Immunosenescence in Neurological Diseases—Is There Enough Evidence?
Abstract
:1. Introduction
2. Methods
2.1. Multiple Sclerosis
2.1.1. Epidemiology and Pathogenesis
2.1.2. Studies on Immunosenescence in MS
MS | Involved Patient Groups | Numbers, Age | Material | Assay Readouts | Main Results |
---|---|---|---|---|---|
Zuroff (2022) [27] | MS controls | 40, 39 (35–55) 49, 49 (34–65) | peripheral blood | T and B cells naïıve (CCR7+CD45RA+), CM (CCR7+CD45RA), EM (CCR7-CD45RA), TEMRA (CCR7-CD45RA+) | altered age-associated activation of CD4 T cells and reduction of CD4 RTEs in MS controls exhibited increase of co-inhibitory CTLA-4 CD8 and CD4 T cells |
Eschborn (2021) [28] | A: RRMS PPMS HC B: RRMS PPMS non-inflammatory controls | A: 38 40 40 51 36 85 grouped in ‘older’ (>50 years) and ‘younger’ (≤50 years) | peripheral blood CSF | Lymphocytes B cells, CD4 T cells, CD8 T cells, CD8 naïve, CD8 memory, CD8 EM, CD8 CM | A: An age-dependent decrease in the expression of immunoinhibitory molecules (KLRG1, LAG3, CTLA-4 on memory CD8 T cells) was abrogated in MS T cells of old patients with MS displayed increased intracellular expression IFN-γ and TNF-α on stimulation Controls exhibited a strong age-dependent increase in costimulatory molecule CD226 on memory and EM CD8 T cells B: An age-dependent decrease in counts of lymphocytes, B and T cells and NK cells in patients with PPMS |
Picon (2021) [30] | MS grouped in M− (LS-OCM negative) M+ (LS-OCM positive) | 263 (16–65) 191 (16–65) 72 (18–62) grouped in >45 years and ≤45 years | paired peripheral blood and CSF | main subset of CSF (CD4+ and CD8+ T cells, CD19+ B cells, NK cells, monocytes and soluble factors (PD-L1, TIM-3, NfL) | M− exhibit an age-related decrease of mononuclear cells, NK cells, CD4, CD8 and B cells compared to M+. M− exhibited an age-related decrease of CD4 and CD8 T cells producing INF-γ, TNF-α and GM-CSF M− >45 years had a lower number of CD4 and CD8 T cells producing INF-γ, TNF-α and GM-CSF |
Hecker (2021) [31] | RRMS PPMS controls | 40, 50 (24–67) 20, 47 (26–68) 60, 51 (18–74) | peripheral blood | LTL from leukocytes | LTL was shorter for RRMS than for PPMS and HC An age-related negative association for LTL for all groups was shown shorter LTL in RRMS was associated with conversion to SPMS |
Paghera (2020) [33] | RRMS controls | 122, four groups (17–60 years) 235 age-matched | peripheral blood | TRECs KRECs | age-dependend decrease of TRECS in HC and MS KRECS remained stable, but decreased in an age-related manner |
Thewissen (2007) [35] | controls autoimmune MS | 60, 44 (20–85) 175 70, 44 (16–69) | peripheral blood | TRECS CD4+CD28null | An age-inappropriated low number of TREC in MS (and RA) compared to controls was shown. A non-significant decline in TRECs for disease duration in MS CD4+CD28null was shown as well as an increased frequency of these cells in MS |
Thewissen (2005) [34] | controls RA MS | 40, 45 (21–75) 60, 56 (34–84) 32, 39 (16–58) patients were grouped in three aging groups (15–40, 41–60 and >61 years) | peripheral blood | CD4+CD28null | TREC in MS were lower than in controls (not statistically significant) frequencies of CD4+CD28null did not differ at young age between MS and controls, but frequency increased with aging for MS compared to controls |
2.1.3. Conclusions
2.2. Stroke, Cerebrovascular Disease
2.2.1. Epidemiology and Pathogenesis
2.2.2. Studies on Immunosenescence in Stroke and Cerebrovascular Disease
2.2.3. Conclusions
2.3. Neurodegenerative Disorders
2.3.1. Parkinson’s Disease
Epidemiology and Pathogenesis
Studies on Immunosenescence in Parkinson’s Disease
Conclusions
2.3.2. Dementia and Alzheimer’s Disease
Epidemiology and Pathogenesis
Studies on Immunosenescence in Dementia and Alzheimer’s Disease
Dementia | Involved Patient Groups | Numbers, Age | Material | Assay Readouts | Main Results |
---|---|---|---|---|---|
Lombardi (2021) [55] | Demented controls, non-demented | 73, 94.06 +/− 3.66 338, 92.81 +/− 3.14 | peripheral blood | WBC | increased lymphocyte count in demented higher lymphocyte-monocyte-ratio (LMR) in demented patients only demented (without history of stroke) had higher lymphocyte and lower monocyte count, higher LMR |
