Positive Association between Preserved C-Peptide and Cognitive Function in Pregnant Women with Type-1 Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statements
2.2. Study Participants
2.2.1. Inclusion Criteria
2.2.2. Exclusion Criteria
2.3. Data Collection
2.3.1. Cognitive Test
2.3.2. Continuous Glucose Monitoring
2.3.3. Subclinical Hypothyroidism in Pregnant Women with Type 1 Diabetes
2.3.4. Cardiovascular Autonomic Neuropathy
2.3.5. Blood Sample Analyses
2.3.6. Sample Size
2.3.7. Statistical Analysis
3. Results
3.1. General Data
3.2. Results of Cognitive Function Test According to High—Moderate—Low Scores
3.3. Mean and Standard Deviation of Cognitive Tests
3.4. Relative Risks for Cognitive Functions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Diabetes Association. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2021. Diabetes Care 2021, 44 (Suppl. 1), S15–S33. [Google Scholar] [CrossRef] [PubMed]
- Knorr, S.; Juul, S.; Bytoft, B.; Lohse, Z.; Clausen, T.D.; Jensen, R.B.; Damm, P.; Beck-Nielsen, H.; Mathiesen, E.R.; Jensen, D.M.; et al. Impact of type 1 diabetes on maternal long-term risk of hospitalisation and mortality: A nationwide combined clinical and register-based cohort study (The EPICOM study). Diabetologia 2018, 61, 1071–1080. [Google Scholar] [CrossRef] [Green Version]
- Yokomichi, H.; Mochizuki, M.; Shinohara, R.; Kushima, M.; Horiuchi, S.; Kojima, R.; Ooka, T.; Akiyama, Y.; Miyake, K.; Otawa, S.; et al. Japan Environment and Children’s Study Group. Gestational age, birth weight, and perinatal complications in mothers with Diabetes and impaired glucose tolerance: Japan Environment and Children’s Study cohort. PLoS ONE 2022, 17, e0269610. [Google Scholar] [CrossRef] [PubMed]
- Dogra, V.; Mittal, B.; Senthil Kumaran, S.; Nehra, A.; Sagar, R.; Gupta, A.; Kalaivani, M.; Gupta, Y.; Tandon, N. Evaluation of Cognitive Deficits in Adults with Type 1 Diabetes Stratified by the Age of Diabetes Onset: A Cross-Sectional Study. Adv. Ther. 2022, 39, 1711–1723. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Fang, C.; Li, X.; Cao, Y.J.; Zhang, Q.L.; Huang, Y.; Pan, J.; Zhang, X. Type 1 diabetes-associated cognitive impairment and diabetic peripheral neuropathy in Chinese adults: Results from a prospective cross-sectional study. BMC Endocr. Disord. 2019, 19, 34. [Google Scholar] [CrossRef] [PubMed]
- Shalimova, A.; Graff, B.; Gasecki, D.; Wolf, J.; Sabisz, A.; Szurowska, E.; Jodzio, K.; Narkiewicz, K. Cognitive Dysfunction in Type 1 Diabetes Mellitus. J. Clin. Endocrinol. Metab. 2019, 104, 2239–2249. [Google Scholar] [CrossRef]
- Spangmose, A.L.; Skipper, N.; Knorr, S.; Wullum Gundersen, T.; Beck Jensen, R.; Damm, P.; Lykke Mortensen, E.; Pinborg, A.; Svensson, J.; Clausen, T. School performance in Danish children exposed to maternal type 1 diabetes in utero: A nationwide retrospective cohort study. PLoS Med. 2022, 19, e1003977. [Google Scholar] [CrossRef]
