Contemporary Clinical Definitions, Differential Diagnosis, and Novel Predictive Tools for Renal Cell Carcinoma
Abstract
:1. Introduction
2. Semiology and Natural Evolution of RCCs
3. The Role of Current Imaging Modalities in RCC Clinical Work-Up
- -
- infiltrative growth pattern of solid renal masses, although suggestive for malignancy, is not pathognomonic for RCC, only broadening the differential diagnosis (urothelial carcinoma, renal lymphoma, renal abscess, and high-grade or sarcomatoid RCC);
- -
- enhancement of ˃15–20 Hounsfield units (HU) on CT is indicative of RCC, without excluding benign histology [55];
- -
- -
- enhancement of >20% with intravenous gadolinium-based contrast on MRI is suggestive of RCC (especially helpful in masses ˂2 cm) [58];
- -
4. Definitive Diagnosis in RCCs: Pathology, Genetics, and Ancillary Studies
4.1. Conventional Staining amd RCC Microscopic Morphological Evaluation
4.2. Definitions and Comprehensive Profiles for RCC Subtyping
TYPE | MYCROSCOPY | IHC STAINING | GENETICS |
---|---|---|---|
Clear cell (cc) RCC | Hypercellularity: nests/sheets of cells, manifesting cytoplasmatic clearing and individualized membranes. Granular eosinophilic cytoplasm, seen in high-grade areas or near hemorrhage/necrosis. Rarely, intra/extracellular hyaline globules, basophilic cytoplasmic inclusions, abundant multinucleated giant cells. Architecture: solid, alveolar/nested, acinar/tubular, microcystic/macrocystic, rarely pseudopapillary. Stroma: ussually nonspecific, without desmoplasia or inflamatory modifications; may be fibromyxoid, with calcification/ossification. Hypervascular tumor: ramified network of small calibre, thin-walled vessels. High grade features: rhabdoid/sarcomatoid differentiation. | POSITIVE: PAX8 (nuclear, ~100%); CAIX (diffuse membranous/box-like, 75–100%); proximal tubular antigens (also seen in normal cells): CD10 (membranous, 82–94%) and RCCm (cytoplasmic and membranous, 72–84%); epithelial markers (AE1/AE3, CAM 5.2, EMA); Vimentin (cytoplasmic and membranous). NEGATIVE: CK7 (focally positive or patchy in high grade areas or cystic components); CK20; AMACR; 34βE12; CD117; HMB-45; TFE3/TFEB; Cathepsin-K; GATA3; MelanA; Inhibin. | SPORADIC: 3p loss/deletions or biallelic alteration of VHL gene (3p25) by mutation or hypermethylation (80–98%). ccRCC tumor suppressor genes harbored by 3p locus: KD-M6A (or UTX), KDM5C (or JARID1C), SETD2 and PBRM1. Loss of chromosome 4p, 8p, 9p, 14q. Gain of chromosome 5q. Mutations in BAP1 and PBRM1 genes. FAMILIAL: Von Hippel-Lindau disease; constitutional chromosome 3 translocations. |
Papillary (p) RCC Type 1 | Hypovascular tumor. Cellularity: small cuboidal cells; uniform, diminished, pale/basophilic cytoplasm; hyperchromatic nuclei, absent nucleoli, lower grade than type 2; foamy macrophages and psammoma bodies are usually encountered. Architecture: single layer of of cells around fibrovascular cores (papillary), tubules and glomeruloid structures. | POSITIVE: PAX8; CK7 (diffuse, but strong); EMA (polarized expression); AMACR; AE1/AE3; CD10. NEGATIVE: CAIX; GATA3; p63; 34βE12; TFE3/TFEB; Cathepsin-K. | SPORADIC: Activating mutations or amplifications of MET proto-oncogene in >80% of sporadic cases. Gains in chromosomes 3, 7, and 17. FAMILIAL: Hereditary papillary renal carcinoma (HPRC). |
