Does Myocardial Atrophy Represent Anti-Arrhythmic Phenotype?
Abstract
:1. Introduction
2. Factors and Mechanisms Involved in the Development of Malignant Cardiac Arrhythmias
3. Conditions Leading to Myocardial Atrophy and Incidence of Cardiac Arrhythmias
4. Characteristic and Mechanisms Underlying Atrophic and “Antiarrhythmic” Phenotype
5. Consequences of Myocardial Atrophy
6. Prevention, Attenuation or Reversion of Myocardial Atrophy
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tomanek, R.J.; Cooper, G. Morphological changes in the mechanically unloaded myocardial cell. Anat. Rec. 1981, 200, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Campbell, S.E.; Korecky, B.; Rakusan, K. Remodeling of myocyte dimensions in hypertrophic and atrophic rat hearts. Circ. Res. 1991, 68, 984–996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anversa, P.; Ricci, R.; Olivetti, G. Quantitative structural analysis of the myocardium during physiologic growth and induced cardiac hypertrophy: A review. J. Am. Coll. Cardiol. 1986, 7, 1140–1149. [Google Scholar] [CrossRef] [Green Version]
- Baskin, K.K.; Taegtmeyer, H. Taking pressure off the heart: The ins and outs of atrophic remodelling. Cardiovasc. Res. 2011, 90, 243–250. [Google Scholar] [CrossRef] [Green Version]
- Heckle, M.R.; Flatt, D.M.; Sun, Y.; Mancarella, S.; Marion, T.N.; Gerling, I.C.; Weber, K.T. Atrophied cardiomyocytes and their potential for rescue and recovery of ventricular function. Heart Fail. Rev. 2016, 21, 191–198. [Google Scholar] [CrossRef]
- Peters, N.S.; Severs, N.J.; Rothery, S.M.; Lincoln, C.; Yacoub, M.H.; Green, C.R. Spatiotemporal relation between gap junctions and fascia adherens junctions during postnatal development of human ventricular myocardium. Circulation 1994, 90, 713–725. [Google Scholar] [CrossRef] [Green Version]
- Alessandro, Z.; Corrado, D. The electrocardiogram in the athlete. In The ESC Textbook of Sports Cardiology; Pelliccia, A., Heidbuchel, H., Corrado, D., Börjesson, M., Sharma, S., Eds.; Oxford University Press: Oxford, UK, 2019; pp. 57–68. [Google Scholar]
- Pelliccia, A.; Caselli, S.; Sharma, S.; Basso, C.; Bax, J.J.; Corrado, D.; D’Andrea, A.; D’Ascenzi, F.; Di Paolo, F.M.; Edvardsen, T.; et al. European Association of Preventive Cardiology (EAPC) and European Association of Cardiovascular Imaging (EACVI) joint position statement: Recommendations for the indication and interpretation of cardiovascular imaging in the evaluation of the athlete’s he. Eur. Heart J. 2018, 39, 1949–1969. [Google Scholar] [CrossRef]
- D’Ascenzi, F.; Fiorentini, C.; Anselmi, F.; Mondillo, S. Left ventricular hypertrophy in athletes: How to differentiate between hypertensive heart disease and athlete’s heart. Eur. J. Prev. Cardiol. 2021, 28, 1125–1133. [Google Scholar] [CrossRef]
- Pelliccia, A.; Heidbuchel, H.; Borjesson, M.; Sharma, S. The ESC Textbook of Sports Cardiology; Oxford University Press: Oxford, UK, 2019; pp. 1–12. [Google Scholar] [CrossRef]
- Fyyaz, S.; Papadakis, M. Arrhythmogenesis of Sports: Myth or Reality? Arrhythmia Electrophysiol. Rev. 2022, 11, e05. [Google Scholar] [CrossRef] [PubMed]
- Van der Voorn, S.M.; Te Riele, A.S.J.M.; Basso, C.; Calkins, H.; Remme, C.A.; Van Veen, T.A.B. Arrhythmogenic cardiomyopathy: Pathogenesis, pro-arrhythmic remodelling, and novel approaches for risk stratification and therapy. Cardiovasc. Res. 2020, 116, 1571–1584. [Google Scholar] [CrossRef]
- Rajan, D.; Garcia, R.; Svane, J.; Tfelt-Hansen, J. Risk of sports-related sudden cardiac death in women. Eur. Heart J. 2022, 43, 1198–1206. [Google Scholar] [CrossRef]
- Wiegerinck, R.F.; Verkerk, A.O.; Belterman, C.N.; Van Veen, T.A.B.; Baartscheer, A.; Opthof, T.; Wilders, R.; De Bakker, J.M.T.; Coronel, R. Larger cell size in rabbits with heart failure increases myocardial conduction velocity and QRS duration. Circulation 2006, 113, 806–813. [Google Scholar] [CrossRef] [Green Version]
- Egan Benova, T.; Szeiffova Bacova, B.; Viczenczova, C.; Diez, E.; Barancik, M.; Tribulova, N. Protection of cardiac cell-to-cell coupling attenuate myocardial remodelling and proarrhythmia induced by hypertension. Physiol. Res. 2016, 65, S29–S42. [Google Scholar] [CrossRef]
- Bacharova, L. Missing link between molecular aspects of ventricular arrhythmias and QRS complex morphology in left ventricular hypertrophy. Int. J. Mol. Sci. 2020, 21, 48. [Google Scholar] [CrossRef] [Green Version]
- Tribulova, N.; Knezl, V.; Shainberg, A.; Seki, S.; Soukup, T. Thyroid hormones and cardiac arrhythmias. Vascul. Pharmacol. 2010, 52, 102–112. [Google Scholar] [CrossRef]
- Lin, H.; Mitasikova, M.; Dlugosova, K.; Okruhlicova, L.; Imanaga, I.; Ogawa, K.; Weismann, P.; Tribulova, N.; Republic, S. Thyroid hormones suppress ε-pkc signalling, down- regulate connexin-43 and increase lethal arrhythmia susceptibility in non-diabetic and diabetic rat hearts. J. Physiol. Pharmacol. 2008, 59, 271–285. [Google Scholar]
- Bačová, B.S.; Vinczenzová, C.; Žurmanová, J.; Kašparová, D.; Knezl, V.; Beňová, T.E.; Pavelka, S.; Soukup, T.; Tribulová, N. Altered thyroid status affects myocardial expression of connexin-43 and susceptibility of rat heart to malignant arrhythmias that can be partially normalized by red palm oil intake. Histochem. Cell Biol. 2017, 147, 63–73. [Google Scholar] [CrossRef]
- Bernjak, A.; Novodvorsky, P.; Chow, E.; Iqbal, A.; Sellors, L.; Williams, S.; Fawdry, R.A.; Marques, J.L.B.; Jacques, R.M.; Campbell, M.J.; et al. Cardiac arrhythmias and electrophysiologic responses during spontaneous hyperglycaemia in adults with type 1 diabetes mellitus. Diabetes Metab. 2021, 47, 101237. [Google Scholar] [CrossRef]
