, A.; Vermeulen, M.; Martens, J.H.A.; Stunnenberg, H.G.; Nebbioso, A.; Altucci, L. BRD9 binds cell type-specific chromatin regions regulating leukemic cell survival via STAT5 inhibition. Cell Death Dis. 2019, 18, 338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Q.; Bariani, M.V.; Falahati, A.; Khosh, A.; Lastra, R.R.; Siblini, H.; Boyer, T.G.; Al-Hendy, A. The Functional Role and Regulatory Mechanism of Bromodomain-Containing Protein 9 in Human Uterine Leiomyosarcoma. Cells 2022, 11, 2160. [Google Scholar] [CrossRef]
- Vafadar, A.; Shabaninejad, Z.; Movahedpour, A.; Mohammadi, S.; Fathullahzadeh, S.; Mirzaei, H.R.; Namdar, A.; Savardashtaki, A.; Mirzaei, H. Long non-coding rnas as epigenetic regulators in cancer. Curr. Pharm. Des. 2019, 25, 3563–3577. [Google Scholar] [CrossRef]
- Hanly, D.J.; Esteller, M.; Berdasco, M. Interplay between long non-coding RNAs and epigenetic machinery: Emerging targets in cancer? Philos. Trans. R. Soc. Lond. B Biol. Sci. 2018, 373, 20170074. [Google Scholar] [CrossRef] [PubMed]
- Romano, G.; Veneziano, D.; Acunzo, M.; Croce, C.M. Small non-coding RNA and cancer. Carcinogenesis 2017, 38, 485–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guisier, F.; Barros-Filho, M.C.; Rock, L.D.; Constantino, F.B.; Minatel, B.C.; Sage, A.P.; Marshall, E.A.; Martinez, V.D.; Lam, W.L. Small noncoding rna expression in cancer. In Gene Expression Profiling in Cancer; IntechOpen: London, UK, 2019. [Google Scholar]
- Eddy, S.R. Noncoding RNA genes. Curr. Opin. Genet. Dev. 1999, 9, 695–699. [Google Scholar] [CrossRef]
- Lu, J.; Getz, G.; Miska, E.A.; Alvarez-Saavedra, E.; Lamb, J.; Peck, D.; Sweet-Cordero, A.; Ebert, B.L.; Mak, R.H.; Ferrando, A.A.; et al. MicroRNA expression profiles classify human cancers. Nature 2005, 435, 834–838. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, S.; Kartha, R.V. MicroRNA-mediated gene regulations in human sarcomas. Cell. Mol. Life Sci. 2012, 69, 3571–3585. [Google Scholar] [CrossRef]
- Wei, J.; Liu, X.; Li, T.; Xing, P.; Zhang, C.; Yang, J. The new horizon of liquid biopsy in sarcoma: The potential utility of circulating tumor nucleic acids. J. Cancer 2020, 11, 5293–5308. [Google Scholar] [CrossRef]
- Dvorská, D.; Škovierová, H.; Braný, D.; Halašová, E.; Danková, Z. Liquid biopsy as a tool for differentiation of leiomyomas and sarcomas of corpus uteri. Int. J. Mol. Sci. 2019, 20, 3825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, M.L.; Kim, G.E.; Mach, C.M.; Creighton, C.J.; Lev, D. Abstract 5242: miR-10b functions as a novel tumor suppressor in uterine leiomyosarcoma by promoting overexpression of SDC1. Cancer Res. 2014, 74, 5242. [Google Scholar] [CrossRef]
- Schiavon, B.N.; Carvalho, K.C.; Coutinho-Camillo, C.M.; Baiocchi, G.; Valieris, R.; Drummond, R.; da Silva, I.T.; De Brot, L.; Soares, F.A.; da Cunha, I.W. MiRNAs 144-3p, 34a-5p, and 206 are a useful signature for distinguishing uterine leiomyosarcoma from other smooth muscle tumors. Surg. Exp. Pathol. 2019, 2, 1–8. [Google Scholar] [CrossRef]