- Nattero-Chávez, L.; Luque-Ramírez, M.; Escobar-Morreale, H.F. Systemic endocrinopathies (thyroid conditions and Diabetes): Impact on postnatal life of the offspring. Fertil. Steril. 2019, 111, 1076–1091. [Google Scholar] [CrossRef]
- Bytoft, B.; Knorr, S.; Vlachova, Z.; Jensen, R.B.; Mathiesen, E.R.; Beck-Nielsen, H.; Gravholt, C.H.; Jensen, D.M.; Clausen, T.D.; Mortensen, E.L.; et al. Long-term Cognitive Implications of Intrauterine Hyperglycemia in Adolescent Offspring of Women with Type 1 Diabetes (the EPICOM Study). Diabetes Care 2016, 39, 1356–1363. [Google Scholar] [CrossRef] [Green Version]
- Vanhandsaeme, G.; Benhalima, K. The long-term metabolic and neurocognitive risks in offspring of women with type 1 diabetes mellitus. Acta Diabetol. 2021, 58, 845–858. [Google Scholar] [CrossRef]
- Nevo-Shenker, M.; Shalitin, S. The Impact of Hypo- and Hyperglycemia on Cognition and Brain Development in Young Children with Type 1 Diabetes. Horm. Res. Paediatr. 2021, 94, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Gonder-Frederick, L.A.; Zrebiec, J.F.; Bauchowitz, A.U.; Ritterband, L.M.; Magee, J.C.; Cox, D.J.; Clarke, W.L. Cognitive function is disrupted by both hypo- and hyperglycemia in school-aged children with type 1 diabetes: A field study. Diabetes Care 2009, 32, 1001–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wessels, A.M.; Scheltens, P.; Barkhof, F.; Heine, R.J. Hyperglycaemia as a determinant of cognitive decline in patients with type 1 diabetes. Eur. J. Pharmacol. 2008, 585, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Cameron, F.J.; Northam, E.A.; Ryan, C.M. The effect of type 1 diabetes on the developing brain. Lancet Child Adolesc. Health 2019, 3, 427–436. [Google Scholar] [CrossRef]
- Musen, G.; Tinsley, L.; Marcinkowski, K.A.; Pober, D.; Sun, J.K.; Khatri, M.; Huynh, R.; Lu, A.; King, G.L.; Keenan, H.A. Cognitive Function Deficits Associated with Long-Duration Type 1 Diabetes and Vascular Complications. Diabetes Care 2018, 41, 1749–1756. [Google Scholar] [CrossRef] [Green Version]
- Sima, A.A.; Kamiya, H. Is C-peptide replacement the missing link for successful treatment of neurological complications in type 1 diabetes? Curr. Drug Targets 2008, 9, 37–46. [Google Scholar] [CrossRef]
- Li, Z.G.; Sima, A.A. C-peptide and central nervous system complications in Diabetes. Exp. Diabesity Res. 2004, 5, 79–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, J.W.; Evans, A.T.; Costall, B.; Smythe, J.W. Thyroid hormones, brain function and cognition. A brief review. Neurosci. Biobehav. Rev. 2002, 26, 45–60. [Google Scholar] [CrossRef]
- Pop, V.J.; Ormindean, V.; Mocan, A.; Meems, M.; Broeren, M.; Denollet, J.K.; Wiersinga, W.M.; Bunevicius, A. Maternal cognitive function during pregnancy in relation to hypo- and hyperthyroxinemia. Clin. Endocrinol. 2019, 91, 824–833. [Google Scholar] [CrossRef] [Green Version]