- Thomas, D.; Christ, T.; Fabritz, L.; Goette, A.; Hammwöhner, M.; Heijman, J.; Kockskämper, J.; Linz, D.; Odening, K.E.; Schweizer, P.A.; et al. German Cardiac Society Working Group on Cellular Electrophysiology state-of-the-art paper: Impact of molecular mechanisms on clinical arrhythmia management. Clin. Res. Cardiol. 2019, 108, 577–599. [Google Scholar] [CrossRef] [Green Version]
- Tribulova, N.; Bacova, B.S.; Benova, T.E.; Knezl, V.; Barancik, M.; Slezak, J. Omega-3 index and anti-arrhythmic potential of omega-3 PUFAs. Nutrients 2017, 9, 1191. [Google Scholar] [CrossRef] [PubMed]
- Sardu, C.; Santamaria, M.; Paolisso, G.; Marfella, R. MicroRNA expression changes after atrial fibrillation catheter ablation. Pharmacogenomics 2015, 16, 1863–1877. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Dedkov, E.I.; Teplitsky, D.; Weltman, N.Y.; Pol, C.J.; Rajagopalan, V.; Lee, B.; Martin Gerdes, A. Both hypothyroidism and hyperthyroidism increase atrial fibrillation inducibility in rats. Circ. Arrhythmia Electrophysiol. 2013, 6, 952–959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, E.W.; Marino, T.A.; Uboh, C.E.; Kent, R.L.; Cooper IV, G. Atrophy reversal and cardiocyte redifferentiation in reloaded cat myocardium. Circ. Res. 1984, 54, 367–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penney, D.G.; Barthel, B.G. Effects of thyroid and growth hormone deficiency, and food restriction on heart mass, with and without added stress (carboxyhemoglobinemia). Can. J. Physiol. Pharmacol. 1985, 63, 642–648. [Google Scholar] [CrossRef]
- Liu, Z.; Martin Gerdes, A. Influence of hypothyroidism and the reversal of hypothyroidism on hemodynamics and cell size in the adult rat heart. J. Mol. Cell. Cardiol. 1990, 22, 1339–1348. [Google Scholar] [CrossRef]
- Montalvo, D.; Pérez-Treviño, P.; Madrazo-Aguirre, K.; González-Mondellini, F.A.; Miranda-Roblero, H.O.; Ramonfaur-Gracia, D.; Jacobo-Antonio, M.; Mayorga-Luna, M.; Gómez-Víquez, N.L.; García, N.; et al. Underlying mechanism of the contractile dysfunction in atrophied ventricular myocytes from a murine model of hypothyroidism. Cell Calcium 2018, 72, 26–38. [Google Scholar] [CrossRef]
- Massoud, A.A.; El-Atrash, A.; Tousson, E.; Ibrahim, W.; Abou-Harga, H. Light and ultrastructural study in the propylthiouracil-induced hypothyroid rat heart ventricles and the ameliorating role of folic acid. Toxicol. Ind. Health 2012, 28, 262–270. [Google Scholar] [CrossRef]
- Tang, Y.D.; Kuzman, J.A.; Said, S.; Anderson, B.E.; Wang, X.; Gerdes, A.M. Low thyroid function leads to cardiac atrophy with chamber dilatation, impaired myocardial blood flow, loss of arterioles, and severe systolic dysfunction. Circulation 2005, 112, 3122–3130. [Google Scholar] [CrossRef] [Green Version]
- Szeiffová Bačova, B.; Egan Beňová, T.; Viczenczová, C.; Soukup, T.; Raučhová, H.; Pavelka, S.; Knezl, V.; Barancík, M.; Tribulová, N. Cardiac connexin-43 and PKC signalling in rats with altered thyroid status without and with omega-3 fatty acids intake. Physiol. Res. 2016, 65, S77–S90. [Google Scholar] [CrossRef]
- Sykora, M.; Bacova, B.S.; Benova, T.E.; Barancik, M.; Zurmanova, J.; Rauchova, H.; Weismann, P.; Pavelka, S.; Kurahara, L.H.; Slezak, J.; et al. Cardiac cx43 and ECM responses to altered thyroid status are blunted in spontaneously hypertensive versus normotensive rats. Int. J. Mol. Sci. 2019, 20, 3758. [Google Scholar] [CrossRef]
- Bilim, O.; Takeishi, Y.; Kitahara, T.; Arimoto, T.; Niizeki, T.; Sasaki, T.; Goto, K.; Kubota, I. Diacylglycerol kinase ζ inhibits myocardial atrophy and restores cardiac dysfunction in streptozotocin-induced diabetes mellitus. Cardiovasc. Diabetol. 2008, 7, 2. [Google Scholar] [CrossRef] [Green Version]
- Dewey, S.; Lai, X.; Witzmann, F.A.; Sohal, M.; Gomes, A.V. Proteomic analysis of hearts from Akita mice suggests that increases in soluble epoxide hydrolase and antioxidative programming are key changes in early stages of diabetic cardiomyopathy. J. Proteome Res. 2013, 12, 3920–3933. [Google Scholar] [CrossRef]
- Liu, P.; Su, J.; Song, X.; Wang, S. Activation of nuclear β-catenin/c-Myc axis promotes oxidative stress injury in streptozotocin-induced diabetic cardiomyopathy. Biochem. Biophys. Res. Commun. 2017, 493, 1573–1580. [Google Scholar] [CrossRef]
- Weber, K.T. Depressed Myocardial Contractility: Can It Be Rescued? Am. J. Med. Sci. 2016, 352, 428–432. [Google Scholar] [CrossRef]
- Ozturk, N.; Uslu, S.; Ozdemir, S. Diabetes-induced changes in cardiac voltage-gated ion channels. World J. Diabetes 2021, 12, 1–18. [Google Scholar] [CrossRef]
- Grisanti, L.A. Diabetes and Arrhythmias: Pathophysiology, Mechanisms and Therapeutic Outcomes. Front. Physiol. 2018, 9, 1669. [Google Scholar] [CrossRef]
- Hegyi, B.; Ko, C.Y.; Bossuyt, J.; Bers, D.M. Two-hit mechanism of cardiac arrhythmias in diabetic hyperglycaemia: Reduced repolarization reserve, neurohormonal stimulation, and heart failure exacerbate susceptibility. Cardiovasc. Res. 2021, 117, 2781–2793. [Google Scholar] [CrossRef]
- Heijman, J.; Voigt, N.; Nattel, S.; Dobrev, D. Cellular and molecular electrophysiology of atrial fibrillation initiation, maintenance, and progression. Circ. Res. 2014, 114, 1483–1499. [Google Scholar] [CrossRef] [Green Version]
- Kamalov, G.; Zhao, W.; Zhao, T.; Sun, Y.; Ahokas, R.A.; Marion, T.N.; Al Darazi, F.; Gerling, I.C.; Bhattacharya, S.K.; Weber, K.T. Atrophic Cardiomyocyte Signaling in Hypertensive Heart Disease. J. Cardiovasc. Pharmacol. 2013, 62, 497–506. [Google Scholar] [CrossRef]