- Yokoi, A.; Matsuzaki, J.; Yamamoto, Y.; Tate, K.; Yoneoka, Y.; Shimizu, H.; Uehara, T.; Ishikawa, M.; Takizawa, S.; Aoki, Y.; et al. Serum microRNA profile enables preoperative diagnosis of uterine leiomyosarcoma. Cancer Sci. 2019, 110, 3718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Almeida, B.; Garcia, N.; Maffazioli, G.; Gonzalez dos Anjos, L.; Chada Baracat, E.; Candido Carvalho, K. Oncomirs expression profiling in uterine leiomyosarcoma cells. Int. J. Mol. Sci. 2017, 19, 52. [Google Scholar] [CrossRef]
- Zhang, Q.; Ubago, J.; Li, L.; Guo, H.; Liu, Y.; Qiang, W.; Kim, J.J.; Kong, B.; Wei, J.-J. Molecular analyses of 6 different types of uterine smooth muscle tumors: Emphasis in atypical leiomyoma. Cancer 2014, 120, 3165–3177. [Google Scholar] [CrossRef] [PubMed]
- Chuang, T.-D.; Panda, H.; Luo, X.; Chegini, N. miR-200c is aberrantly expressed in leiomyomas in an ethnic-dependent manner and targets ZEBs, VEGFA, TIMP2, and FBLN5. Endocr. Relat. Cancer 2012, 19, 541. [Google Scholar] [CrossRef] [Green Version]
- Chuang, T.-D.; Ho, M.; Khorram, O. The regulatory function of mir-200c on inflammatory and cell-cycle associated genes in SK-LMS-1, a leiomyosarcoma cell line. Reprod. Sci. 2015, 22, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Dos Anjos, L.G.; de Almeida, B.C.; de Almeida, T.G.; Rocha, A.M.L.; Maffazioli, G.D.N.; Soares, F.A.; da Cunha, I.W.; Baracat, E.C.; Carvalho, K.C. Could miRNA signatures be useful for predicting uterine sarcoma and carcinosarcoma prognosis and treatment? Cancers 2018, 10, 315. [Google Scholar] [CrossRef] [Green Version]
- Shi, G.; Perle, M.A.; Mittal, K.; Chen, H.; Zou, X.; Narita, M.; Hernando, E.; Lee, P.; Wei, J.J. Let-7 repression leads to HMGA2 overexpression in uterine leiomyosarcoma. J. Cell Mol. Med. 2009, 13, 3898–3905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zavadil, J.; Ye, H.; Liu, Z.; Wu, J.; Lee, P.; Hernando, E.; Soteropoulos, P.; Toruner, G.A.; Wei, J.-J. Profiling and functional analyses of microRNAs and their target gene products in human uterine leiomyomas. PLoS ONE 2010, 5, e12362. [Google Scholar] [CrossRef] [PubMed]
- Ayub, A.L.P.; D’Angelo Papaiz, D.; da Silva Soares, R.; Jasiulionis, M.G. The function of lncrnas as epigenetic regulators. In Non-Coding RNAs; IntechOpen: Rijeka, Croatia, 2020. [Google Scholar] [CrossRef] [Green Version]
- Grillone, K.; Riillo, C.; Riillo, C.; Scionti, F.; Rocca, R.; Rocca, R.; Tradigo, G.; Guzzi, P.H.; Alcaro, S.; Alcaro, S.; et al. Non-coding RNAs in cancer: Platforms and strategies for investigating the genomic “dark matter”. J. Exp. Clin. Cancer Res. 2020, 39, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Rasool, M.; Malik, A.; Zahid, S.; Basit Ashraf, M.A.; Qazi, M.H.; Asif, M.; Zaheer, A.; Arshad, M.; Raza, A.; Jamal, M.S. Non-coding RNAs in cancer diagnosis and therapy. Non-Coding RNA Res. 2016, 1, 69–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, H.; Zhang, X.; Dong, R.; Liu, X.; Li, Y.; Lu, S.; Xu, L.; Wang, Y.; Wang, X.; Hou, D.; et al. Integrated analysis of long noncoding RNAs and mRNAs reveals their potential roles in the pathogenesis of uterine leiomyomas. Oncotarget 2014, 5, 8625. [Google Scholar] [CrossRef] [PubMed]
Stage | Features | Description |
---|---|---|
I | T1 | Tumor limited to the uterus (T1). |
N0 | ||
M0 | ||
IA | T1a | Tumor restricted to the uterus (less than 5 cm) (T1a). |
N0 | ||
M0 | ||