pRCC Type 2 | Cellularity: abundant eosinophilic cytoplasm; frequent nuclear atypia with clearly visible nucleoli (usually ISUP grade ≥3) and nuclear grooves; intracytoplasmic hemosiderin; possible areas of clear cytoplasm; less frequent foamy macrophages and psammoma bodies than type 1. Architecture: papillary, with pseudostratified layers of large cells; variable necrosis. | POSITIVE: PAX8; CD10; AMACR; Topoisomerase II alpha. NEGATIVE: CAIX; CK7 (or patchy positive); EMA (or focal positive); p63; HMB45; MelanA; Cathepsin-K; 34βE12; GATA3; TFE3/TFEB. | SPORADIC: Less consistent than type 1. Heterogeneous, losses or gains of chromosomes 1, 3, 4, 5, 6, 8, 9, 10, 11, 15, 18, and 22. NRF-ARE2 pathway amplification. 8q gains and allelic imbalance of 9q13 (prognostic significance). In advanced stages, CDKN2A/B (18%), TERT (18%), NF2 (13%) and FH (13%) are commonly altered. FAMILIAL: FH gene (1q42–43) mutation in HLRCC. |
Chromophobe (ch) RCC | Cellularity: sharply defined, pale cells; “plant-like” cell borders (“vegetable cells”); wrinkled and angulated, irregular nuclei, with coarse chromatin (“raisinoid”); frequent bi/multinucleation and perinuclear halo (koilocytic atypia), with rare mitotic figures; Fuhrman/WHO nuclear grading has no prognostic value and is discouraged. 2 types of cellular morphologies: Type 1—large, polygonal cells, hard cell borders, abundant cytoplasm with reticular pattern (classical variant); Type 2—smaller cells with finely granular eosinophilic cytoplasm (predominant in eosinophilic variant). Architecture: confluent, solid growth with nests, sheets or alveoli/trabeculae; minimal stroma, composed of incomplete fibro-vascular septae around solid sheets; minimal vasculature. | POSITIVE: PAX8; Hale colloidal iron (histochemical stain; diffuse and strong, reticular); CK7 (diffuse and strong); CD117 (membranous); Ksp-cadherin (+/−); GATA3(+/−); E-cadherin; claudin7 (distal nephron marker); EMA (diffuse cytoplasmic); LMWCK (CK8/CK18); RCCm; CD10; Parvalbumin (calcium binding protein); Cytochrome c oxidase; DOG1; Progesteron Receptor (90% of cells); PDL1 22C3 (in a minority of cases). NEGATIVE: Vimentin (or weak); CAIX; AMACR; N-cadherin; Cathepsin-K; HMB-45; low Ki67 labeling index; Cyclin D1. | SPORADIC: Multiple losses of whole chromosomes: 1, 2, 6, 10, 13, 17, 21 or Y. DNA rearrangement breakpoints within the TERT promoter region. Mutated TP53 and PTEN in 10–30% of cases (TCGA cohort) and NRAS, mTOR and TSC1/TSC2 in ~5%. Mutations in mitochondrial DNA most commonly affect MT-ND5, with increased expression of genes encoding Krebs cycle enzymes. FAMILIAL: Birt-Hogg-Dube (BHD) syndrome—FLCN gene mutation (17p11.2) |
Clear Cell Papillary (ccp) RCC | Cellularity: clear cytoplasm; characteristic linear arrangement of nuclei away from the basal aspect of cells; low nuclear grade (Fuhrman grade 1–2). Architecture: variable mixture of cystic, branched tubular, solid and papillary components; papillae often tightly packed into anastomosing clear cell ribbons or projecting into cystic spaces; fibrous capsule and variable amounts of hyalinized or sclerotic stroma that may separate the tumor into nodules; never encountered: foamy macrophages, vascular invasion, oxalate crystals, necrosis. | POSITIVE: PAX8; CK7 (strong and diffuse); CAIX (diffuse membranous or characteristic “cup shaped” distribution—lack of staining along luminal aspect); AE1/AE3; CAM 5.2; Vimentin; EMA; GATA3 (+/−); 34βE12. NEGATIVE: AMACR; CD10; RCCm; TFE3/TFEB; low PCNA; CD117; Cathepsin-K; HMB-45. | No specific genomic imbalances. Lacks genetic modifications of classic pRCC (no +7/+17 or -Y) and/or classic ccRCC (no -3/-3p). Activation of hypoxia inducible factor (HIF) pathway, with underexpressed VHL transcripts, but without typical VHL mechanism (no VHL gene mutations/promoter hypermethylation). May appear in VHL disease. |
Collecting duct carcinoma (CDC) | Cellularity: irregular channels, lined with high-grade cuboidal to hobnail cells, with eosinophilic cytoplasm; pleomorphic kariomegaly, with visible nucleoli and coarse chromatin; abundant mitosis. Architecture: the tumor is complex, infiltrative, and poorly circumscribed, composed of cords, tubules, tubulopapillary or tubulocystic structures, within an inflammatory-desmoplastic stroma; intracytoplasmic/intraluminal mucin, microcystic changes from dilation of the tubular structures and sarcomatoid transformation may be present. Tumor-adjacent tubular epithelium, lining collecting ducts, may appear dysplastic. | POSITIVE: PAX8/PAX2; HMWCK (34βE12); LMWCK (CK7, CK8/18, CK19); Ulex europaeus lectins (Ulex-1); peanut lectin agglutinin (PNA); Mucin (strong); Vimentin; EMA; S100A1; INI-1/BAF47 retained. NEGATIVE: p63; Uroplakin II; CD10; AMACR; E-cadherin; CAIX; OCT3/4; CD117; GATA3. | Lacking loss of 3p or trisomies 7 and 17. HER2/neu amplifications in 45% of cases. Genomic alterations in NF2 (29%), SETD2 (24%), SMARCB1 (18%) and CDKN2A (12%). Recurrent somatic single nucleotide variants in ATM, CREBBP, PRDM1, CBFB, FBXW7, IKZF1, KDR, KRAS, NACA, NF2, NUP98, SS18, TP53 and ZNF521. SLC7A11 (cisplatin resistance associated gene), overexpressed in 80% of cases. |
Renal medullary carcinoma (RMC) | Cellularity: cohesive groups of pleomorphic tumor cells, with vacuolated eosinophilic cytoplasm, that often displaces or indents the hyperchromatic, enlarged nuclei; nuclear membranes are often irregular, with coarse or vesicular chromatin and prominent nucleoli; rhabdoid traits are frequent; abundant intratumoral neutrophils and lymphocytes at tumor rim; abundant sickled erythrocytes (drepanocytes) may be pathognomonic. Architecture: multiple distinct morphologic patterns—reticular; microcystic and adenoid cystic-like; tubular, glandular, tubulopapillary and solid (overlapping with CDC patterns); hemorrhagic and geographic necrosis; angiolymphatic invasion, desmoplastic stroma and infiltrative borders. | POSITIVE: CAM 5.2; AE1/AE3; CK7/CK20 (may be variable); Vimentin; EMA and CEA; p53; PAX8; OCT3/4; Ulex-1 (focally positive in a minority of cases); vascular endothelial growth factor (VEGF) and hypoxia inducible factor (HIF) may be strongly positive. NEGATIVE: Loss of INI-1/BAF47 expression; colloidal iron; PAS; desmin; 34βE12; GATA3 | Prevalent loss of SMARCB1/INI1, a major driving feature, identifiable by IHC. Hypoxia inducible factor and VHL abnormalities. ALK rearrangement with vinculin (VCN) fusion. DNA topoisomerase II amplification. Rarely, vinculin—ALK fusion (young patients, less aggressive). Associated with sickle cell trait (monosomy 11—beta globin gene is at end of 11p). |