- Jirak, P.; Mirna, M.; Rezar, R.; Motloch, L.J.; Lichtenauer, M.; Jordan, J.; Binneboessel, S.; Tank, J.; Limper, U.; Jung, C. How spaceflight challenges human cardiovascular health. Eur. J. Prev. Cardiol. 2022, 29, 1399–1411. [Google Scholar] [CrossRef] [PubMed]
- Summers, R.L.; Martin, D.S.; Meck, J.V.; Coleman, T.G. Computer systems analysis of spaceflight induced changes in left ventricular mass. Comput. Biol. Med. 2007, 37, 358–363. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Cao, T.; Ding, W.; Liang, L.; Fan, G.C.; Qu, L.; Peng, T. Pharmacological inhibition of Rac1 attenuates myocardial abnormalities in tail-suspended mice. J. Cardiovasc. Transl. Res. 2022, 15, 805–815. [Google Scholar] [CrossRef] [PubMed]
- Westby, C.M.; Martin, D.S.; Lee, S.M.C.; Stenger, M.B.; Platts, S.H. Left ventricular remodelling during and after 60 days of sedentary head-down bed rest. J. Appl. Physiol. 2016, 120, 956–964. [Google Scholar] [CrossRef] [Green Version]
- Vis, J.C.; De Bruin-Bon, R.H.; Bouma, B.J.; Backx, A.P.; Huisman, S.A.; Imschoot, L.; Mulder, B.J. “The sedentary heart”: Physical inactivity is associated with cardiac atrophy in adults with an intellectual disability. Int. J. Cardiol. 2012, 158, 387–393. [Google Scholar] [CrossRef] [Green Version]
- Scott, J.M.; Warburton, D.E.R.; Williams, D.; Whelan, S.; Krassioukov, A. Challenges, concerns and common problems: Physiological consequences of spinal cord injury and microgravity. Spinal Cord 2011, 49, 4–16. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.M.; Gee, C.M.; Voss, C.; West, C.R. Cardiac consequences of spinal cord injury: Systematic review and meta-analysis. Heart 2019, 105, 217–225. [Google Scholar] [CrossRef]
- Järve, A.; Qadri, F.; Todiras, M.; Schmolke, S.; Alenina, N.; Bader, M. Angiotensin-(1–7) Receptor Mas Deficiency Does Not Exacerbate Cardiac Atrophy Following High-Level Spinal Cord Injury in Mice. Front. Physiol. 2020, 11, 203. [Google Scholar] [CrossRef]
- Zhu, Z.Y.; Liu, Y.D.; Gong, Y.; Jin, W.; Topchiy, E.; Turdi, S.; Gao, Y.F.; Culver, B.; Wang, S.Y.; Ge, W.; et al. Mitochondrial aldehyde dehydrogenase (ALDH2) rescues cardiac contractile dysfunction in an APP/PS1 murine model of Alzheimer’s disease via inhibition of ACSL4-dependent ferroptosis. Acta Pharmacol. Sin. 2022, 43, 39–49. [Google Scholar] [CrossRef]
- Mouton, A.J.; El Hajj, E.C.; Ninh, V.K.; Siggins, R.W.; Gardner, J.D. Inflammatory cardiac fibroblast phenotype underlies chronic alcohol-induced cardiac atrophy and dysfunction. Life Sci. 2020, 245, 117330. [Google Scholar] [CrossRef]
- Busch, K.; Kny, M.; Huang, N.; Klassert, T.E.; Stock, M.; Hahn, A.; Graeger, S.; Todiras, M.; Schmidt, S.; Chamling, B.; et al. Inhibition of the NLRP3/IL-1β axis protects against sepsis-induced cardiomyopathy. J. Cachexia. Sarcopenia Muscle 2021, 12, 1653–1668. [Google Scholar] [CrossRef]
- Chen, J.; Gong, J.; Chen, H.; Li, X.; Wang, L.; Qian, X.; Zhou, K.; Wang, T.; Jiang, S.; Li, L.; et al. Ischemic stroke induces cardiac dysfunction and alters transcriptome profile in mice. BMC Genom. 2021, 22, 641. [Google Scholar] [CrossRef]
- Andelova, K.; Bacova, B.S.; Sykora, M.; Hlivak, P.; Barancik, M.; Tribulova, N. Mechanisms Underlying Antiarrhythmic Properties of Cardioprotective Agents Impacting Inflammation and Oxidative Stress. Int. J. Mol. Sci. 2022, 23, 1416. [Google Scholar] [CrossRef]
- Pham, B.N.; Chaparro, S.V. Left ventricular assist device recovery: Does duration of mechanical support matter? Heart Fail. Rev. 2019, 24, 237–244. [Google Scholar] [CrossRef]
- Ibrahim, M.; Navaratnarajah, M.; Kukadia, P.; Rao, C.; Siedlecka, U.; Cartledge, J.E.; Soppa, G.K.; Van Doorn, C.; Yacoub, M.H.; Terracciano, C.M. Heterotopic abdominal heart transplantation in rats for functional studies of ventricular unloading. J. Surg. Res. 2013, 179, e31–e39. [Google Scholar] [CrossRef]
- Klein, I. Cardiac atrophy in the heterotopically transplanted rat heart: In Vitro protein synthesis. J. Mol. Cell. Cardiol. 1990, 22, 461–468. [Google Scholar] [CrossRef]
- Lisy, O.; Redfield, M.M.; Jovanovic, S.; Jougasaki, M.; Jovanovic, A.; Leskinen, H.; Terzic, A.; Burnett, J.C. Mechanical unloading versus neurohumoral stimulation on myocardial structure and endocrine function in vivo. Circulation 2000, 102, 338–343. [Google Scholar] [CrossRef] [Green Version]
- Brinks, H.; Tevaearai, H.; Mühlfeld, C.; Bertschi, D.; Gahl, B.; Carrel, T.; Giraud, M.N. Contractile function is preserved in unloaded hearts despite atrophic remodelling. J. Thorac. Cardiovasc. Surg. 2009, 137, 742–746. [Google Scholar] [CrossRef] [Green Version]
- Doenst, T.; Bugger, H.; Leippert, S.; Barleon, B.; Marme, D.; Beyersdorf, F. Differential gene expression in response to ventricular unloading in rat and human myocardium. Thorac. Cardiovasc. Surg. 2006, 54, 381–387. [Google Scholar] [CrossRef]
- Gruber, C.; Nink, N.; Nikam, S.; Magdowski, G.; Kripp, G.; Voswinckel, R.; Mühlfeld, C. Myocardial remodelling in left ventricular atrophy induced by caloric restriction. J. Anat. 2012, 220, 179–185. [Google Scholar] [CrossRef]
- Sudi, S.B.; Tanaka, T.; Oda, S.; Nishiyama, K.; Nishimura, A.; Sunggip, C.; Mangmool, S.; Numaga-Tomita, T.; Nishida, M. TRPC3-Nox2 axis mediates nutritional deficiency-induced cardiomyocyte atrophy. Sci. Rep. 2019, 9, 9785. [Google Scholar] [CrossRef]