Rajkumar (2021) [69] | probable DLB (dementia with lewy-bodies) controls, non demented | 10, age not reported 10, age-matched according the authors | peripheral blood RNA-seg | SEVs DEG (differentially expressed genes) | Downregulation in DLB:
|
Rajkumar (2020) [70] | LBD (lewy body dementia) DLB (dementia with lewy bodies) PDD (PD dementia) controls, non-demented | 14, age not reported 7 age did not differ, between the groups 7 7 | post-mortem brain tissue RNA-seq | DEGs | downreguation in LBD: MPO, SELE, CTSG, ALPI, ABCA13, SST, RBM3, CSF3, SLC4A1, OXTR, and RAB44 upregulated in LBD: GALNT6 |
Tramutola (2018) [66] | AD controls, non demented | 19, 76.94 +/− 9.44 19, 71.20 +/− 6.88 | peripheral blood | proteomics 3-NT proteome in CD3+ | upregulation of 10 proteins: PIK3R2, ANXA2P2, HSPA8, INPP4B, TADA2B, DPYSL2, ANXA11, CAT, ATP5A1 effects of T-cell on energy metabolism, cytoskeletal structure, intracellular signaling, protein folding and turnover, and antioxidant response |
Chen (2016) [68] | AD VaD (vascular dementia9 mixed, dementia PSD, post stroke dementia) PSND, post stroke non.demented Controls | 16, 83.9 +/− 1.9 17, 83.9 +/− 1.6 18, 84.5 +/− 1.2 20, 87.3 +/− 1.3 21, 85.0 +/− 1.0 20, 79.2 +/− 3.3 | post-mortem brain tissue from 5 regions (FGM, TGM, FWM, TWM, HIPP) | multiplex analyte assays with 6 panels (pro-inflammatory, cytokines, chemokines, angiogenesis, vascular and bFGF) | lower concentrations of cytokines on general in demented patients compared to controls (higher concentrations of bFGF, ICAM-1, VEGF-C, VEGF-D) PSD vs. PSND had lower concentrations of IL-6,-8 but higher concentrations of IL-1α |
Busse (2015) [60] | AD controls | 23, age not reported 37, 20–79 years | peripheral blood for AD after initiation of rivastigmine treatment blood samples were collected: 12, 30 and 52 weeks | CD14, HLA-DR, CD80, and CD86 | at time of diagnosis CD14+, HLA-DR expression, CD80/86 did not differ for AD vs. aged-matched controls after initiation of rivastigmine treatment no differences were detected over course of time |
Bulati (2014) [62] | AD, moderate-severe AD, mild controls | 20, 65–85 years 15, 69–91 years 15, 65–81 years | peripheral blood | CCR6, CCR7, CXCR3, CXCR4, CXCR5, CD19, CD27, IgD | Total and naïve B cells (IgD+CD27-) are increased in moderate-severe AD compared to controls Double negative B cells (IgD-CD27-) were increased in moderate-severe AD CCR6 was highly expressed on both AD groups CCR7 was highly expressed on total B cells in moderate-severe AD |
Martorana (2014) [64] | AD, moderate-severe controls, young controls, eldery controls, age-matched controls, descendants of centenarians | 8, 69–76 years 20, 25–40 years 20, 78–90 years 8, 69–76 8, 60–70 | peripheral blood | IgD, CD19, CD22, CD27, CD307 cell proliferation: Ki67 telomerase activity (RTA) | AD patients had lowest RTA levels, no further significant differences from peers were detected |
Westman (2013) [61] | AD controls, non demented | 50, 77.5 +/− 6.9 50, 74.0 +/− 8.0 | peripheral blood | CD3, CD4, CD8, CD19, CD27, CD28, CD45RA, CCR7 CMV seropositivity | proportion of CMV-specific CD8+ cells was significantly lower in AD than ND no difference for CD8 subpopulations |
Speciale (2007) [65] | AD AD, mild AD, moderate severe controls, non demented | 51, 72.2 (54–85 years) 29, 73.93 (54–85 years) 22, 69.90 (55–82 years) 51, 69.10 (54–87 years) | peripheral blood | CD3, CD4, CD8, HLA-DR, CD16, CD45RA, CD45RO, LFA1, CD25, CD28, CD71, CD57, cytokines (IL-2, IFN-γ, IL-10 and TNF-α) | CD8+CD71+ cells higher in AD CD8+CD28+ cells higher, and CD8+CD28− cells decreased in AD significant decrease in IL-10 after stimulation with Aß-protein in AD |
Richartz-Salzburger (2007) [58] | AD controls, non demented | 43, 70.9 +/− 8.2 34, 67.5 +/− 7.3 | peripheral blood | CD3, CD4, CD8, CD19, CD16, CD56 | AD patients showed a decrease in CD3+ (increased CD4+, but decreased CD8+), not altered CD4/CD8 ratio in AD patients CD19 cells were diminished |
Schindowski (2006) [57] | AD controls, non demented | 34, 73.4 +/− 3.5 34, 71.5 +/− 4.6 | peripheral blood | CD4, CD8, CD16, CD19, CD56 apoptosis measuring Bcl2 staining | significant increase in the basal apoptotic levels in AD compared to controls increase in Thelper cells and decrease of cytotoxic/suppressor cells in AD |