Succinate dehydrogenase deficient renal (SDHD) RCC | Cellularity: flocculent, pale, eosinophilic, cytoplasmic vacuolation, with a wispy/bubbly appearance and low grade nuclei, with smooth nuclear contours and fine chromatin, with no nucleoli, represents a characteristic finding and must be present at least focally. Architecture: well circumscribed tumor or with a “pushing” border, commonly entrapping tubules; solid, nested or tubular growth pattern with scattered cysts containing eosinophilic material; necrosis, sarcomatoid change and areas with higher grade nuclei may also be present; variant morphologies have been rarely reported. Shares features with chRCC, oncocytoma, ccRCC and pRCC type 2. | POSITIVE: PAX8; focal pancytokeratin and CAM 5.2; EMA. NEGATIVE: Loss of SDHB IHC staining (indicates disruption of the mitochondrial complex 2 for any reason, not just SDHB gene mutation and caution regarding overinterpretation of negativity in tumors with very clear cytoplasm is essential); CK7; CK20; AE1/AE3; CAIX; RCCm; CD117 (mast cells only); Vimentin; S100A1; TFE3/TFEB; neuroendocrine markers; minimal AMACR staining. | Wild-type VHL, PIK3CA, AKT, mTOR, MET or TP53 genes. Genes for succinate dehydrogenase subunits (SDH-A, -B, -C, -D), encode protein components of mitochondrial complex II, linking the Krebs cycle with the electron transport chain, being involved in most cases of SDHD RCC. Germline mutations of SDH-A, SDH-B (1p36.13), SDH-C (1q23.3), SDH-D(11q23.1), SHDAF2, determining double hit inactivation, leads to dysfunction of mitochondrial complex II, increased oxidative stress, genomic injury and HIF1α stabilization. |
Microphtalmia family translocation (MiT) RCC—Xp11/t(6;11) | Cellularity: voluminous cytoplasm and high-grade nuclei, with frequent psammoma bodies and occasional melanin pigment, similar to a pigmented perivascular epithelioid tumor—(PEC)coma. t(6:11) rearranged carcinomas are characteristically biphasic, with small cells clustered around basement membrane material (reminiscent of Call-Exner bodies in adult granulosa cell tumor) and larger epithelioid cells. Architecture: usually papillary and solid alveolar growth pattern, composed of clear to eosinophilic, discohesive pseudostratified cells. | POSITIVE: TFE3/TFEB (strong nuclear staining, but difficult to standardize on automated platforms; FISH assays are more reliable)—weak TFE3 staining in adults may not be specific; PAX8; Cathepsin-K (~50%, cytoplasmic); CD10; AMACR; Vimentin; E-cadherin; melanocytic markers (HMB45 and MelanA), are common for t(6:11) carcinomas, but always focal, and infrequent for Xp11, which usually manifest variable CD117. NEGATIVE: Variable cytokeratin (only 30–50% positive, less than other RCC types) and EMA (50%, frequently only focal); CAIX usually negative except areas of necrosis; CK7; 34βE12; CD45; calretinin; smooth muscle actin. | Fluorescence in situ hybridization (FISH) with a TFE3/TFEB breakapart probe is highly sensitive and specific, offering the final diagnosis when morphology and IHC are inconclusive. The TFE3 gene (on Xp11) has been reported to have multiple translocation gene partners, most commonly, ASPL (17q25) and PRCC (1q21), and less commonly NONO (Xq12), PSF/SFPQ (1p34), CLTC (17q23). t(6;11)(p21;q12), a translocation between TFEB and MALAT1 genes, results in overexpression of TFEB. t(X;17)(p11.2;q25), with balanced translocation of TFE3 gene at Xp11.2 and ASPL gene at 17q25, is present in renal neoplasms, whereas in alveolar soft part sarcoma, this translocation is unbalanced, der(17)t(X;17)(p11.2;q25). Melanotic Xp11 RCC and PSF/SFPQ-TFE3 (PEComa), may share the same genetic abnormalities. |