- Spallone, V.; Ziegler, D.; Freeman, R.; Bernardi, L.; Frontoni, S.; Pop-Busui, R.; Stevens, M.; Kempler, P.; Hilsted, J.; Tesfaye, S.; et al. Toronto Consensus Panel on Diabetic Neuropathy. Cardiovascular autonomic neuropathy in diabetes: Clinical impact, assessment, diagnosis, and management. Diabetes Metab. Res. Rev. 2011, 27, 639–653. [Google Scholar] [CrossRef]
- Bassi, A.; Bozzali, M. Potential Interactions between the Autonomic Nervous System and higher level Functions in Neurological and Neuropsychiatric Conditions. Front. Neurol. 2015, 6, 182. [Google Scholar] [CrossRef] [Green Version]
- Leigh, S.J.; Morris, M.J. Diet, inflammation and the gut microbiome: Mechanisms for obesity-associated cognitive impairment. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165767. [Google Scholar] [CrossRef] [PubMed]
- Barber, T.M.; Kyrou, I.; Randeva, H.S.; Weickert, M.O. Mechanisms of Insulin Resistance at the Crossroad of Obesity with Associated Metabolic Abnormalities and Cognitive Dysfunction. Int. J. Mol. Sci. 2021, 22, 546. [Google Scholar] [CrossRef]
- Jequier, E. Leptin signaling, adiposity, and energy balance. Ann. N. Y. Acad. Sci. 2022, 967, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Cato, A.; Hershey, T. Cognition and Type 1 Diabetes in Children and Adolescents. Diabetes Spectr. 2016, 29, 197–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delmis, J. Hypothyroidism and pregnancy. In Hypothyroidism, 1st ed.; Kusic, Z., Ed.; Medicinska Naklada: Zagreb, Croatia, 2014; pp. 57–61. [Google Scholar]
- Yee, L.M.; Kamel, L.A.; Quader, Z.; Rajan, P.V.; Taylor, S.M.; O’Conor, R.; Wolf, M.S.; Simon, M.A. Characterizing Literacy and Cognitive Function during Pregnancy and Characterizing Literacy and Cognitive Function during Pregnancy and Postpartum. Am. J. Perinatol. 2017, 34, 927–934. [Google Scholar]
- Grattan, D.R.; Ladyman, S.R. Neurophysiological and cognitive changes in pregnancy. Handb. Clin. Neurol. 2020, 171, 25–55. [Google Scholar]
- Sanborn, V.; Preis, S.R.; Ang, A.; Devine, S.; Mez, J.; DeCarli, C.; Au, R.; Alosco, M.L.; Gunstad, J. Association between Leptin, Cognition, and Structural Brain Measures among “Early” Middle-Aged Adults: Results from the Framingham Heart Study Third Generation Cohort. J. Alzheimer’s Dis. 2020, 77, 1279–1289. [Google Scholar] [CrossRef]
- Warren, M.W.; Hynan, L.S.; Weiner, M.F. Leptin and cognition. Dement. Geriatr. Cogn. Disord. 2012, 33, 410–415. [Google Scholar] [CrossRef]
- Hauguel-de Mouzon, S.; Lepercq, J.; Catalano, P. The known and unknown of leptin in pregnancy. Am. J. Obstet. Gynecol. 2006, 194, 1537–1545. [Google Scholar] [CrossRef]
- Wahren, J.; Ekberg, K.; Johansson, J.; Henriksson, M.; Pramanik, A.; Johansson, B.-L.; Rigler, R.; Rnvall, H.J. Role of C-peptide in human physiology. Am. J. Physiol. Endocrinol. Metab. 2000, 278, E759–E768. [Google Scholar] [CrossRef] [PubMed]
