Combined Expression of HGFR with Her2/neu, EGFR, IGF1R, Mucin-1 and Integrin α2β1 Is Associated with Aggressive Epithelial Ovarian Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Immunohistochemistry
2.3. Evaluation of Biomarker Expression
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristic
3.2. Prognostic Impact of HGFR Protein Expression
3.3. Correlation of HGFR Expression and Other Protein Biomarkers and Prognostic Impact of Combined Expression Profiles
3.4. High Co-Expression of MET and the Other Biomarker Genes Is Significantly Associated with Impaired Patient Survival in a Large Independent EOC Cohort
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldwin, L.A.; Huang, B.; Miller, R.W.; Tucker, T.; Goodrich, S.T.; Podzielinski, I.; DeSimone, C.P.; Ueland, F.R.; van Nagell, J.R.; Seamon, L.G. Ten-Year Relative Survival for Epithelial Ovarian Cancer. Obstet. Gynecol. 2012, 120, 612–618. [Google Scholar] [CrossRef] [PubMed]
- Colombo, N.; Sessa, C.; Du Bois, A.; Ledermann, J.; McCluggage, W.G.; McNeish, I.; Morice, P.; Pignata, S.; Ray-Coquard, I.; Vergote, I.; et al. ESMO–ESGO consensus conference recommendations on ovarian cancer: Pathology and molecular biology, early and advanced stages, borderline tumours and recurrent disease. Ann. Oncol. 2019, 30, 672–705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Jiang, X.; Jiang, Y.; Guo, M.; Zhang, S.; Li, J.; He, J.; Liu, J.; Wang, J.; Ouyang, L. Recent advances in the development of dual VEGFR and c-Met small molecule inhibitors as anticancer drugs. Eur. J. Med. Chem. 2016, 108, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Maulik, G.; Shrikhande, A.; Kijima, T.; Ma, P.C.; Morrison, P.T.; Salgia, R. Role of the hepatocyte growth factor receptor, c-Met, in oncogenesis and potential for therapeutic inhibition. Cytokine Growth Factor Rev. 2002, 13, 41–59. [Google Scholar] [CrossRef]
- Yan, S.; Jiao, X.; Zou, H.; Li, K. Prognostic significance of c-Met in breast cancer: A meta-analysis of 6010 cases. Diagn. Pathol. 2015, 10, 62. [Google Scholar] [CrossRef] [Green Version]
- Pyo, J.S.; Kang, G.; Cho, W.J.; Choi, S.B. Clinicopathological significance and concordance analysis of c-MET immunohistochemistry in non-small cell lung cancers: A meta-analysis. Pathol. Res. Pract. 2016, 212, 710–716. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Yu, Y.; Zhao, N.; Cui, J.; Li, W.; Liu, T. c-Met as a prognostic marker in gastric cancer: A systematic review and meta-analysis. PLoS ONE 2013, 8, e79137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.H.; Kim, H.S.; Kim, B.J.; Jang, H.J.; Lee, J. Prognostic value of c-Met overexpression in hepatocellular carcinoma: A meta-analysis and review. Oncotarget 2017, 8, 90351–90357. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Qi, S.; Wang, P.; Li, W.; Liu, C.; Li, F. Diagnosis and Prognostic Significance of c-Met in Cervical Cancer: A Meta-Analysis. Dis. Markers 2016, 2016, 6594016. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Du, Z.; Zhang, M. Biomarker development in MET-targeted therapy. Oncotarget 2016, 7, 37370–37389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayhan, A.; Ertunc, D.; Tok, E.C.; Ayhan, A. Expression of the c-Met in advanced epithelial ovarian cancer and its prognostic significance. Int. J. Gynecol. Cancer 2005, 15, 618–623. [Google Scholar] [CrossRef] [PubMed]