Richartz (2005) [59] | AD Serum AD CSF controls, non demented serum controls, non demented CSF | 27, 70 (63–84) 20, 72 (62–88) 23, 68 (59–77) 21, 68 (59–82) | peripheral blood and CSF | cytokines (IL-1ß, IL-2, sIL-2r, IL-6, sIL-6r, TNF-α, TNF-αr) | reduced levels of all cytokines (IL-2 not detectable in CSF, and IL-1ß, IL-2 and TNF-α not detectable in serum), in CSF and serum for AD patients and reduced levels for all cytokines after mitogen-induced stimulation in AD |
Antonaci (1990) [56] | Demented controls, age-matched controls, young | 12, 70 (68–92) 12, 73 (66–83) 12, 26 (21–35) | peripheral blood | CD3, CD4, CD8 B Cell Polyclonal Response Antigen-Specific Induction System chemotaxis phagocytosis LIF production (LK assay), LDCF release | In AD LDCF was not decreased compart to aged controls, but compared to young controls PMN chemotactic responsiveness, phagocytosis, and killing were significantly reduced in AD, but not different to aged controls |
Conclusions
3. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fauci, A.S.; Lane, H.C.; Redfield, R.R. COVID-19—Navigating the Uncharted. N. Engl. J. Med. 2020, 382, 1268–1269. [Google Scholar] [CrossRef] [PubMed]
- Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia|NEJM. Available online: https://www.nejm.org/doi/full/10.1056/NEJMoa2001316 (accessed on 19 July 2022).
- Walford, R.L. The Immunologic Theory of Aging1. Gerontologist 1964, 4, 195–197. [Google Scholar] [CrossRef]
- Fulop, T.; Larbi, A.; Pawelec, G.; Khalil, A.; Cohen, A.A.; Hirokawa, K.; Witkowski, J.M.; Franceschi, C. Immunology of Aging: The Birth of Inflammaging. Clin. Rev. Allergy Immunol. 2021, 32, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Aw, D.; Silva, A.B.; Palmer, D.B. Immunosenescence: Emerging challenges for an ageing population. Immunology 2007, 120, 435–446. [Google Scholar] [CrossRef]
- Santoro, A.; Bientinesi, E.; Monti, D. Immunosenescence and inflammaging in the aging process: Age-related diseases or longevity? Ageing Res. Rev. 2021, 71, 101422. [Google Scholar] [CrossRef]
- Abbas, A.A.; Akbar, A.N. Induction of T Cell Senescence by Cytokine Induced Bystander Activation. Front. Aging 2021, 2, 714239. [Google Scholar] [CrossRef] [PubMed]
- Akbar, A.N.; Henson, S.M. Are senescence and exhaustion intertwined or unrelated processes that compromise immunity? Nat. Rev. Immunol. 2011, 11, 289–295. [Google Scholar] [CrossRef]
- Fessler, J.; Angiari, S. The Role of T Cell Senescence in Neurological Diseases and Its Regulation by Cellular Metabolism. Front. Immunol. 2021, 12, 706434. [Google Scholar] [CrossRef]
- Nikolich-Zugich, J.; Rudd, B.D. Immune memory and aging: An infinite or finite resource? Curr. Opin. Immunol. 2010, 22, 535–540. [Google Scholar] [CrossRef]
- Coppé, J.-P.; Desprez, P.-Y.; Krtolica, A.; Campisi, J. The Senescence-Associated Secretory Phenotype: The Dark Side of Tumor Suppression. Annu. Rev. Pathol. 2010, 5, 99–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, Y.; O’Neill, P.; Naradikian, M.S.; Scholz, J.L.; Cancro, M.P. A B-cell subset uniquely responsive to innate stimuli accumulates in aged mice. Blood 2011, 118, 1294–1304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, S.; Wang, C.; Mao, X.; Hao, Y. B Cell Dysfunction Associated With Aging and Autoimmune Diseases. Front. Immunol. 2019, 10, 318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hakim, F.T.; Memon, S.A.; Cepeda, R.; Jones, E.C.; Chow, C.K.; Kasten-Sportes, C.; Odom, J.; Vance, B.A.; Christensen, B.L.; Mackall, C.L.; et al. Age-dependent incidence, time course, and consequences of thymic renewal in adults. J. Clin. Investig. 2005, 115, 930–939. [Google Scholar] [CrossRef] [Green Version]
- Daniels, M.A.; Teixeiro, E. Forget ‘ME’ not virtual memory T cells. Nat. Immunol. 2020, 21, 499–500. [Google Scholar] [CrossRef]
- Salminen, A. Immunosuppressive network promotes immunosenescence associated with aging and chronic inflammatory conditions. J. Mol. Med. 2021, 99, 1553–1569. [Google Scholar] [CrossRef]
- Duong, L.; Radley, H.; Lee, B.; Dye, D.; Pixley, F.; Grounds, M.; Nelson, D.; Jackaman, C. Macrophage function in the elderly and impact on injury repair and cancer. Immun. Ageing 2021, 18, 4. [Google Scholar] [CrossRef]