Acquired cystic disease-associated (ACDA) RCC | Cellularity: moderately cellular, papillary clusters of polygonal to columnar cells with abundant eosinophilic granular cytoplasm, round and central nuclei, finely granular chromatin, prominent, central, grade 3 nucleoli; sometimes with prominent clear cell cytology. Architecture: cribriform, microcystic or sieve-like layout; intratumoral calcium oxalate crystals are very common, but not mandatory for diagnosis; nodules arising from cyst walls or masses separated from cysts may be encountered. | POSITIVE: No specific IHC profile is required for diagnosis. CD10; AE1/AE3; AMACR; NEGATIVE: EMA; CK7 (but may be focally positive). | Comparative genomic microarray and FISH studies reveal gains and losses of multiple chromosomes. Gains of sex chromosomes and gains of 3, 7, 16, 17, with a high prevalence of gains of Y, 3 and 16, distinguishing ACDA RCC from pRCC, which also has gains in chromosomes 7 and 17. VHL gene alterations. Chromosome 3p deletion. |
Multilocular cystic clear cell renal neoplasm of low malignant potential (MCLMP) RCC | Cellularity: single layer of clear cells lining thin fibrous septae or in small clusters; low grade nuclei without nucleoli (ISUP grade 1–2); bland clear cells in septa may be mistaken for lymphocytes (vascularity is important). Architecture: cyst lining may be denuded and, in rare cases, cyst lining may be multilayered, with granular cytoplasm cells and small intracystic papillations; septa may contain calcification or ossification; no expansile growth of clear tumor cells/solid nodules; no necrosis, vascular invasion or sarcomatoid change. | POSITIVE: PAX8/PAX2; CA IX; EMA; variable CK7. NEGATIVE: AMACR (negative in 80% of cases). | Genetically related to ccRCC, with 74% of cases demonstrating 3p loss and VHL mutations identified in 25%. |
Tubulocystic (TC) RCC | Cellularity: tubules/cysts are lined by a single layer of flattened, cuboidal or columnar cells; hobnailing may be present, with modest to abundant amounts of eosinophilic cytoplasm, resembling oncocytoma cell; uniform, round nuclei, with distinct nucleoli (ISUP grade 3); minimal mitotic activity and atypia; very rare necrosis. Architecture: mixture of closely packed tubules and variably sized cysts, with overall low-grade morphology; cysts are separated by fibrous septa; no desmoplasia or cellular stroma; frequently associated with papillary cell neoplasms. | POSITIVE: CK7; AMACR; Vimentin; EMA; PAX8; fumarate hydratase (FH); Mucin; keratins (AE1/AE3, Cam 5.2, CK8/18, CK19); variable 34βE12; CD10. NEGATIVE: 2 succino-cysteine, CA IX and CD117. | Distinct molecular signature from other RCCs. Frequently, gains of chromosomes 7 and 17, and loss of Y, similar to pRCC. Mutations in 14 different genes have been documented by targeted, next generation sequencing, most frequently (60% of cases) in ABL1 and PDFGRA genes. |