- Di Renzo, M.F.; Olivero, M.; Katsaros, D.; Crepaldi, T.; Gaglia, P.; Zola, P.; Sismondi, P.; Comoglio, P.M. Overexpression of the MET/HGF receptor in ovarian cancer. Int. J. Cancer 1994, 58, 658–662. [Google Scholar] [CrossRef]
- Bu, R.; Uddin, S.; Bavi, P.; Hussain, A.R.; Al-Dayel, F.; Ghourab, S.; Ahmed, M.; Al-Kuraya, K.S. HGF/c-Met pathway has a prominent role in mediating antiapoptotic signals through AKT in epithelial ovarian carcinoma. Lab. Investig. 2011, 91, 124–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huntsman, D.; Resau, J.H.; Klineberg, E.; Auersperg, N. Comparison of c-met expression in ovarian epithelial tumors and normal epithelia of the female reproductive tract by quantitative laser scan microscopy. Am. J. Pathol. 1999, 155, 343–348. [Google Scholar] [CrossRef] [Green Version]
- Sawada, K.; Radjabi, A.R.; Shinomiya, N.; Kistner, E.; Kenny, H.; Becker, A.R.; Turkyilmaz, M.A.; Salgia, R.; Yamada, S.D.; Woude, G.F.V.; et al. c-Met overexpression is a prognostic factor in ovarian cancer and an effective target for inhibition of peritoneal dissemination and invasion. Cancer Res. 2007, 67, 1670–1679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.H.; Jang, H.J.; Kim, H.S.; Kim, B.J.; Park, S.H. Prognostic impact of high c-Met expression in ovarian cancer: A meta-analysis. J. Cancer 2018, 9, 3427–3434. [Google Scholar] [CrossRef] [PubMed]
- Bååth, M.; Jönsson, J.-M.; Fremer, S.W.; de la Fuente, L.M.; Tran, L.; Malander, S.; Kannisto, P.; Måsbäck, A.; Honeth, G.; Hedenfalk, I. Met expression and cancer stem cell networks impact outcome in high-grade serous ovarian cancer. Genes 2021, 12, 742. [Google Scholar] [CrossRef]
- Klotz, D.M.; Link, T.; Goeckenjan, M.; Wimberger, P.; Kuhlmann, J.D. The levels of soluble cMET ectodomain in the blood of patients with ovarian cancer are an independent prognostic biomarker. Mol. Oncol. 2021, 15, 2491–2503. [Google Scholar] [CrossRef] [PubMed]
- The Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 2011, 474, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Mayer, B.; Funke, I.; Johnson, J.P. High expression of a Lewis(x)-related epitope in gastric carcinomas indicates metastatic potential and poor prognosis. Gastroenterology 1996, 111, 1433–1446. [Google Scholar] [CrossRef]
- Dötzer, K.; Schlüter, F.; Koch, F.E.; Brambs, C.E.; Anthuber, S.; Frangini, S.; Czogalla, B.; Burges, A.; Werner, J.; Mahner, S.; et al. Integrin α2β1 represents a prognostic and predictive biomarker in primary ovarian cancer. Biomedicines 2021, 9, 289. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, O.I.; Regenauer, M.; Czogalla, B.; Brambs, C.; Burges, A.; Mayer, B. Interpatient Heterogeneity in Drug Response and Protein Biomarker Expression of Recurrent Ovarian Cancer. Cancers 2022, 14, 2279. [Google Scholar] [CrossRef] [PubMed]