- Gayoso, I.; Sanchez-Correa, B.; Campos, C.; Alonso, C.; Pera, A.; Casado, J.G.; Morgado, S.; Tarazona, R.; Solana, R. Immunosenescence of human natural killer cells. J. Innate Immun. 2011, 3, 337–343. [Google Scholar] [CrossRef]
- Brauning, A.; Rae, M.; Zhu, G.; Fulton, E.; Admasu, T.D.; Stolzing, A.; Sharma, A. Aging of the Immune System: Focus on Natural Killer Cells Phenotype and Functions. Cells 2022, 11, 1017. [Google Scholar] [CrossRef]
- Reich, D.S.; Lucchinetti, C.F.; Calabresi, P.A. Multiple Sclerosis. N. Engl. J. Med. 2018, 378, 169–180. [Google Scholar] [CrossRef]
- Rommer, P.S.; Ellenberger, D.; Hellwig, K.; Haas, J.; Pöhlau, D.; Stahmann, A.; Zettl, U.K. Scientific Advisory Group of the German MS-Register by the German MS Society Relapsing and progressive MS: The sex-specific perspective. Ther. Adv. Neurol. Disord. 2020, 13, 1756286420956495. [Google Scholar] [CrossRef] [PubMed]
- Lassmann, H. Pathogenic Mechanisms Associated With Different Clinical Courses of Multiple Sclerosis. Front. Immunol. 2018, 9, 3116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weideman, A.M.; Tapia-Maltos, M.A.; Johnson, K.; Greenwood, M.; Bielekova, B. Meta-analysis of the Age-Dependent Efficacy of Multiple Sclerosis Treatments. Front. Neurol. 2017, 8, 577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bsteh, G.; Feige, J.; Ehling, R.; Auer, M.; Hegen, H.; Di Pauli, F.; Deisenhammer, F.; Reindl, M.; Berger, T. Discontinuation of disease-modifying therapies in multiple sclerosis—Clinical outcome and prognostic factors. Mult. Scler. 2017, 23, 1241–1248. [Google Scholar] [CrossRef]
- Monschein, T.; Salhofer-Polanyi, S.; Altmann, P.; Zrzavy, T.; Dal-Bianco, A.; Bsteh, G.; Rommer, P.; Berger, T.; Leutmezer, F. Should I stop or should I go on? Disease modifying therapy after the first clinical episode of multiple sclerosis. J. Neurol. 2021, 268, 1247–1253. [Google Scholar] [CrossRef]
- Zuroff, L.; Rezk, A.; Shinoda, K.; Espinoza, D.A.; Elyahu, Y.; Zhang, B.; Chen, A.A.; Shinohara, R.T.; Jacobs, D.; Alcalay, R.N.; et al. Immune aging in multiple sclerosis is characterized by abnormal CD4 T cell activation and increased frequencies of cytotoxic CD4 T cells with advancing age. EBioMedicine 2022, 82, 104179. [Google Scholar] [CrossRef]
- Eschborn, M.; Pawlitzki, M.; Wirth, T.; Nelke, C.; Pfeuffer, S.; Schulte-Mecklenbeck, A.; Lohmann, L.; Rolfes, L.; Pape, K.; Eveslage, M.; et al. Evaluation of Age-Dependent Immune Signatures in Patients With Multiple Sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8, e1094. [Google Scholar] [CrossRef]
- Villar, L.M.; Sádaba, M.C.; Roldán, E.; Masjuan, J.; González-Porqué, P.; Villarrubia, N.; Espiño, M.; García-Trujillo, J.A.; Bootello, A.; Alvarez-Cermeño, J.C. Intrathecal synthesis of oligoclonal IgM against myelin lipids predicts an aggressive disease course in MS. J. Clin. Investig. 2005, 115, 187–194. [Google Scholar] [CrossRef] [Green Version]
- Picón, C.; Tejeda-Velarde, A.; Fernández-Velasco, J.I.; Comabella, M.; Álvarez-Lafuente, R.; Quintana, E.; Sainz de la Maza, S.; Monreal, E.; Villarrubia, N.; Álvarez-Cermeño, J.C.; et al. Identification of the Immunological Changes Appearing in the CSF During the Early Immunosenescence Process Occurring in Multiple Sclerosis. Front. Immunol. 2021, 12, 685139. [Google Scholar] [CrossRef]
- Hecker, M.; Fitzner, B.; Jäger, K.; Bühring, J.; Schwartz, M.; Hartmann, A.; Walter, M.; Zettl, U.K. Leukocyte Telomere Length in Patients with Multiple Sclerosis and Its Association with Clinical Phenotypes. Mol. Neurobiol. 2021, 58, 2886–2896. [Google Scholar] [CrossRef]
- Dasouki, M.; Jabr, A.; AlDakheel, G.; Elbadaoui, F.; Alazami, A.M.; Al-Saud, B.; Arnaout, R.; Aldhekri, H.; Alotaibi, I.; Al-Mousa, H.; et al. TREC and KREC profiling as a representative of thymus and bone marrow output in patients with various inborn errors of immunity. Clin. Exp. Immunol. 2020, 202, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Paghera, S.; Sottini, A.; Previcini, V.; Capra, R.; Imberti, L. Age-Related Lymphocyte Output During Disease-Modifying Therapies for Multiple Sclerosis. Drugs Aging 2020, 37, 739–746. [Google Scholar] [CrossRef] [PubMed]