- Sima, A.A.; Kamiya, H.; Li, Z.G. Insulin, C-peptide, hyperglycemia, and central nervous system complications in Diabetes. Eur. J. Pharmacol. 2004, 490, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, W.; Grunberger, G.; Sima, A.A.F. Hippocampal neuronal apoptosis in type 1 diabetes. Brain Res. 2002, 946, 212–231. [Google Scholar] [CrossRef]
- Li, Z.G.; Zhang, W.; Sima, A.A.F. C-peptide enhances insulin-mediated cell growth and protection against high glucose induced apoptosis in SH-SY5Y cells. Diabetes Metab. Res. Rev. 2003, 19, 375–385. [Google Scholar] [CrossRef] [PubMed]
Variable | N (%) | Minimum | Maximum | Mean ± SD or Median and IQR |
---|---|---|---|---|
Age (years) | 78 | 19 | 38 | 30.7 ± 5.5 |
<30 years | 30 (38%) | 19 | 29 | 25.1 ± 3.2 |
≥30 years | 48 (61.5%) | 30 | 38 | 34.4 ± 2.9 |
Duration of T1DM | 78 | 2.0 | 36 | 14.5 ± 8.6 |
<8 years | 23 (29.5) | 2 | 7 | 3.9 ± 2.2 |
≥8 years | 55 (70.5) | 9 | 36 | 18.8 ± 6.2 |
Age of onset T1DM | 78 | 2 | 32 | 16.3 ± 9.2 |
Before 10 years | 26 (33.3) | 2 | 9 | 7.4 ± 2.7 |
After 10 years | 52 (66.7) | 11 | 32 | 21.4 ±7.5 |
Height (cm) | 78 | 156 | 183 | 166.1 ± 5.7 |
BMI (kg/m2) before pregnancy | 78 | 15.1 | 40.3 | 24.3 ± 5.3 |
≤24.9 kg/m2 | 53 (67.9) | 15.1 | 24.9 | 21.2 ± 2.0 |
>25 kg/m2 | 25 (32.1) | 25.6 | 40.3 | 30.8 ± 4.4 |
Education | 78 | |||
High and university degree | 36 (46.2) | |||
Graduate school degree | 42 (53.8) | |||
HbA1c (%) | 78 | 5.4 | 10.1 | 6.9 ± 1.3 |
≤6.5% | 36 (46.2) | 5.4 | 6.4 | 6.0 ± 0.3 |
≥6.5% | 42 (53.8) | 6.5 | 10.1 | 7.7 ± 1.4 |
Hypothyroidism | 74 | 0.5 | 5.1 | 2.4 ± 1.2 |
No (TSH <2.5) | 36 (48.6) | 0.5 | 2.4 | 1.6 ± 0.7 |
Yes (TSH >2.5) | 38 (51.4) | 2.5 | 5.1 | 3.5 ± 0.9 |
CAN | 78 | |||
Normal | 44 (56.4) | |||
Impaired | 34 (43.6) | |||
C-peptide | 55 | |||
Negative (<0.03 nmo/L) | 13 (23.6) | |||
Positive (≥0.03 nmol/L) | 42 (76.4) | 0.03 | 0.9 | 0.18 (0.1–0.28) |
CGM mean glucose | 65 | 4.0 | 11.8 | 6.2 ± 1.3 |
CGM ≥ 7.8 mmol/L n (%) | 65 | |||
No | 46 (71.9) | |||
Yes | 19 (28.1) | |||
CGM target range | ||||
3.9–7.8 mmol/L n (%) | 65 | |||
No | 50 (76.6) | |||
Yes | 15 (23.4) | |||
CGM ≤ 3.9 mmol/L n (%) | 65 | |||
No | 19 (28.1) | |||
Yes | 46 (71.9) |
The First Trimester n = 78 | ||||
---|---|---|---|---|
Domain/Score | 600–800 | 400–600 | 200–400 | 0–200 |
Reasoning | 5 (6,4%) | 56 (71.8%) | 17 (21.8%) | |
Memory | 2 (2.6%) | 35 (44.9%) | 39 (50.2%) | 2 (2.6%) |
Attention | 28 (35.8%) | 43 (55.1%) | 7 (9.0%) | |
Coordination | 1 (1.3%) | 17 (21.8%) | 35 (44.9%) | 25 (32.1%) |
Perception | 7 (9.0%) | 53 (67.8%) | 18 (23.1%) | |
Total cognitive function | 3(3.8%) | 55 (70.6%) | 20 (25.6%) |
Variable/Score | Minimum | Maximum | Mean ± SD |
---|---|---|---|
Reasoning | 227.0 | 717.0 | 474.8 ± 99.2 |
Memory | 153.0 | 647.0 | 385.5 ± 115.8 |
Attention | 196.0 | 745.0 | 554.4 ± 112.2 |
Coordination | 10.0 | 649.0 | 289.7 ± 132.6 |
Perception | 249.0 | 672.0 | 473.2 ± 89.1 |
Total Cognitive function | 221.0 | 614.0 | 440.7 ± 83.2 |