- Wolff, A.C.; Hammond, M.E.H.; Hicks, D.G.; Dowsett, M.; McShane, L.M.; Allison, K.H.; Allred, D.C.; Bartlett, J.M.S.; Bilous, M.; Fitzgibbons, P.; et al. Recommendations for human epidermal growth factor receptor 2 testing in breast. J. Clin. Oncol. 2013, 31, 3997–4013. [Google Scholar] [CrossRef]
- Rüschoff, J.; Dietel, M.; Baretton, G.; Arbogast, S.; Walch, A.; Monges, G.; Chenard, M.-P.; Penault-Llorca, F.; Nagelmeier, I.; Schlake, W.; et al. HER2 diagnostics in gastric cancer-guideline validation and development of standardized immunohistochemical testing. Virchows Arch. 2010, 457, 299–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fekete, J.T.; Ősz, Á.; Pete, I.; Nagy, G.R.; Vereczkey, I.; Győrffy, B. Predictive biomarkers of platinum and taxane resistance using the transcriptomic data of 1816 ovarian cancer patients. Gynecol. Oncol. 2020, 156, 654–661. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Tsuda, H.; Miyai, K.; Takano, M.; Tamai, S.; Matsubara, O. Gene amplification and protein overexpression of MET are common events in ovarian clear-cell adenocarcinoma: Their roles in tumor progression and prognostication of the patient. Mod. Pathol. 2011, 24, 1146–1155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Zhang, H.; Zhao, S.; Shi, Y.; Yao, J.; Zhang, Y.; Guo, H.; Liu, X. Overexpression of MACC1 and the association with hepatocyte growth factor/c-Met in epithelial ovarian cancer. Oncol. Lett. 2015, 9, 1989–1996. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Tan, M.; Zhang, S.; Li, X.; Gao, J.; Zhang, D.; Hao, Y.; Gao, S.; Liu, J.; Lin, B. Expression and significance of CD44, CD47 and c-met in ovarian clear cell carcinoma. Int. J. Mol. Sci. 2015, 16, 3391–3404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorenzato, A.; Olivero, M.; Patanè, S.; Rosso, E.; Oliaro, A.; Comoglio, P.M.; Di Renzo, M.F. Novel somatic mutations of the MET oncogene in human carcinoma metastases activating cell motility and invasion. Cancer Res. 2002, 62, 7025–7030. [Google Scholar] [PubMed]
- Gherardi, E.; Birchmeier, W.; Birchmeier, C.; Woude, G.V. Targeting MET in cancer: Rationale and progress. Nat. Rev. Cancer 2012, 12, 89–103. [Google Scholar] [CrossRef] [PubMed]
- Blumenschein, G.R.; Mills, G.B.; Gonzalez-Angulo, A.M. Targeting the hepatocyte growth factor-cMET axis in cancer therapy. J. Clin. Oncol. 2012, 30, 3287–3296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.-J.; Yoon, A.; Ryu, J.-Y.; Cho, Y.-J.; Choi, J.-J.; Song, S.Y.; Bang, H.; Lee, J.S.; Cho, W.C.; Choi, C.H.; et al. C-MET as a Potential Therapeutic Target in Ovarian Clear Cell Carcinoma. Sci. Rep. 2016, 6, 38502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, S.; Adjei, A.A. MET: A promising anticancer therapeutic target. Nat. Rev. Clin. Oncol. 2012, 9, 314–326. [Google Scholar] [CrossRef]