- O’Brien, P.J.; Shen, H.; Bissonette, D.; Jeejeebhoy, K.N. Effects of hypocaloric feeding and refeeding on myocardial Ca and ATP cycling in the rat. Mol. Cell. Biochem. 1995, 142, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Samarel, A.M.; Parmacek, M.S.; Magid, N.M.; Decker, R.S.; Lesch, M. Protein synthesis and degradation during starvation-induced cardiac atrophy in rabbits. Circ. Res. 1987, 60, 933–941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyagawa, Y.; Mori, T.; Goto, K.; Kawahara, I.; Fujiwara-Tani, R.; Kishi, S.; Sasaki, T.; Fujii, K.; Ohmori, H.; Kuniyasu, H. Intake of medium-chain fatty acids induces myocardial oxidative stress and atrophy. Lipids Health Dis. 2018, 17, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinch, E.C.A.; Sullivan-Gunn, M.J.; Vaughan, V.C.; McGlynn, M.A.; Lewandowski, P.A. Disruption of pro-oxidant and antioxidant systems with elevated expression of the ubiquitin proteosome system in the cachectic heart muscle of nude mice. J. Cachexia. Sarcopenia Muscle 2013, 4, 287–293. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, T.; Tabony, A.M.; Galvez, S.; Mitch, W.E.; Higashi, Y.; Sukhanov, S.; Delafontaine, P. Molecular mechanisms and signalling pathways of angiotensin II-induced muscle wasting: Potential therapeutic targets for cardiac cachexia. Int. J. Biochem. Cell Biol. 2013, 45, 2322–2332. [Google Scholar] [CrossRef] [Green Version]
- Borges, F.H.; Marinello, P.C.; Cecchini, A.L.; Blegniski, F.P.; Guarnier, F.A.; Cecchini, R. Oxidative and proteolytic profiles of the right and left heart in a model of cancer-induced cardiac cachexia. Pathophysiology 2014, 21, 257–265. [Google Scholar] [CrossRef]
- Murphy, K.T. The pathogenesis and treatment of cardiac atrophy in cancer cachexia. Am. J. Physiol. Heart Circ. Physiol. 2016, 310, H466–H477. [Google Scholar] [CrossRef]
- Ausoni, S.; Calamelli, S.; Saccà, S.; Azzarello, G. How progressive cancer endangers the heart: An intriguing and underestimated problem. Cancer Metastasis Rev. 2020, 39, 535–552. [Google Scholar] [CrossRef]
- Wiggs, M.P.; Beaudry, A.G.; Law, M.L. Cardiac Remodeling in Cancer-Induced Cachexia: Functional, Structural, and Metabolic Contributors. Cells 2022, 11, 1931. [Google Scholar] [CrossRef]
- Lee, D.E.; Brown, J.L.; Rosa-Caldwell, M.E.; Perry, R.A.; Brown, L.A.; Haynie, W.S.; Washington, T.A.; Wiggs, M.P.; Rajaram, N.; Greene, N.P. Cancer-induced cardiac atrophy adversely affects myocardial redox state and mitochondrial oxidative characteristics. JCSM Rapid Commun. 2021, 4, 3–15. [Google Scholar] [CrossRef]
- Sweeney, M.; Yiu, A.; Lyon, A.R. Cardiac Atrophy and Heart Failure in Cancer. Card. Fail. Rev. 2017, 03, 62. [Google Scholar] [CrossRef] [Green Version]
- Jordan, J.H.; Castellino, S.M.; Meléndez, G.C.; Klepin, H.D.; Ellis, L.R.; Lamar, Z.; Vasu, S.; Kitzman, D.W.; Ntim, W.O.; Brubaker, P.H.; et al. Left ventricular mass change after anthracycline chemotherapy. Circ. Heart Fail. 2018, 11, e004560. [Google Scholar] [CrossRef]
- Chatterjee, N.A.; Singh, J.P. Autonomic modulation and cardiac arrhythmias: Old insights and novel strategies. EP Eur. 2021, 23, 1708–1721. [Google Scholar] [CrossRef]
- Antoniak, S.; Phungphong, S.; Cheng, Z.; Jensen, B.C. Novel Mechanisms of Anthracycline-Induced Cardiovascular Toxicity: A Focus on Thrombosis, Cardiac Atrophy, and Programmed Cell Death. Front. Cardiovasc. Med. 2022, 8, 817977. [Google Scholar] [CrossRef]
- Favreau-Lessard, A.J.; Sawyer, D.B.; Francis, S.A. Anthracycline Cardiomyopathy. Circ. Heart Fail. 2018, 11, e005194. [Google Scholar] [CrossRef]
- Zhao, Y.; McLaughlin, D.; Robinson, E.; Harvey, A.P.; Hookham, M.B.; Shah, A.M.; McDermott, B.J.; Grieve, D.J. Nox2 NADPH oxidase promotes pathologic cardiac remodelling associated with doxorubicin chemotherapy. Cancer Res. 2010, 70, 9287–9297. [Google Scholar] [CrossRef] [Green Version]
- Barteková, M.; Šimončíková, P.; Fogarassyová, M.; Ivanová, M.; Okruhlicová, L.; Tribulová, N.; Dovinová, I.; Barančík, M. Quercetin improves postischemic recovery of heart function in doxorubicin-treated rats and prevents doxorubicin-induced matrix metalloproteinase-2 activation and apoptosis induction. Int. J. Mol. Sci. 2015, 16, 8168. [Google Scholar] [CrossRef] [Green Version]
- Lai, Y.; Zhou, X.; Guo, F.; Jin, X.; Meng, G.; Zhou, L.; Chen, H.; Liu, Z.; Yu, L.; Jiang, H. Non-invasive transcutaneous vagal nerve stimulation improves myocardial performance in doxorubicin-induced cardiotoxicity. Cardiovasc. Res. 2022, 118, 1821–1834. [Google Scholar] [CrossRef]
- Shimauchi, T.; Numaga-Tomita, T.; Ito, T.; Nishimura, A.; Matsukane, R.; Oda, S.; Hoka, S.; Ide, T.; Koitabashi, N.; Uchida, K.; et al. TRPC3-Nox2 complex mediates doxorubicin-induced myocardial atrophy. JCI Insight 2017, 2, e93358. [Google Scholar] [CrossRef] [Green Version]
- Willis, M.S.; Parry, T.L.; Brown, D.I.; Mota, R.I.; Huang, W.; Beak, J.Y.; Sola, M.; Zhou, C.; Hicks, S.T.; Caughey, M.C.; et al. Doxorubicin Exposure Causes Subacute Cardiac Atrophy Dependent on the Striated Muscle–Specific Ubiquitin Ligase MuRF1. Circ. Heart Fail. 2019, 12, e005234. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.F.; Zhang, S.Y.; Ma, H.F.; Chang, X.W.; Wang, H. C1qTNF-related protein-6 protects against doxorubicin-induced cardiac injury. J. Cell. Biochem. 2019, 120, 10748–10755. [Google Scholar] [CrossRef] [PubMed]
- Kala, P.; Bartušková, H.; Pit’ha, J.; Vaňourková, Z.; Kikerlová, S.; Jíchová, Š.; Melenovský, V.; Hošková, L.; Veselka, J.; Kompanowska-Jezierska, E.; et al. Deleterious effects of hyperactivity of the renin-angiotensin system and hypertension on the course of chemotherapy-induced heart failure after doxorubicin administration: A study in ren-2 transgenic rat. Int. J. Mol. Sci. 2020, 21, 9337. [Google Scholar] [CrossRef] [PubMed]