- Thewissen, M.; Linsen, L.; Somers, V.; Geusens, P.; Raus, J.; Stinissen, P. Premature immunosenescence in rheumatoid arthritis and multiple sclerosis patients. Ann. N. Y. Acad. Sci. 2005, 1051, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Thewissen, M.; Somers, V.; Venken, K.; Linsen, L.; van Paassen, P.; Geusens, P.; Damoiseaux, J.; Stinissen, P. Analyses of immunosenescent markers in patients with autoimmune disease. Clin. Immunol. 2007, 123, 209–218. [Google Scholar] [CrossRef]
- Hui, C.; Tadi, P.; Patti, L. Ischemic Stroke; StatPearls Publishing: Tampa, FL, USA, 2022. [Google Scholar]
- Powers, W.J. Acute Ischemic Stroke. N. Engl. J. Med. 2020, 383, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Hasan, T.F.; Rabinstein, A.A.; Middlebrooks, E.H.; Haranhalli, N.; Silliman, S.L.; Meschia, J.F.; Tawk, R.G. Diagnosis and Management of Acute Ischemic Stroke. Mayo Clin. Proc. 2018, 93, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Feigin, V.L.; Forouzanfar, M.H.; Krishnamurthi, R.; Mensah, G.A.; Connor, M.; Bennett, D.A.; Moran, A.E.; Sacco, R.L.; Anderson, L.; Truelsen, T.; et al. Global and regional burden of stroke during 1990–2010: Findings from the Global Burden of Disease Study 2010. Lancet 2014, 383, 245–254. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Z.; Wu, Q.; Yuan, Y.; Cao, W.; Zhang, X. Regulatory T cells in ischemic stroke. CNS Neurosci. Ther. 2021, 27, 643–651. [Google Scholar] [CrossRef]
- Yu, F.; Huang, T.; Ran, Y.; Li, D.; Ye, L.; Tian, G.; Xi, J.; Liu, Z. New Insights Into the Roles of Microglial Regulation in Brain Plasticity-Dependent Stroke Recovery. Front. Cell Neurosci. 2021, 15, 727899. [Google Scholar] [CrossRef]
- Shichita, T.; Ito, M.; Yoshimura, A. Post-ischemic inflammation regulates neural damage and protection. Front. Cell. Neurosci. 2014, 8, 319. [Google Scholar] [CrossRef]
- Sykes, G.P.; Kamtchum-Tatuene, J.; Falcione, S.; Zehnder, S.; Munsterman, D.; Stamova, B.; Ander, B.P.; Sharp, F.R.; Jickling, G. Aging Immune System in Acute Ischemic Stroke: A Transcriptomic Analysis. Stroke 2021, 52, 1355–1361. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, M.J.; Okun, M.S. Diagnosis and Treatment of Parkinson Disease: A Review. JAMA 2020, 323, 548–560. [Google Scholar] [CrossRef]
- Davie, C.A. A review of Parkinson’s disease. Br. Med. Bull. 2008, 86, 109–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Progress towards Therapies for Disease Modification in Parkinson’s Disease|Elsevier Enhanced Reader. Available online: https://reader.elsevier.com/reader/sd/pii/S1474442221000612?token=823DBEFEA0C66035834821B409744200F7313D825FB215EB89D09BF5ED1CBCCC2BAD83BD280C0122F981B0BD499278C3&originRegion=eu-west-1&originCreation=20220905073737 (accessed on 5 September 2022).
- Gagne, J.J.; Power, M.C. Anti-inflammatory drugs and risk of Parkinson disease. Neurology 2010, 74, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- Vavilova, J.D.; Boyko, A.A.; Ponomareva, N.V.; Fokin, V.F.; Fedotova, E.Y.; Streltsova, M.A.; Kust, S.A.; Grechikhina, M.V.; Bril, E.V.; Zimnyakova, O.S.; et al. Reduced Immunosenescence of Peripheral Blood T Cells in Parkinson’s Disease with CMV Infection Background. Int. J. Mol. Sci. 2021, 22, 13119. [Google Scholar] [CrossRef]
- Tilly, G.; Yap, M.; Brouard, S.; Degauque, N. TEMRA CD8 T Cells Are Highly Cytopathic Cells That Escape From Costimulatory Based-Therapy.: Abstract# B1159. Transplantation 2014, 98, 318–319. [Google Scholar]
- Kouli, A.; Jensen, M.; Papastavrou, V.; Scott, K.M.; Kolenda, C.; Parker, C.; Solim, I.H.; Camacho, M.; Martin-Ruiz, C.; Williams-Gray, C.H. T lymphocyte senescence is attenuated in Parkinson’s disease. J. Neuroinflammation 2021, 18, 228. [Google Scholar] [CrossRef]
- Vida, C.; Martinez de Toda, I.; Garrido, A.; Carro, E.; Molina, J.A.; De la Fuente, M. Impairment of Several Immune Functions and Redox State in Blood Cells of Alzheimer’s Disease Patients. Relevant Role of Neutrophils in Oxidative Stress. Front. Immunol. 2017, 8, 1974. [Google Scholar] [CrossRef] [Green Version]
- Williams-Gray, C.H.; Wijeyekoon, R.S.; Scott, K.M.; Hayat, S.; Barker, R.A.; Jones, J.L. Abnormalities of age-related T cell senescence in Parkinson’s disease. J. Neuroinflammation 2018, 15, 166. [Google Scholar] [CrossRef]
- Dementia. Available online: https://www.who.int/news-room/fact-sheets/detail/dementia (accessed on 18 September 2022).