- Santoro, A.; Rimassa, L.; Borbath, I.; Daniele, B.; Salvagni, S.; Van Laethem, J.L.; Van Vlierberghe, H.; Trojan, J.; Kolligs, F.T.; Weiss, A.; et al. Tivantinib for second-line treatment of advanced hepatocellular carcinoma. Lancet Oncol. 2013, 14, 55–63. [Google Scholar] [CrossRef]
- Xiang, Q.; Chen, W.; Ren, M.; Wang, J.; Zhang, H.; Deng, D.Y.; Zhang, L.; Shang, C.; Chen, Y. Cabozantinib suppresses tumor growth and metastasis in hepatocellular carcinoma by a dual blockade of VEGFR2 and MET. Clin. Cancer Res. 2014, 20, 2959–2970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choueiri, T.K.; Escudier, B.; Powles, T.; Mainwaring, P.N.; Rini, B.I.; Donskov, F.; Hammers, H.; Hutson, T.E.; Lee, J.-L.; Peltola, K.; et al. Cabozantinib versus Everolimus in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2015, 373, 1814–1823. [Google Scholar] [CrossRef] [PubMed]
- Scagliotti, G.; Von Pawel, J.; Novello, S.; Ramlau, R.; Favaretto, A.; Barlesi, F.; Akerley, W.; Orlov, S.; Santoro, A.; Spigel, D.R.; et al. Phase III Multinational, Randomized, Double-Blind, Placebo-Controlled Study of Tivantinib (ARQ 197) Plus Erlotinib Versus Erlotinib Alone in Previously Treated Patients With Locally Advanced or Metastatic Nonsquamous Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2015, 33, 2667–2674. [Google Scholar] [CrossRef]
- Tang, M.K.S.; Zhou, H.Y.; Yam, J.W.P.; Wong, A.S.T. c-Met overexpression contributes to the acquired apoptotic resistance of nonadherent ovarian cancer cells through a cross talk mediated by phosphatidylinositol 3-kinase and extracellular signal-regulated kinase 1/2. Neoplasia 2010, 12, 128–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchion, D.C.; Bicaku, E.; Xiong, Y.; Zgheib, N.B.; Al Sawah, E.; Stickles, X.B.; Judson, P.L.; Lopez, A.S.; Cubitt, C.L.; Gonzalez-Bosquet, J.; et al. A novel c-Met inhibitor, MK8033, synergizes with carboplatin plus paclitaxel to inhibit ovarian cancer cell growth. Oncol. Rep. 2013, 29, 2011–2018. [Google Scholar] [CrossRef] [PubMed]
- Vergote, I.B.; Smith, D.C.; Berger, R.; Kurzrock, R.; Vogelzang, N.J.; Sella, A.; Wheler, J.; Lee, Y.; Foster, P.G.; Weitzman, R.; et al. A phase 2 randomised discontinuation trial of cabozantinib in patients with ovarian carcinoma. Eur. J. Cancer 2017, 83, 229–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Cheng, J.X. c-Met inhibition enhances chemosensitivity of human ovarian cancer cells. Clin. Exp. Pharmacol. Physiol. 2017, 44, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.C.; Weng, C.S.; Hsu, Y.T.; Chang, C.L. Antitumor effects of BMS-777607 on ovarian cancer cells with constitutively activated c-MET. Taiwan J. Obstet. Gynecol. 2019, 58, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Konstantinopoulos, P.A.; Brady, W.E.; Farley, J.; Armstrong, A.; Uyar, D.S.; Gershenson, D.M. Phase II study of single-agent cabozantinib in patients with recurrent clear cell ovarian, primary peritoneal or fallopian tube cancer (NRG-GY001). Gynecol. Oncol. 2018, 150, 9–13. [Google Scholar] [CrossRef]