- Xia, P.; Chen, J.; Liu, Y.; Fletcher, M.; Jensen, B.C.; Cheng, Z. Doxorubicin induces cardiomyocyte apoptosis and atrophy through cyclin-dependent kinase 2-mediated activation of forkhead box O1. J. Biol. Chem. 2020, 295, 4265–4276. [Google Scholar] [CrossRef] [PubMed]
- Law, M.L.; Metzger, J.M. Cardiac myocyte intrinsic contractility and calcium handling deficits underlie heart organ dysfunction in murine cancer cachexia. Sci. Rep. 2021, 11, 23627. [Google Scholar] [CrossRef] [PubMed]
- Pietzsch, S.; Wohlan, K.; Thackeray, J.T.; Heimerl, M.; Schuchardt, S.; Scherr, M.; Ricke-Hoch, M.; Hilfiker-Kleiner, D. Anthracycline-free tumor elimination in mice leads to functional and molecular cardiac recovery from cancer-induced alterations in contrast to long-lasting doxorubicin treatment effects. Basic Res. Cardiol. 2021, 116, 61. [Google Scholar] [CrossRef]
- Wu, S.; Lan, J.; Li, L.; Wang, X.; Tong, M.; Fu, L.; Zhang, Y.; Xu, J.; Chen, X.; Chen, H.; et al. Sirt6 protects cardiomyocytes against doxorubicin-induced cardiotoxicity by inhibiting P53/Fas-dependent cell death and augmenting endogenous antioxidant defense mechanisms. Cell Biol. Toxicol. 2021. [Google Scholar] [CrossRef]
- Moulin, M.; Piquereau, J.; Mateo, P.; Fortin, D.; Rucker-Martin, C.; Gressette, M.; Lefebvre, F.; Gresikova, M.; Solgadi, A.; Veksler, V.; et al. Sexual dimorphism of doxorubicin-mediated cardiotoxicity potential role of energy metabolism remodelling. Circ. Heart Fail. 2015, 8, 98–108. [Google Scholar] [CrossRef] [Green Version]
- Benjanuwattra, J.; Siri-Angkul, N.; Chattipakorn, S.C.; Chattipakorn, N. Doxorubicin and its proarrhythmic effects: A comprehensive review of the evidence from experimental and clinical studies. Pharmacol. Res. 2020, 151, 104542. [Google Scholar] [CrossRef]
- Sandri, M. Protein breakdown in muscle wasting: Role of autophagy-lysosome and ubiquitin-proteasome. Int. J. Biochem. Cell Biol. 2013, 45, 2121–2129. [Google Scholar] [CrossRef] [Green Version]
- El-Armouche, A.; Schwoerer, A.P.; Neuber, C.; Emmons, J.; Biermann, D.; Christalla, T.; Grundhoff, A.; Eschenhagen, T.; Zimmermann, W.H.; Ehmke, H. Common MicroRNA signatures in cardiac hypertrophic and atrophic remodelling induced by changes in hemodynamic load. PLoS ONE 2010, 5, e14263. [Google Scholar] [CrossRef]
- Rakusan, K.; Heron, M.I.; Kolar, F.; Korecky, B. Transplantation-induced atrophy of normal and hypertrophic rat hearts: Effect on cardiac myocytes and capillaries. J. Mol. Cell. Cardiol. 1997, 29, 1045–1054. [Google Scholar] [CrossRef]
- Razeghi, P.; Sharma, S.; Ying, J.; Li, Y.P.; Stepkowski, S.; Reid, M.B.; Taegtmeyer, H. Atrophic Remodeling of the Heart In Vivo Simultaneously Activates Pathways of Protein Synthesis and Degradation. Circulation 2003, 108, 2536–2541. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Ying, J.; Razeghi, P.; Stepkowski, S.; Taegtmeyer, H. Atrophic remodelling of the transplanted rat heart. Cardiology 2006, 105, 128–136. [Google Scholar] [CrossRef]
- Razeghi, P.; Baskin, K.K.; Sharma, S.; Young, M.E.; Stepkowski, S.; Faadiel Essop, M.; Taegtmeyer, H. Atrophy, hypertrophy, and hypoxemia induce transcriptional regulators of the ubiquitin proteasome system in the rat heart. Biochem. Biophys. Res. Commun. 2006, 342, 361–364. [Google Scholar] [CrossRef]
- Klein, I.; Samarel, A.M.; Welikson, R.; Hong, C. Heterotopic cardiac transplantation decreases the capacity for rat myocardial protein synthesis. Circ. Res. 1991, 68, 1100–1107. [Google Scholar] [CrossRef] [Green Version]
- Poormasjedi-Meibod, M.S.; Mansouri, M.; Fossey, M.; Squair, J.W.; Liu, J.; McNeill, J.H.; West, C.R. Experimental Spinal Cord Injury Causes Left-Ventricular Atrophy and Is Associated with an Upregulation of Proteolytic Pathways. J. Neurotrauma 2019, 36, 950–961. [Google Scholar] [CrossRef]
- Willis, M.S.; Bevilacqua, A.; Pulinilkunnil, T.; Kienesberger, P.; Tannu, M.; Patterson, C. The role of ubiquitin ligases in cardiac disease. J. Mol. Cell. Cardiol. 2014, 71, 43–53. [Google Scholar] [CrossRef] [Green Version]
- Cao, D.J.; Jiang, N.; Blagg, A.; Johnstone, J.L.; Gondalia, R.; Oh, M.; Luo, X.; Yang, K.C.; Shelton, J.M.; Rothermel, B.A.; et al. Mechanical unloading activates FoxO3 to trigger Bnip3-dependent cardiomyocyte atrophy. J. Am. Heart Assoc. 2013, 2, e000016. [Google Scholar] [CrossRef] [Green Version]
- Orogo, A.M.; Gustafsson, Å.B. Therapeutic Targeting of Autophagy. Circ. Res. 2015, 116, 489–503. [Google Scholar] [CrossRef] [Green Version]
- Cosper, P.F.; Leinwand, L.A. Cancer Causes Cardiac Atrophy and Autophagy in a Sexually Dimorphic Manner. Cancer Res. 2011, 71, 1710–1720. [Google Scholar] [CrossRef] [PubMed]
- Hashemzaei, M.; Entezari Heravi, R.; Rezaee, R.; Roohbakhsh, A.; Karimi, G. Regulation of autophagy by some natural products as a potential therapeutic strategy for cardiovascular disorders. Eur. J. Pharmacol. 2017, 802, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Vanhoutte, D.; Schips, T.G.; Vo, A.; Grimes, K.M.; Baldwin, T.A.; Brody, M.J.; Accornero, F.; Sargent, M.A.; Molkentin, J.D. Thbs1 induces lethal cardiac atrophy through PERK-ATF4 regulated autophagy. Nat. Commun. 2021, 12, 3928. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Xie, Q.; Xin, B.M.; Liu, J.L.; Liu, Y.; Li, Y.Z.; Wang, J.P. Inhibition of autophagy recovers cardiac dysfunction and atrophy in response to tail-suspension. Life Sci. 2015, 121, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hariharan, N.; Ikeda, Y.; Hong, C.; Alcendor, R.R.; Usui, S.; Gao, S.; Maejima, Y.; Sadoshima, J. Autophagy Plays an Essential Role in Mediating Regression of Hypertrophy during Unloading of the Heart. PLoS ONE 2013, 8, e51632. [Google Scholar] [CrossRef] [Green Version]