- Niu, H.; Álvarez-Álvarez, I.; Guillén-Grima, F.; Aguinaga-Ontoso, I. Prevalence and incidence of Alzheimer’s disease in Europe: A meta-analysis. Neurología (Engl. Ed.) 2017, 32, 523–532. [Google Scholar] [CrossRef]
- Ballard, C.; Gauthier, S.; Corbett, A.; Brayne, C.; Aarsland, D.; Jones, E. Alzheimer’s disease. Lancet 2011, 377, 1019–1031. [Google Scholar] [CrossRef]
- Lombardi, G.; Paganelli, R.; Abate, M.; Ireland, A.; Molino-Lova, R.; Sorbi, S.; Macchi, C.; Pellegrino, R.; Di Iorio, A.; Cecchi, F. Leukocyte-derived ratios are associated with late-life any type dementia: A cross-sectional analysis of the Mugello study. Geroscience 2021, 43, 2785–2793. [Google Scholar] [CrossRef] [PubMed]
- Antonaci, S.; Garofalo, A.R.; Chicco, C.; Polignano, A.V.; Pugliese, P.; Misefari, A.; Jirillo, E. Senile dementia, Alzheimer type: A distinct entity in the immunosenescence? J. Clin. Lab. Anal. 1990, 4, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Tramutola, A.; Abate, G.; Lanzillotta, C.; Triani, F.; Barone, E.; Iavarone, F.; Vincenzoni, F.; Castagnola, M.; Marziano, M.; Memo, M.; et al. Protein nitration profile of CD3+ lymphocytes from Alzheimer disease patients: Novel hints on immunosenescence and biomarker detection. Free Radic. Biol. Med. 2018, 129, 430–439. [Google Scholar] [CrossRef]
- Westman, G.; Lidehall, A.-K.; Magnusson, P.; Ingelsson, M.; Kilander, L.; Lannfelt, L.; Korsgren, O.; Eriksson, B.-M. Decreased proportion of cytomegalovirus specific CD8 T-cells but no signs of general immunosenescence in Alzheimer’s disease. PLoS ONE 2013, 8, e77921. [Google Scholar] [CrossRef] [Green Version]
- Bulati, M.; Buffa, S.; Martorana, A.; Gervasi, F.; Camarda, C.; Azzarello, D.M.; Monastero, R.; Caruso, C.; Colonna-Romano, G. Double negative (IgG+IgD-CD27-) B cells are increased in a cohort of moderate-severe Alzheimer’s disease patients and show a pro-inflammatory trafficking receptor phenotype. J. Alzheimers Dis. 2015, 44, 1241–1251. [Google Scholar] [CrossRef]
- Martorana, A.; Bulati, M.; Buffa, S.; Pellicanò, M.; Caruso, C.; Candore, G.; Colonna-Romano, G. Immunosenescence, inflammation and Alzheimer’s disease. Longev. Healthspan 2012, 1, 8. [Google Scholar] [CrossRef] [Green Version]
- Martorana, A.; Balistreri, C.R.; Bulati, M.; Buffa, S.; Azzarello, D.M.; Camarda, C.; Monastero, R.; Caruso, C.; Colonna-Romano, G. Double negative (CD19+IgG+IgD-CD27-) B lymphocytes: A new insight from telomerase in healthy elderly, in centenarian offspring and in Alzheimer’s disease patients. Immunol. Lett. 2014, 162, 303–309. [Google Scholar] [CrossRef]
- Speciale, L.; Calabrese, E.; Saresella, M.; Tinelli, C.; Mariani, C.; Sanvito, L.; Longhi, R.; Ferrante, P. Lymphocyte subset patterns and cytokine production in Alzheimer’s disease patients. Neurobiol. Aging 2007, 28, 1163–1169. [Google Scholar] [CrossRef]
- Schindowski, K.; Peters, J.; Gorriz, C.; Schramm, U.; Weinandi, T.; Leutner, S.; Maurer, K.; Frölich, L.; Müller, W.E.; Eckert, A. Apoptosis of CD4+ T and natural killer cells in Alzheimer’s disease. Pharmacopsychiatry 2006, 39, 220–228. [Google Scholar] [CrossRef]
- Richartz-Salzburger, E.; Batra, A.; Stransky, E.; Laske, C.; Köhler, N.; Bartels, M.; Buchkremer, G.; Schott, K. Altered lymphocyte distribution in Alzheimer’s disease. J. Psychiatr. Res. 2007, 41, 174–178. [Google Scholar] [CrossRef] [PubMed]
- Richartz, E.; Stransky, E.; Batra, A.; Simon, P.; Lewczuk, P.; Buchkremer, G.; Bartels, M.; Schott, K. Decline of immune responsiveness: A pathogenetic factor in Alzheimer’s disease? J. Psychiatr. Res. 2005, 39, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Busse, S.; Steiner, J.; Alter, J.; Dobrowolny, H.; Mawrin, C.; Bogerts, B.; Hartig, R.; Busse, M. Expression of HLA-DR, CD80, and CD86 in Healthy Aging and Alzheimer’s Disease. J. Alzheimers Dis. 2015, 47, 177–184. [Google Scholar] [CrossRef]