- Choi, B.-H.; Young Ryu, D.; Ryoo, I.-G.; Kwak, M.-K. NFE2L2/NRF2 silencing-inducible miR-206 targets c-MET/EGFR and suppresses BCRP/ABCG2 in cancer cells. Oncotarget 2017, 8, 107188. [Google Scholar] [CrossRef] [Green Version]
- Hassan, W.; Chitcholtan, K.; Sykes, P.; Garrill, A. Ascitic fluid from advanced ovarian cancer patients compromises the activity of receptor tyrosine kinase inhibitors in 3D cell clusters of ovarian cancer cells. Cancer Lett. 2018, 420, 168–181. [Google Scholar] [CrossRef]
- Hassan, W.; Chitcholtan, K.; Sykes, P.; Garrill, A. A Combination of Two Receptor Tyrosine Kinase Inhibitors, Canertinib and PHA665752 Compromises Ovarian Cancer Cell Growth in 3D Cell Models. Oncol. Ther. 2016, 4, 257–274. [Google Scholar] [CrossRef] [Green Version]
- Puvanenthiran, S.; Essapen, S.; Haagsma, B.; Bagwan, I.; Green, M.; Khelwatty, S.A.; Seddon, A.; Modjtahedi, H. Co-expression and prognostic significance of the HER family members, EGFRvIII, c-MET, CD44 in patients with ovarian cancer. Oncotarget 2018, 9, 19662–19674. [Google Scholar] [CrossRef]
Antigen | Clone | Species | Fixation | Use of Kit | wc (μg/mL) | Supplier | Cutoff for Positivity |
---|---|---|---|---|---|---|---|
Primary antibodies | |||||||
HGFR | SP44 | r | Acetone | - | 2.12 | Spring Bioscience, Pleasanton, CA, USA | ≥50% |
ERα | 1D5 | m | Formalin | + | 2.50 | Dako, Santa Clara, CA, USA | ≥1% |
PR | PgR 636 | m | Formalin | + | 2.50 | Dako, Santa Clara, CA, USA | ≥1% |
HER-2/neu | 4B5 | r | Acetone | - | 1.50 | Ventana, Roche, Basel, CH | ≥10% (Intensity 2+/3+) |
EGFR | H11 | m | Acetone | - | 2.94 | Dako, Santa Clara, CA, USA | ≥50% |
IGF1R | 23-41 | m | Acetone | + | 4.00 | Invitrogen, Carlsbad, CA, USA | ≥80% |
MUC-1 | Ma552 | m | Acetone | - | 0.50 | Monosan, Uden, NL | ≥70% |
CD44v6 | VFF-18 | m | Acetone | - | 1.00 | Affymetrix eBioscience, Santa Clara, CA, USA | ≥10% |
Integrin α2β1 | BHA2.1 | m | Acetone | - | 2.50 | Millipore, Burlington, MA, USA | ≥20% |
Positive controls | |||||||
Epithelial Antigen | Ber-EP4 | m | Acetone | - | 2.50 | Dako, Santa Clara, CA, USA | |
Isotype controls | |||||||
MOPC 21 | MOPC 21 | m | - | 5.00 | Sigma-Aldrich, St. Louis, MO, USA | ||
MOPC 21 | m | + | 4.00 | Sigma-Aldrich, St. Louis, MO, USA | |||
DA1E | r | - | 2.12 | Cell Signaling, Danvers, MA, USA | |||
Biotin-conjugated secondary antibodies | |||||||
111-065-114 | g anti r | 7.00 | Jackson Immunoresearch, West Grove, PA, USA | ||||
315-065-048 | r anti m | 0.75 | Jackson Immunoresearch, West Grove, PA, USA |
n or Value | % | ||
---|---|---|---|
Age | Mean/median | 61/66 years | |
Range | 24–83 years | ||
FIGO Stage | I/II | 0 | 0.0 |
III | 29 | 69.0 | |
IV | 13 | 31.0 | |
pT | pT2 | 4 | 9.5 |
pT3 | 38 | 90.5 | |
pN | pN0 | 5 | 11.9 |
pN1 | 28 | 66.7 | |
Nx | 9 | 21.4 | |
cM | cM0 | 29 | 69.0 |
cM1 | 13 | 31.0 | |
Primary Tumor Site | Ovarian | 35 | 83.3 |
Fallopian tube | 5 | 11.9 | |
Peritoneal | 2 | 4.8 | |
Histological Subtype | Serous | 38 | 90.5 |
Other | 4 | 9.5 | |
Grading | Low grade | 1 | 2.0 |
High grade | 41 | 98.0 | |
Ascites | Yes | 36 | 85.7 |