Mucinous tubular and spindle cell (MTSC) RCC | Cellularity: relatively uniform, bland, low-grade cuboidal cells, with round to oval nuclei and focally vacuolated, eosinophilic cytoplasm, within strands of metachromatic stromal tissue, which transition into anastomosing spindle cells; may present clear cells and focal clusters of foamy macrophages; rare high-grade nuclei may be present. Architecture: well circumscribed epithelial tumor, partially surrounded by a rim of compressed fibrous tissue; long tubular/cord-like growth pattern; myxoid and bubbly stroma, with abundant extracellular mucin, highlighted by Alcian blue (although some cases may be mucin poor); may manifest well-formed papillae, necrosis, rarely neuroendocrine differentiation or sarcomatoid change; usually, infiltrative growth, desmoplasia, inflammation, hobnail epithelium, and/or cysts are not encountered. | POSTIVE: PAX2/PAX8; EMA (95%); AMACR (93%); AE1/AE3; E-cadherin; LMWCK: CK7 (81%); CK 8/18; CK19; Neuron Specific Enolase (NSE) and either Chromogranin or Synaptophysin. Histochemical stains: Periodic Acid-Schiff (PAS) (basal lamina around tubules), Alcian blue (mucin). Occasionally, HMWCK: 34βE12 (15%); vimentin; Ulex or CD10 (15%). NEGATIVE: CA IX (positive next to necrosis or focal cytoplasmatic in high-grade areas); GATA3; p63; RCCm (positive in 7%); Villin; Ki67 (<1%). | Seemingly lacking the characteristic genetic modifications of classic pRCC (trisomies of chromosomes 7/17 or loss of chromosomes Y). Usually hypodiploid, with multiple chromosomal losses (-1, -4, -6, -8, -9, -13, -14, -15, -22), even hypertriploid in some cases, but with no identifiable pattern. |
Hybrid oncocytic-chromophobe (HOCh) RCC | Cellularity: usually, dual population of eosinophilic cells—oncocytic (medium sized, round cell, with granular eosinophilic cytoplasm and concentric round nucleus, low nuclear:cytoplasmic ratios, prominent nucleolus) and chromophobe (large, polygonal, “plant-like” cell, with a distinct cell membrane, containing flaky eosinophilic cytoplasm, often with a perinuclear halo and an irregular “raisinoid” wrinkled nucleus), with a third cell subtype, manifesting overlapping cytonuclear features of both oncocytic and chromophobe morphology, being sometimes encountered; mitotic rate is very low. Architecture: well circumscribed, non-infiltrative, intrarenal tumor, with a solid alveolar and cystic architecture; may manifest vascular invasion and, rarely, necrosis. | POSITIVE: CK7 (may be focal); AE1/AE3; Parvalbumin; Antimitochondrial Antigen; EMA; E-cadherin (most); CD117; S100A1; CD82; Vimentin (few cases); Hale colloidal iron (stains apical/luminal oncocytic cells and, often, intracytoplasmic in chromophobe cells. NEGATIVE: AMACR; CK20; CD10 and CA IX. | SPORADIC: May present numerous molecular anomalies (both mono- and polysomies) of chromosomes 1, 2, 6, 9, 10, 13, 17, 21, and 22. Lack of mutations in the VHL, c-kit, PDGFRA, and FLCN genes. FAMILIAL: May be associated with BHD, autosomal dominant syndrome, characterized by a genetic abnormality on chromosome 17p11.2, leading to a mutation in the FLCN gene. |
Predominant Morphological Trait | Specific Panel | Entities Entering Differential Diagnosis with Corresponding IHC Profiles |