- Chen, A.; Oakley, A.E.; Monteiro, M.; Tuomela, K.; Allan, L.M.; Mukaetova-Ladinska, E.B.; O’Brien, J.T.; Kalaria, R.N. Multiplex analyte assays to characterize different dementias: Brain inflammatory cytokines in poststroke and other dementias. Neurobiol. Aging 2016, 38, 56–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajkumar, A.P.; Hye, A.; Lange, J.; Manesh, Y.R.; Ballard, C.; Fladby, T.; Aarsland, D. Next-Generation RNA-Sequencing of Serum Small Extracellular Vesicles Discovers Potential Diagnostic Biomarkers for Dementia With Lewy Bodies. Am. J. Geriatr. Psychiatry 2021, 29, 573–584. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, A.P.; Bidkhori, G.; Shoaie, S.; Clarke, E.; Morrin, H.; Hye, A.; Williams, G.; Ballard, C.; Francis, P.; Aarsland, D. Postmortem Cortical Transcriptomics of Lewy Body Dementia Reveal Mitochondrial Dysfunction and Lack of Neuroinflammation. Am. J. Geriatr. Psychiatry 2020, 28, 75–86. [Google Scholar] [CrossRef]
- Gate, D.; Saligrama, N.; Leventhal, O.; Yang, A.C.; Unger, M.S.; Middeldorp, J.; Chen, K.; Lehallier, B.; Channappa, D.; De Los Santos, M.B.; et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer’s disease. Nature 2020, 577, 399–404. [Google Scholar] [CrossRef]
- Gate, D.; Tapp, E.; Leventhal, O.; Shahid, M.; Nonninger, T.J.; Yang, A.C.; Strempfl, K.; Unger, M.S.; Fehlmann, T.; Oh, H.; et al. CD4+ T cells contribute to neurodegeneration in Lewy body dementia. Science 2021, 374, 868–874. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhan, J.-K.; Liu, Y. A Perspective on Roles Played by Immunosenescence in the Pathobiology of Alzheimer’s Disease. Aging Dis. 2020, 11, 1594–1607. [Google Scholar] [CrossRef]
- Dal Bianco, A.; Bradl, M.; Frischer, J.; Kutzelnigg, A.; Jellinger, K.; Lassmann, H. Multiple sclerosis and Alzheimer’s disease. Ann. Neurol. 2008, 63, 174–183. [Google Scholar] [CrossRef]
- Zrzavy, T.; Hametner, S.; Wimmer, I.; Butovsky, O.; Weiner, H.L.; Lassmann, H. Loss of “homeostatic” microglia and patterns of their activation in active multiple sclerosis. Brain 2017, 140, 1900–1913. [Google Scholar] [CrossRef] [PubMed]
- Frischer, J.M.; Bramow, S.; Dal-Bianco, A.; Lucchinetti, C.F.; Rauschka, H.; Schmidbauer, M.; Laursen, H.; Sorensen, P.S.; Lassmann, H. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 2009, 132, 1175–1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dal-Bianco, A.; Schranzer, R.; Grabner, G.; Lanzinger, M.; Kolbrink, S.; Pusswald, G.; Altmann, P.; Ponleitner, M.; Weber, M.; Kornek, B.; et al. Iron Rims in Patients With Multiple Sclerosis as Neurodegenerative Marker? A 7-Tesla Magnetic Resonance Study. Front. Neurol. 2021, 12, 632749. [Google Scholar] [CrossRef] [PubMed]
- Jalusic, K.O.; Ellenberger, D.; Rommer, P.; Stahmann, A.; Zettl, U.; Berger, K. Effect of applying inclusion and exclusion criteria of phase III clinical trials to multiple sclerosis patients in routine clinical care. Mult. Scler. 2021, 27, 1852–1863. [Google Scholar] [CrossRef]
- Kalamakis, G.; Brüne, D.; Ravichandran, S.; Bolz, J.; Fan, W.; Ziebell, F.; Stiehl, T.; Catalá-Martinez, F.; Kupke, J.; Zhao, S.; et al. Quiescence Modulates Stem Cell Maintenance and Regenerative Capacity in the Aging Brain. Cell 2019, 176, 1407–1419.e14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villeda, S.A.; Plambeck, K.E.; Middeldorp, J.; Castellano, J.M.; Mosher, K.I.; Luo, J.; Smith, L.K.; Bieri, G.; Lin, K.; Berdnik, D.; et al. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat. Med. 2014, 20, 659–663. [Google Scholar] [CrossRef] [Green Version]