No | 6 | 14.3 | |
Macroscopic Residual Tumor after Surgery | None | 30 | 71.4 |
<1 cm | 7 | 16.7 | |
>1 cm | 5 | 11.9 | |
Lymphatic Vessel Invasion | Yes | 23 | 54.7 |
No | 17 | 40.5 | |
Missing | 2 | 4.8 | |
Vascular Invasion | Yes | 6 | 14.3 |
No | 34 | 80.9 | |
Missing | 2 | 4.8 | |
First-Line Treatment | C | 3 | 7.2 |
C + P | 14 | 33.3 | |
C + P + B | 25 | 59.5 | |
Relapse after Chemotherapy | <6 months | 2 | 4.8 |
6–12 months | 12 | 28.5 | |
>12 months | 28 | 66.7 |
Variable | PFS | PFI | OS | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | Log-Rank | MV Cox Regression | Log-Rank | MV Cox Regression | Log-Rank | MV Cox Regression | |||||||
MS | p | HR (CI 95%) | p | MS | p | HR (CI 95%) | p | MS | p | HR (CI 95%) | p | ||
Age ≤ 61 years | 19 | 22 | 0.965 | 17 | 0.970 | nr | 0.193 | ||||||
Age > 61 years | 23 | 22 | 17 | 42 | |||||||||
<pT3c | 7 | 27 | 0.665 | 22 | 0.679 | 45 | 0.928 | ||||||
pT3c | 35 | 22 | 17 | 42 | |||||||||
pN0 | 5 | 29 | 0.163 | 17 | 0.145 | 45 | 0.929 | ||||||
pN1 | 28 | 22 | 22 | 42 | |||||||||
cM0 | 29 | 27 | 0.081 | 22 | 0.068 | nr | 0.015 | 2.25 (0.62–8.18) | 0.217 | ||||
cM1 | 13 | 16 | 11 | 30 | |||||||||
G1/G2 | 2 | 14 | 0.579 | 8 | 0.610 | 30 | 0.843 | ||||||
G3 | 40 | 22 | 17 | 42 | |||||||||
Ascites absent | 6 | 35 | 0.147 | 30 | 0.139 | 42 | 0.408 | ||||||
Ascites present | 36 | 19 | 15 | 38 | |||||||||
MR Tumor absent | 30 | 27 | 0.008 | 2.19 (1.03–4.68) | 0.043 | 22 | 0.010 | 2.10 (0.99–4.51) | 0.057 | 45 | 0.041 | 8.42 (1.59–44.61) | 0.012 |
MR Tumor present | 12 | 13 | 9 | 26 | |||||||||
HGFR low | 19 | 35 | 0.041 | 2.99 (1.01–8.91) | 0.049 | 30 | 0.048 | 2.87 (0.97–8.49) | 0.057 | nr | 0.012 | 5.77 (1.56–21.34) | 0.009 |
HGFR high | 23 | 18 | 13 | 35 |
HGFR | ||||||
---|---|---|---|---|---|---|
n | <50% | ≥50% | p # | |||
Growth Factor Receptor | ERα | 42 | 0.468 | |||
<1% | 6 | 4 | ||||
≥1% | 13 | 19 | ||||
PR | 42 | 0.750 | ||||
<1% | 13 | 14 | ||||
≥1% | 6 | 9 | ||||
Her-2/neu | 42 | 1 | ||||
Negative | 14 | 17 | ||||
Positive | 5 | 6 | ||||
EGFR | 42 | 0.707 | ||||
<50% | 14 | 19 | ||||
≥50% | 5 | 4 | ||||
IGF1R | 42 | 1 | ||||
<80% | 4 | 4 | ||||
≥80% | 15 | 19 | ||||
Cell Adhesion Molecule | MUC-1 | 42 | 0.757 | |||
<70% | 10 | 10 | ||||
≥70% | 9 | 13 | ||||
CD44v6 | 42 | 1 | ||||
<10% | 14 | 16 | ||||
≥10% | 5 | 7 | ||||
Integrin α2β1 | 42 | 0.108 | ||||
<20% | 15 | 12 | ||||
≥20% | 4 | 11 |
PFS | PFI | OS | |||||
---|---|---|---|---|---|---|---|
n | MS | p * | MS | p * | MS | p * | |
HGFR low | 19 | 35 | 0.041 | 30 | 0.048 | nr | 0.012 |
HGRF high | 23 | 18 | 13 | 35 | |||
HGFRhigh/ERαhigh | 19 | 19 | 0.186 | 14 | 0.199 | 38 | 0.051 |
Remaining combinations # | 23 | 30 | 25 | nr | |||
HGFRhigh/PRhigh | 9 | 19 | 0.481 | 14 | 0.489 | 35 | 0.281 |
Remaining combinations # | 33 | 27 | 22 | 42 | |||
HGFRhigh/Her-2/neuhigh | 6 | 16 | 0.009 | 11 | 0.008 | 22 | 0.42 |
Remaining combinations # | 36 | 27 | 22 | 42 | |||
HGFRhigh/EGFRhigh | 4 | 12 | <0.001 | 8 | <0.001 | 23 | 0.011 |
Remaining combinations # | 38 | 24 | 19 | 42 | |||