Reasoning RR (95% CI) | Memory RR (95% CI) | Attention RR (95% CI) | Coordination RR (95% CI) | Perception RR (95% CI) | Total Cognitive Function RR (95% CI) | |
---|---|---|---|---|---|---|
Age (years) | 1.269 (0.397 4.058) | 1.026 (0.661 1.592) | 3.750 (0.474 29.637) | 1.005 (0.783 1.292) | 1.625 (0.644 4098) | 1.161 (0.523 2.577) |
Onset T1DM after ten years | 0.670 (0.213 2.102) | 0.755 (0.492 1.158) | 3.360 (0.426 26.517) | 0.824 (0.654 1.040) | 1.456 (0.579 3.660) | 1.040 (0.470 2.300) |
Duration T1DM > 8 years | 2.938 (0.734 11.759) | 1.704 (0.933 3.110) | 2.509 (0.320 19.692) | 1.027 (0.748 1.410) | 1.087 (0.438 2.699) | 1.309 (0.537 3.192) |
BMI (kg/m2) | 1.273 (0.382 4.238) | 2.114 (1.138 3.927) | 0.883 (0.184 4.234) | 1.461 (1.031 2.071) | 1.405 (0.622 3.177) | 2.208 (1.116 4.370) |
HbA1c in1st trimester | 0.597 (0.168 2.119) | 1.156 (0.761 1.756) | 0.473 (0.092 2.422) | 1.017 (0.824 1.256) | 0.394 (0.155 1.004) | 0.774 (0.366 1.638) |
Hypothyroidism | 2.750 (0.786 9.616) | 1.304 (0.830 2.048) | 1.333 (0.238 7.481) | 0.889 (0.350 2.260) | 0.889 (0.350 1.260) | 3.111 (1.140 8.491) |
C-peptide concentration in 1st trimester (pmol/L) | 0.222 (0.055 0.895) | 0.450 (0.210 0.958) | 0.500 (0.059 4.232) | 0.696 (0.487 0.993) | 0.462 (0.145 1.466) | 0.297 (0.097 0.912) |
CAN | 4.167 (1.238 14.022) | 1.647 (1.055 2.572) | 1.750 (0.421 5.273) | 1.433 (1.075 1.911) | 1.021 (0.426 2.447) | 2.250 (1.000 5.062) |
Education | 0.375 (0.111 1.271) | 1.320 (0.841 2.073) | 1.073 (0.258 4.462) | 1.260 (0.979 1.621) | 0.715 (0.310 1.649) | 1.380 (0.613 3.107) |
CGM > 7.8 mmol/L | 0.833 (0.209 3.323) | 1.000 (0.578 1.730) | 1.667 (0.303 9.157) | 0.972 (0.730 1.295) | 0.750 (0.233 2.413) | 1.875 (0.757 4642) |
CGM < 3.9 mmol/L | 1.460 0.342 6.226) | 1.696 (0.794 3.623) | 1.429 (0.466 4.376) | 1.097 (0.783 1.536) | 1.087 (0.344 3.437) | 0.938 (0.346 2.539) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanisevic, M.; Marcinko, D.; Vuckovic-Rebrina, S.; Delmis, J. Positive Association between Preserved C-Peptide and Cognitive Function in Pregnant Women with Type-1 Diabetes. Biomedicines 2022, 10, 2785. https://doi.org/10.3390/biomedicines10112785
Ivanisevic M, Marcinko D, Vuckovic-Rebrina S, Delmis J. Positive Association between Preserved C-Peptide and Cognitive Function in Pregnant Women with Type-1 Diabetes. Biomedicines. 2022; 10(11):2785. https://doi.org/10.3390/biomedicines10112785
Chicago/Turabian StyleIvanisevic, Marina, Darko Marcinko, Sandra Vuckovic-Rebrina, and Josip Delmis. 2022. "Positive Association between Preserved C-Peptide and Cognitive Function in Pregnant Women with Type-1 Diabetes" Biomedicines 10, no. 11: 2785. https://doi.org/10.3390/biomedicines10112785
APA StyleIvanisevic, M., Marcinko, D., Vuckovic-Rebrina, S., & Delmis, J. (2022). Positive Association between Preserved C-Peptide and Cognitive Function in Pregnant Women with Type-1 Diabetes. Biomedicines, 10(11), 2785. https://doi.org/10.3390/biomedicines10112785