- Fedai, H.; Altiparmak, I.H.; Tascanov, M.B.; Tanriverdi, Z.; Bicer, A.; Gungoren, F.; Demirbag, R.; Koyuncu, I. The relationship between oxidative stress and autophagy and apoptosis in patients with paroxysmal atrial fibrillation. Scand. J. Clin. Lab. Investig. 2022, 82, 391–397. [Google Scholar] [CrossRef]
- Baskin, K.K.; Rodriguez, M.R.; Kansara, S.; Chen, W.; Carranza, S.; Frazier, O.H.; Glass, D.J.; Taegtmeyer, H. MAFbx/Atrogin-1 is required for atrophic remodelling of the unloaded heart. J. Mol. Cell. Cardiol. 2014, 72, 168–176. [Google Scholar] [CrossRef] [Green Version]
- Zhong, G.; Zhao, D.; Li, J.; Liu, Z.; Pan, J.; Yuan, X.; Xing, W.; Zhao, Y.; Ling, S.; Li, Y. WWP1 Deficiency Alleviates Cardiac Remodeling Induced by Simulated Microgravity. Front. Cell Dev. Biol. 2021, 9, 739944. [Google Scholar] [CrossRef]
- Hwee, D.T.; Gomes, A.V.; Bodine, S.C. Cardiac proteasome activity in muscle ring finger-1 null mice at rest and following synthetic glucocorticoid treatment. Am. J. Physiol.-Endocrinol. Metab. 2011, 301, 967–977. [Google Scholar] [CrossRef] [Green Version]
- Rubio, B.; Mora, C.; Pintado, C.; Mazuecos, L.; Fernández, A.; López, V.; Andrés, A.; Gallardo, N. The nutrient sensing pathways FoxO1/3 and mTOR in the heart are coordinately regulated by central leptin through PPARβ/δ. Implications in cardiac remodelling. Metabolism 2021, 115, 154453. [Google Scholar] [CrossRef]
- Kanner, S.A.; Morgenstern, T.; Colecraft, H.M. Sculpting ion channel functional expression with engineered ubiquitin ligases. eLife 2017, 6, e29744. [Google Scholar] [CrossRef]
- Ma, X.E.; Liu, B.; Zhao, C.X. Modulation of Ca2+-induced Ca2+ release by ubiquitin protein ligase E3 component n-recognin UBR3 and 6 in cardiac myocytes. Channels 2020, 14, 326–335. [Google Scholar] [CrossRef]
- Ito, T.; Kimura, Y.; Uozumi, Y.; Takai, M.; Muraoka, S.; Matsuda, T.; Ueki, K.; Yoshiyama, M.; Ikawa, M.; Okabe, M.; et al. Taurine depletion caused by knocking out the taurine transporter gene leads to cardiomyopathy with cardiac atrophy. J. Mol. Cell. Cardiol. 2008, 44, 927–937. [Google Scholar] [CrossRef]
- Razeghi, P.; Volpini, K.C.; Wang, M.E.; Youker, K.A.; Stepkowski, S.; Taegtmeyer, H. Mechanical unloading of the heart activates the calpain system. J. Mol. Cell. Cardiol. 2007, 42, 449–452. [Google Scholar] [CrossRef]
- Zaglia, T.; Milan, G.; Franzoso, M.; Bertaggia, E.; Pianca, N.; Piasentini, E.; Voltarelli, V.A.; Chiavegato, D.; Brum, P.C.; Glass, D.J.; et al. Cardiac sympathetic neurons provide trophic signal to the heart via β2-adrenoceptor-dependent regulation of proteolysis. Cardiovasc. Res. 2013, 97, 240–250. [Google Scholar] [CrossRef] [Green Version]
- Shadfar, S.; Couch, M.E.; McKinney, K.A.; Weinstein, L.J.; Yin, X.; Rodriguez, J.E.; Guttridge, D.C.; Willis, M. Oral resveratrol therapy inhibits cancer-induced skeletal muscle and cardiac atrophy in vivo. Nutr. Cancer 2011, 63, 749–762. [Google Scholar] [CrossRef] [Green Version]
- Nishiyama, K.; Tanaka, T.; Nishimura, A.; Nishida, M. TRPC3-Based Protein Signaling Complex as a Therapeutic Target of Myocardial Atrophy. Curr. Mol. Pharmacol. 2020, 14, 123–131. [Google Scholar] [CrossRef]
- Andelova, K.; Benova, T.E.; Bacova, B.S.; Sykora, M.; Prado, N.J.; Diez, E.R.; Hlivak, P.; Tribulova, N. Cardiac connexin-43 hemichannels and pannexin1 channels: Provocative antiarrhythmic targets. Int. J. Mol. Sci. 2021, 22, 260. [Google Scholar] [CrossRef]
- Tribulova, N.; Knezl, V.; Szeiffova Bacova, B.; Egan Benova, T.; Viczenczova, C.; Gonçalvesova, E.; Slezak, J. Disordered myocardial Ca2+ homeostasis results in substructural alterations that may promote occurrence of malignant arrhythmias. Physiol. Res. 2016, 65, S139–S148. [Google Scholar] [CrossRef]
- Kolář, F.; MacNaughton, C.; Papoušek, F.; Korecky, B.; Rakusan, K. Changes in calcium handling in atrophic heterotopically isotransplanted rat hearts. Basic Res. Cardiol. 1995, 90, 475–481. [Google Scholar] [CrossRef]
- Makino, N.; Ganguly, P.; Elimban, V.; Dhalla, N.S. Sarcolemmal Alterations in Unloaded Rat Heart after Heterotopic Transplantation. Int. J. Angiol. 2018, 27, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Schwoerer, A.P.; Neef, S.; Broichhausen, I.; Jacubeit, J.; Tiburcy, M.; Wagner, M.; Biermann, D.; Didié, M.; Vettel, C.; Maier, L.S.; et al. Enhanced Ca2+ influx through cardiac L-type Ca2+ channels maintains the systolic Ca2+ transient in early cardiac atrophy induced by mechanical unloading. Pflug. Arch. Eur. J. Physiol. 2013, 465, 1763–1773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hang, C.; Song, Y.; Li, Y.; Zhang, S.; Chang, Y.; Bai, R.; Saleem, A.; Jiang, M.; Lu, W.; Lan, F.; et al. Knockout of MYOM1 in human cardiomyocytes leads to myocardial atrophy via impairing calcium homeostasis. J. Cell. Mol. Med. 2021, 25, 1661–1676. [Google Scholar] [CrossRef] [PubMed]
- Radke, M.H.; Polack, C.; Methawasin, M.; Fink, C.; Granzier, H.L.; Gotthardt, M. Deleting Full Length Titin Versus the Titin M-Band Region Leads to Differential Mechanosignaling and Cardiac Phenotypes. Circulation 2019, 139, 1813–1827. [Google Scholar] [CrossRef] [PubMed]
- Handa, B.S.; Li, X.; Baxan, N.; Roney, C.H.; Shchendrygina, A.; Mansfield, C.A.; Jabbour, R.J.; Pitcher, D.S.; Chowdhury, R.A.; Peters, N.S.; et al. Ventricular fibrillation mechanism and global fibrillatory organization are determined by gap junction coupling and fibrosis pattern. Cardiovasc. Res. 2021, 117, 1078–1090. [Google Scholar] [CrossRef]