HGFRhigh/IGF1Rhigh | 19 | 18 | 0.058 | 13 | 0.069 | 35 | 0.03 |
Remaining combinations # | 23 | 30 | 25 | nr | |||
HGFRhigh/MUC-1high | 13 | 16 | 0.002 | 11 | 0.003 | 26 | <0.001 |
Remaining combinations # | 29 | 30 | 25 | nr | |||
HGFRhigh/CD44v6high | 7 | 16 | 0.065 | 11 | 0.081 | 38 | 0.059 |
Remaining combinations # | 35 | 27 | 22 | 45 | |||
HGFRhigh/Integrin α2β1high | 11 | 15 | 0.004 | 10 | 0.004 | 27 | 0.054 |
Remaining combinations # | 31 | 29 | 25 | 45 |
PFS | OS | |||||
---|---|---|---|---|---|---|
n | MS | p * | n | MS | p * | |
MET low | 192 | 19 | 0.018 | 138 | 49 45 | 0.033 |
MET high | 94 | 16 | 188 | |||
MET high/ESR1 high | 161 | 22 | 0.29 | 378 | 49 49 | 0.22 |
Remaining combinations # | 406 | 19 | 229 | |||
MET high/PGRhigh | 155 | 22 | 0.17 | 313 | 49 49 | 0.15 |
Remaining combinations # | 412 | 19 | 294 | |||
MET high/ERBB2 high | 124 | 16 | 0.036 | 192 | 45 49 | 0.043 |
Remaining combinations # | 109 | 19 | 145 | |||
MET high/EGFR high | 69 | 17 | 0.0047 | 69 | 49 73 | 0.083 |
Remaining combinations # | 49 | 27 | 51 | |||
MET high/IGF1R high | 172 | 18 | 0.076 | 198 | 45 49 | 0.048 |
Remaining combinations # | 157 | 19 | 139 | |||
MET high/MUC1 high | 94 | 16 | 0.018 | 186 | 45 48 | 0.043 |
Remaining combinations # | 192 | 19 | 140 | |||
MET high/CD44 high | 186 | 18 | 0.071 | 192 | 45 49 | 0.057 |
Remaining combinations # | 143 | 19 | 145 | |||
MET high/ITGA2 high | 70 | 17 | 0.003 | 70 | 49 73 | 0.058 |
Remaining combinations # | 51 | 27 | 53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czogalla, B.; Dötzer, K.; Sigrüner, N.; von Koch, F.E.; Brambs, C.E.; Anthuber, S.; Frangini, S.; Burges, A.; Werner, J.; Mahner, S.; et al. Combined Expression of HGFR with Her2/neu, EGFR, IGF1R, Mucin-1 and Integrin α2β1 Is Associated with Aggressive Epithelial Ovarian Cancer. Biomedicines 2022, 10, 2694. https://doi.org/10.3390/biomedicines10112694
Czogalla B, Dötzer K, Sigrüner N, von Koch FE, Brambs CE, Anthuber S, Frangini S, Burges A, Werner J, Mahner S, et al. Combined Expression of HGFR with Her2/neu, EGFR, IGF1R, Mucin-1 and Integrin α2β1 Is Associated with Aggressive Epithelial Ovarian Cancer. Biomedicines. 2022; 10(11):2694. https://doi.org/10.3390/biomedicines10112694
Chicago/Turabian StyleCzogalla, Bastian, Katharina Dötzer, Nicole Sigrüner, Franz Edler von Koch, Christine E. Brambs, Sabine Anthuber, Sergio Frangini, Alexander Burges, Jens Werner, Sven Mahner, and et al. 2022. "Combined Expression of HGFR with Her2/neu, EGFR, IGF1R, Mucin-1 and Integrin α2β1 Is Associated with Aggressive Epithelial Ovarian Cancer" Biomedicines 10, no. 11: 2694. https://doi.org/10.3390/biomedicines10112694
APA StyleCzogalla, B., Dötzer, K., Sigrüner, N., von Koch, F. E., Brambs, C. E., Anthuber, S., Frangini, S., Burges, A., Werner, J., Mahner, S., & Mayer, B. (2022). Combined Expression of HGFR with Her2/neu, EGFR, IGF1R, Mucin-1 and Integrin α2β1 Is Associated with Aggressive Epithelial Ovarian Cancer. Biomedicines, 10(11), 2694. https://doi.org/10.3390/biomedicines10112694