- Yong, H.Y.F.; Yong, V.W. Mechanism-based criteria to improve therapeutic outcomes in progressive multiple sclerosis. Nat. Rev. Neurol. 2022, 18, 40–55. [Google Scholar] [CrossRef]
Stroke | Involved Patients Groups | Numbers, Age | Material | Assay Readouts | Main Results |
---|---|---|---|---|---|
Sykes (2021) [42] | Cohort 1: Stroke Cohort 2: Validation | 94, 65.9 (38–90 years) 79, 63.8 (36–91 years) | peripheral blood (median 46 h after onset in cohort 1 and 35 h in cohort 2) | transcript of gene expression | 69 genes associated with age from Cohort 1 that were confirmed in Cohort 2 (including CR2, CD27, CCR7, and NT5E) Functional analysis identified B cell receptor signaling and development, T helper cell differentiation, and IL-7 Association between age and post-stroke leukocyte gene expression was shown |
PD | Involved Patient Groups | Numbers, Age | Material | Assay Readouts | Main Results |
---|---|---|---|---|---|
Valivova (2021) [47] | PD controls, age-matched controls, young | 31, 59 +/− 11.6 (Höhn & Yahr ≤ 2.0) 2.7 +/− 0.6 33, 56 +/− 11 20, 25 +/− 2.5 | peripheral blood | CD3, CD4, CD8, CD56, CD57 CMV-seropositivity | PD: 100% CMV+ controls: 76% CMV+ TEMRA cells were reduced in PD compared to CMV+ age-matched controls CD57+ cells were decreased in PD compared to age-matched controls, but increased compared to CMV+ young controls |
Kouli (2021) [49] | PD controls | 61, 67,4 +/− 7.1 (Höhn & Yahr ≤ 2.0) 63, 67.5 +/− 7.2 | peripheral blood | T cells, RTE, Telomere length, gene expression marker hTERT, p16, p21 | PD:48% CMV+ controls: 48% CMV+ reduction in lymphocytes and cytotoxic CD8+ T cells and TEMRA in PD Association between CMV+ and CD8+CD57+ cells and CD8+TEMRA, expression of p16 was reduced in PD no difference in telomere length and hTERT between PD and controls |
Vida (2019) [50] | PD elderly controls adult controls | 45, 67 +/− 12 (Höhn & Yahr ≤ 2) 34, 74 +/− 11 20, 40 +/− 8 | peripheral blood | neutrophils, lymphocytes adherence, chemotaxis, phagocytosis, NK cytotoxicity, lymphoproliferation, gluatathione peroxidase/reductase activity, lipid peroxidation | PD patients showed impairment of the adaptive immune functions (with lower lymphoproliferation) but not in the innate response PD had lower gluthatione reductase, but higher peroxidase activity |
William-Gray (2018) [51] | PD controls | 41, 68.4 +/− 6.3 (Höhn & Yahr ≤ 2) 41, 68.1 +/− 5.6 | peripheral blood | CD3, CD4, CD8, HLA-DR, CD38, CD28, CCR7, CD45RA, CD57 | Lower total lymphocyte counts in PD, but no difference in CD4/CD8 ratio reduced proportion of CD28loCD57hiCD8+ T cells, CD8+ TEMRA, but higher CD8+CM cells in PD CD57 was decreased and CD28 increased in PD |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rommer, P.S.; Bsteh, G.; Zrzavy, T.; Hoeftberger, R.; Berger, T. Immunosenescence in Neurological Diseases—Is There Enough Evidence? Biomedicines 2022, 10, 2864. https://doi.org/10.3390/biomedicines10112864
Rommer PS, Bsteh G, Zrzavy T, Hoeftberger R, Berger T. Immunosenescence in Neurological Diseases—Is There Enough Evidence? Biomedicines. 2022; 10(11):2864. https://doi.org/10.3390/biomedicines10112864
Chicago/Turabian StyleRommer, Paulus S, Gabriel Bsteh, Tobias Zrzavy, Romana Hoeftberger, and Thomas Berger. 2022. "Immunosenescence in Neurological Diseases—Is There Enough Evidence?" Biomedicines 10, no. 11: 2864. https://doi.org/10.3390/biomedicines10112864
APA StyleRommer, P. S., Bsteh, G., Zrzavy, T., Hoeftberger, R., & Berger, T. (2022). Immunosenescence in Neurological Diseases—Is There Enough Evidence? Biomedicines, 10(11), 2864. https://doi.org/10.3390/biomedicines10112864