- Seidel, T.; Salameh, A.; Dhein, S. A simulation study of cellular hypertrophy and connexin lateralization in cardiac tissue. Biophys. J. 2010, 99, 2821–2830. [Google Scholar] [CrossRef] [Green Version]
- Dhein, S.; Salameh, A. Remodeling of cardiac gap junctional cell–cell coupling. Cells 2021, 10, 2422. [Google Scholar] [CrossRef]
- Saffitz, J.E.; Kléber, A.G. Effects of Mechanical Forces and Mediators of Hypertrophy on Remodeling of Gap Junctions in the Heart. Circ. Res. 2004, 94, 585–591. [Google Scholar] [CrossRef] [Green Version]
- Leffler, K.E.; Abdel-Rahman, A.A. Estrogen-dependent disruption of adiponectin-connexin43 signalling underlies exacerbated myocardial dysfunction in diabetic female rats. J. Pharmacol. Exp. Ther. 2019, 368, 208–217. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.K.; Garg, A.; Bär, C.; Chatterjee, S.; Foinquinos, A.; Milting, H.; Streckfus-Bomeke, K.; Fiedler, J.; Thum, T. Quaking inhibits doxorubicin-mediated cardiotoxicity through regulation of cardiac circular RNA expression short communication. Circ. Res. 2018, 122, 246–254. [Google Scholar] [CrossRef]
- Liu, Y.; Maureira, P.; Gauchotte, G.; Falanga, A.; Marie, V.; Olivier, A.; Groubatch, F.; Gu, C.; Marie, P.Y.; Tran, N. Effect of chronic left ventricular unloading on myocardial remodelling: Multimodal assessment of two heterotopic heart transplantation techniques. J. Heart Lung Transplant. 2015, 34, 594–603. [Google Scholar] [CrossRef]
- Santulli, G.; Pagano, G.; Sardu, C.; Xie, W.; Reiken, S.; D’Ascia, S.L.; Cannone, M.; Marziliano, N.; Trimarco, B.; Guise, T.A.; et al. Calcium release channel RyR2 regulates insulin release and glucose homeostasis. J. Clin. Investg. 2015, 125, 1968–1978. [Google Scholar] [CrossRef] [Green Version]
- Sardu, C.; Santulli, G.; Guerra, G.; Trotta, M.C.; Santamaria, M.; Sacra, C.; Testa, N.; Ducceschi, V.; Gatta, G.; Amico, M.D.; et al. Modulation of SERCA in patients with persistent atrial fibrillation treated by epicardial thoracoscopic ablation: The CAMAF study. J. Clin. Med. 2020, 9, 544. [Google Scholar] [CrossRef] [Green Version]
- Welsh, D.C.; Dipla, K.; McNulty, P.H.; Mu, A.; Ojamaa, K.M.; Klein, I.; Houser, S.R.; Margulies, K.B. Preserved contractile function despite atrophic remodelling in unloaded rat hearts. Am. J. Physiol. Circ. Physiol. 2001, 281, H1131–H1136. [Google Scholar] [CrossRef]
- Pokornỳ, M.; Červenka, L.; Netuka, I.; Pirk, J.; Koňařík, M.; Malý, J. Ventricular assist devices in heart failure: How to support the heart but prevent atrophy? Physiol. Res. 2014, 63, 147–156. [Google Scholar] [CrossRef]
- Pokorný, M.; Mrázová, I.; Šochman, J.; Melenovský, V.; Malý, J.; Pirk, J.; Červenková, L.; Sadowski, J.; Čermák, Z.; Volenec, K.; et al. Isovolumic loading of the failing heart by intraventricular placement of a spring expander attenuates cardiac atrophy after heterotopic heart transplantation. Biosci. Rep. 2018, 38, BSR20180371. [Google Scholar] [CrossRef] [Green Version]
- Pingitore, A.; Galli, E.; Barison, A.; Iervasi, A.; Scarlattini, M.; Nucci, D.; L’Abbate, A.; Mariotti, R.; Iervasi, G. Acute effects of triiodothyronine (T3) replacement therapy in patients with chronic heart failure and low-T3 syndrome: A randomized, placebo-controlled study. J. Clin. Endocrinol. Metab. 2008, 93, 1351–1358. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Moneim, A.; Gaber, A.M.; Gouda, S.; Osama, A.; Othman, S.I.; Allam, G. Relationship of thyroid dysfunction with cardiovascular diseases: Updated review on heart failure progression. Hormones 2020, 19, 301–309. [Google Scholar] [CrossRef]
- Razvi, S.; Mrabeti, S.; Luster, M. Managing symptoms in hypothyroid patients on adequate levothyroxine: A narrative review. Endocr. Connect. 2020, 9, R241–R250. [Google Scholar] [CrossRef]
- Cheema, Y.; Zhao, W.; Zhao, T.; Khan, M.U.; Green, K.D.; Ahokas, R.A.; Gerling, I.C.; Bhattacharya, S.K.; Weber, K.T. Reverse remodelling and recovery from cachexia in rats with aldosteronism. Am. J. Physiol. Heart Circ. Physiol. 2012, 303, H486–H495. [Google Scholar] [CrossRef] [Green Version]
- Geenen, D.L.; Malhotra, A.; Scheuer, J. Angiotensin II increases cardiac protein synthesis in adult rat heart. Am. J. Physiol. Heart Circ. Physiol. 1993, 265, H238–H243. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.X.; Tanada, Y.; Bello, G.D.; Fleming, J.C.; Alkassis, F.F.; Ladd, T.; Golde, T.; Koh, J.; Chen, S.; Kasahara, H. Cardiac MLC2 kinase is localized to the Z-disc and interacts with α-actinin2. Sci. Rep. 2019, 9, 12580. [Google Scholar] [CrossRef] [Green Version]
- Al Darazi, F.; Zhao, W.; Zhao, T.; Sun, Y.; Marion, T.N.; Ahokas, R.A.; Bhattacharya, S.K.; Gerling, I.C.; Weber, K.T. Small Dedifferentiated Cardiomyocytes Bordering on Microdomains of Fibrosis. J. Cardiovasc. Pharmacol. 2014, 64, 237–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geenen, D.L.; Malhotra, A.; Buttrick, P.M.; Scheuer, J. Ventricular pacing attenuates but does not reverse cardiac atrophy and an isomyosin shift in the rat heart. Am. J. Physiol. Heart Circ. Physiol. 1994, 267, H2149–H2154. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Ma, W.; Hao, B.; Hu, F.; Yan, L.; Yan, X.; Wang, Y.; Chen, Z.; Wang, Z. microRNA-21 promotes cardiac fibrosis and development of heart failure with preserved left ventricular ejection fraction by up-regulating Bcl-2. Int. J. Clin. Exp. Pathol. 2014, 7, 565–574. [Google Scholar] [PubMed]
- Chen, J.; Li, Z.; Zhang, Y.; Zhang, X.; Zhang, S.; Liu, Z.; Yuan, H.; Pang, X.; Liu, Y.; Tao, W.; et al. Mechanism of reduced muscle atrophy via ketone body (D)-3-hydroxybutyrate. Cell Biosci. 2022, 12, 94. [Google Scholar] [CrossRef]