IB | T1b | Tumor restricted to the uterus (more than 5 cm) (T1b). |
N0 | ||
M0 | ||
II | T2 | Tumor growing outside the uterus but is restricted to the pelvis (T2). |
N0 | ||
M0 | ||
IIIA | T3a | Tumor growing in a single tissue located in the abdomen (T3a). |
N0 | ||
M0 | ||
IIIB | T3b | Involvement of other extrauterine pelvic tissues, 2 or more sites (T3b). |
N0 | ||
M0 | ||
IIIC | T1–T3 | Tumor invades abdominal tissues (does not protrude from the abdomen) but does not grow into the bladder or rectum (T1 to T3). The cancer has spread to nearby lymph nodes (N1). |
N1 | ||
M0 | ||
IVA | T4 | Tumor spread to the rectum or urinary bladder (T4). It might or might not have spread to nearby lymph nodes (Any N). |
Any N | ||
M0 | ||
IVB | Any T | Tumor spread to distant sites (lungs, bones, or liver) (M1). It may or may not have grown into tissues in the pelvis and/or abdomen (any T) and it might or might not have spread to lymph nodes (Any N). |
Any N | ||
M1 |
Category EST | Fusion/Gene Alteration [72,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101] |
---|---|
Endometrial Stromal Nodule (ESN) | JAZF1-SUZ121 [86,87] MEAF6-PHF1 [86,87] |
Low-Grade Endometrial Stromal Sarcoma (LG-ESS) | JAZF1-SUZ121 [88] JAZF1-PHF1 [88] MEAF6-PHF1 [88] EPC1-PHF1 [89] MBTD1-EZHIP [89] JAZF1-BCORL1 [89] MAGED2-PLAG1 [90] MEAF6-SUZ12 [91] EPC2-PHF1 [92] BRD8-PHF1 [72] EPC1-BCOR [72] EPC1-SUZ12 [72] |
High-Grade Endometrial Stromal Sarcoma (HG-ESS) | YWHAE-NUTM2A/B1 [93] BCOR-rearrangement [94] ZC3H7B-BCOR [72,95] EPC1-BCOR [96] EPC1-SUZ12 [96] BCOR-ITD [72] LPP-BCOR [72] BRD8-PHF1 [97] |
Undifferentiated Uterine Sarcoma (UUS) | JAZF1-SUZ12 [97] YWHAE-NUTM2 [97] ZC3H7B-BCOR [97] YWHAE-rearrangement [97] HMGA-RAD51B [98] SMARCA4-deficient [99] |
NTRK-Rearranged Uterine Sarcomas (HG-ESS) | RBPMS-NTRK3 [100,101] TPR-NTRK1 [100,101] LMNA-NTRK1 [100,101] TPM3-NTRK1 [100,101] EML4-NTRK3 [100,101] STRN-NTRK3 [100,101] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Almeida, B.C.; dos Anjos, L.G.; Dobroff, A.S.; Baracat, E.C.; Yang, Q.; Al-Hendy, A.; Carvalho, K.C. Epigenetic Features in Uterine Leiomyosarcoma and Endometrial Stromal Sarcomas: An Overview of the Literature. Biomedicines 2022, 10, 2567. https://doi.org/10.3390/biomedicines10102567
de Almeida BC, dos Anjos LG, Dobroff AS, Baracat EC, Yang Q, Al-Hendy A, Carvalho KC. Epigenetic Features in Uterine Leiomyosarcoma and Endometrial Stromal Sarcomas: An Overview of the Literature. Biomedicines. 2022; 10(10):2567. https://doi.org/10.3390/biomedicines10102567
Chicago/Turabian Stylede Almeida, Bruna Cristine, Laura Gonzalez dos Anjos, Andrey Senos Dobroff, Edmund Chada Baracat, Qiwei Yang, Ayman Al-Hendy, and Katia Candido Carvalho. 2022. "Epigenetic Features in Uterine Leiomyosarcoma and Endometrial Stromal Sarcomas: An Overview of the Literature" Biomedicines 10, no. 10: 2567. https://doi.org/10.3390/biomedicines10102567
APA Stylede Almeida, B. C., dos Anjos, L. G., Dobroff, A. S., Baracat, E. C., Yang, Q., Al-Hendy, A., & Carvalho, K. C. (2022). Epigenetic Features in Uterine Leiomyosarcoma and Endometrial Stromal Sarcomas: An Overview of the Literature. Biomedicines, 10(10), 2567. https://doi.org/10.3390/biomedicines10102567