- Huynh, K. Heart failure: Ketone bodies as fuel in heart failure. Nat. Rev. Cardiol. 2016, 13, 122–123. [Google Scholar] [CrossRef]
- Nielsen, R.; Møller, N.; Gormsen, L.C.; Tolbod, L.P.; Hansson, N.H.; Sorensen, J.; Harms, H.J.; Frøkiær, J.; Eiskjaer, H.; Jespersen, N.R.; et al. Cardiovascular Effects of Treatment with the Ketone Body 3-Hydroxybutyrate in Chronic Heart Failure Patients. Circulation 2019, 139, 2129–2141. [Google Scholar] [CrossRef]
- Didié, M.; Biermann, D.; Buchert, R.; Hess, A.; Wittköpper, K.; Christalla, P.; Döker, S.; Jebran, F.; Schöndube, F.; Reichenspurner, H.; et al. Preservation of left ventricular function and morphology in volume-loaded versus volume-unloaded heterotopic heart transplants. Am. J. Physiol. Heart Circ. Physiol. 2013, 305, 533–541. [Google Scholar] [CrossRef] [Green Version]
- Navaratnarajah, M.; Siedlecka, U.; Ibrahim, M.; Van Doorn, C.; Soppa, G.; Gandhi, A.; Shah, A.; Kukadia, P.; Yacoub, M.H.; Terracciano, C.M. Impact of combined clenbuterol and metoprolol therapy on reverse remodelling during mechanical unloading. PLoS ONE 2014, 9, e92909. [Google Scholar] [CrossRef] [Green Version]
- Meng, F.; Xie, B.; Martin, J.F. Targeting the Hippo pathway in heart repair. Cardiovasc. Res. 2022, 118, 2402–2414. [Google Scholar] [CrossRef]
- Goda, A.E.; Elenany, A.M.; Elsisi, A.E. Novel in vivo potential of trifluoperazine to ameliorate doxorubicin-induced cardiotoxicity involves suppression of NF-κB and apoptosis. Life Sci. 2021, 283, 119849. [Google Scholar] [CrossRef]
- Zheng, M.; Kang, Y.M.; Liu, W.; Zang, W.J.; Bao, C.Y.; Qin, D.N. Inhibition of Cyclooxygenase-2 Reduces Hypothalamic Excitation in Rats with Adriamycin-Induced Heart Failure. PLoS ONE 2012, 7, e48771. [Google Scholar] [CrossRef] [Green Version]
- Tadokoro, T.; Ikeda, M.; Abe, K.; Ide, T.; Miyamoto, H.D.; Furusawa, S.; Ishimaru, K.; Watanabe, M.; Ishikita, A.; Matsushima, S.; et al. Ethoxyquin is a competent radical-trapping antioxidant for preventing ferroptosis in doxorubicin cardiotoxicity. J. Cardiovasc. Pharmacol. 2022. [Google Scholar] [CrossRef]
- Nishiyama, K.; Numaga-Tomita, T.; Fujimoto, Y.; Tanaka, T.; Toyama, C.; Nishimura, A.; Yamashita, T.; Matsunaga, N.; Koyanagi, S.; Azuma, Y.T.; et al. Ibudilast attenuates doxorubicin-induced cytotoxicity by suppressing formation of TRPC3 channel and NADPH oxidase 2 protein complexes. Br. J. Pharmacol. 2019, 176, 3723–3738. [Google Scholar] [CrossRef]
- Hullin, R.; Métrich, M.; Sarre, A.; Basquin, D.; Maillard, M.; Regamey, J.; Martin, D. Diverging effects of enalapril or eplerenone in primary prevention against doxorubicin-induced cardiotoxicity. Cardiovasc. Res. 2018, 114, 272–281. [Google Scholar] [CrossRef] [Green Version]
- Murata, R.; Watanabe, H.; Nosaki, H.; Nishida, K.; Maeda, H.; Nishida, M.; Maruyama, T. Long-Acting Thioredoxin Ameliorates Doxorubicin-Induced Cardiomyopathy via Its Anti-Oxidative and Anti-Inflammatory Action. Pharmaceutics 2022, 14, 562. [Google Scholar] [CrossRef]
- Gomes-Santos, I.L.; Jordão, C.P.; Passos, C.S.; Brum, P.C.; Oliveira, E.M.; Chammas, R.; Camargo, A.A.; Negrão, C.E. Exercise Training Preserves Myocardial Strain and Improves Exercise Tolerance in Doxorubicin-Induced Cardiotoxicity. Front. Cardiovasc. Med. 2021, 8, 605993. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, J.L.; Lu, J.; Song, Y.; Kwak, K.S.; Jiao, Q.; Rosenfeld, R.; Chen, Q.; Boone, T.; Simonet, W.S.; et al. Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell 2010, 142, 531–543. [Google Scholar] [CrossRef]
Unloading | Causes | Consequences | |
---|---|---|---|
Mechanical Dysfunction | Incidence of Malignant Ventricular Arrhythmias | ||
Metabolic unloading | Caloric restriction | + | No information |
Cancer cachexia | + | No information | |
Doxorubicin treatment | + | Increase in risk of arrhythmias [90] * | |
Sepsis | + | May increase risk of arrhythmias [52] * | |
Chronic alcohol exposure | + | No information | |
Haemodynamic unloading | Prolonged mechanical support via left ventricular assist device | + | No information |
Spinal cord injury | + | May increase risk of arrhythmias [47] * | |
Physical inactivity/ prolonged bed rest | + | No information | |
Weightlessness/microgravity | + | No information | |
Type 1 diabetes mellitus | + | No arrhythmias [18,20] | |
Thyroid hormones deficiency | + | No arrhythmias [17,19] | |
Heterotopic cardiac transplantation | + | No information |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bacova, B.S.; Andelova, K.; Sykora, M.; Egan Benova, T.; Barancik, M.; Kurahara, L.H.; Tribulova, N. Does Myocardial Atrophy Represent Anti-Arrhythmic Phenotype? Biomedicines 2022, 10, 2819. https://doi.org/10.3390/biomedicines10112819
Bacova BS, Andelova K, Sykora M, Egan Benova T, Barancik M, Kurahara LH, Tribulova N. Does Myocardial Atrophy Represent Anti-Arrhythmic Phenotype? Biomedicines. 2022; 10(11):2819. https://doi.org/10.3390/biomedicines10112819
Chicago/Turabian StyleBacova, Barbara Szeiffova, Katarina Andelova, Matus Sykora, Tamara Egan Benova, Miroslav Barancik, Lin Hai Kurahara, and Narcis Tribulova. 2022. "Does Myocardial Atrophy Represent Anti-Arrhythmic Phenotype?" Biomedicines 10, no. 11: 2819. https://doi.org/10.3390/biomedicines10112819
APA StyleBacova, B. S., Andelova, K., Sykora, M., Egan Benova, T., Barancik, M., Kurahara, L. H., & Tribulova, N. (2022). Does Myocardial Atrophy Represent Anti-Arrhythmic Phenotype? Biomedicines, 10(11), 2819. https://doi.org/10.3390/biomedicines10112819