---|---|---|
Clear cell Population | CAIX CK7 CD117 Cathepsin-K HMB-45 | ccRCC: CAIX(+, diffuse membranous), CK7(−), CD117(−), Cathepsin-K(−), HMB-45(−) ccPRCC: CAIX(+, cup-like pattern), CK7(+), CD117(−), Cathepsin-K(−), HMB-45(−) classic chRCC: CAIX(−), CK7(+, cytoplasmic), CD117(+, membranous), Cathepsin-K(−), HMB-45(−) eAML: CAIX(−), CK7(−), CD117(−), Cathepsin-K(+, cytoplasmic), HMB-45(+, cytoplasmic) MiT-TFE RCC: - Xp11/TFE3: CAIX(+/−, focal), CK7(−), CD117(+/−), Cathepsin-K (+, 50%, cytoplasmic), HMB-45(−) - t[6;11]/TFEB: CAIX(+/−, focal), CK7(−), CD117(−), Cathepsin-K(+, cytoplasmic), HMB-45(+, focal) |
Papillary Component | CAIX CK7 AMACR Cathepsin-K 34βE12 TFE3/TFEB | ccRCC with papillary growth: CAIX(+, membranous), CK7(−), AMACR(−), Cathepsin-K(−), 34βE12(−), TFE3/TFEB(−) pRCC “type I”: CAIX(−), CK7(+), AMACR(+), Cathepsin-K(−), 34βE12(−), TFE3/TFEB(−) pRCC “type II”: CAIX(−), CK7(+/variable), AMACR(+), Cathepsin-K(−), 34βE12(−), TFE3/TFEB(−) ccPRCC: CAIX(+, cup-like pattern), CK7(+, diffuse), AMACR(−), Cathepsin-K(−), 34βE12(−), TFE3/TFEB(−) MiT-TFE RCC: CAIX(variable, focal), CK7(−), AMACR(+), Cathepsin-K(+, 50%), 34βE12(−), TFE3/TFEB(+, but difficult to standardize on automated platforms, requires FISH assays) |
Solid growth pattern | CK7 AMACR WT-1 CD57 | Solid pRCC “type I”: CK7(+), AMACR(+), WT-1(−), CD57(−) Metanephric adenoma: CK7(−)/isolated cells, AMACR(−), WT-1(+, nuclear), CD57(+) Wilms’ Tumor: CK7(−)/isolated cells, AMACR(−), WT-1(+, nuclear), CD57(−) |
Cytoplasmic Eosinophilia | CD117 CK7 Ksp-cadherin HMB-45 Cathepsin-K | Oncocytoma: CD117(+, membranous), CK7(−), Ksp-cadherin(+), HMB-45(−), Cathepsin-K(−) Eosinophilic chRCC: CD117(+, membranous), CK7(+, but variable), Ksp-cadherin (+, mostly), HMB-45(−), Cathepsin-K(−) Oncocytic PRCC: CD117(−), CK7(+, focal), Ksp-cadherin (unknown), HMB-45(−), Cathepsin-K (unknown) Oncocytic AML: CD117(−), CK7(−), Ksp-cadherin(−), HMB-45(+, focal), Cathepsin-K(−) |
Sarcomatoid growth pattern | Vimentin CAIX PAX8 CK7 34βE12 GATA3 p63 | ccRCC: Vimentin(+), CAIX(+) membranous, PAX8(+), CK7(−), 34βE12(−), GATA3(−), p63(−) pRCC: Vimentin(+), CAIX(−), PAX8(+), CK7(focal/-), 34βE12(−), GATA3(−), p63(−) chRCC: Vimentin(+), CAIX(−), PAX8(+), CK7(+), 34βE12(−), GATA3(−), p63(−) MTSC: Vimentin(+), CAIX(−), PAX8(+), CK7(+), 34βE12(variable), GATA3(−), p63(−) Urothelial: Vimentin(+), CAIX variable/mostly(−), PAX8 mostly(−), CK7(+), 34βE12(+), GATA3(+), p63(+) Sarcoma: Vimentin(+), CAIX(−), PAX8(−), CK7(−), 34βE12(−), GATA3(−), p63(−) |
Distal nephron origin | INI-1/BAF47 OCT4 GATA3 PAX8 | CDC: INI-1/BAF47 (+, and—in 15%), OCT4(−), GATA3(−), PAX8(+) RMC: INI-1/BAF47 (−), OCT4(+), GATA3(−), PAX8(+) Urothelial: INI-1/BAF47 (+), OCT4(−), GATA3(+), PAX8(−, but + in 20%) |
5. RCC Molecular Pathology and Clinical Applications for Emerging RCC Biomarkers
5.1. RCC Carcinogenesis, Disease Progression, and Prognosis Assessment
5.2. RCC Treatment Response Prediction
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Decastro, G.J.; McKiernan, J.M. Epidemiology, Clinical Staging, and Presentation of Renal Cell Carcinoma. Urol. Clin. N. Am. 2008, 35, 581–592. [Google Scholar] [CrossRef]
- Kane, C.J.; Mallin, K.; Ritchey, J.; Cooperberg, M.R.; Carroll, P.R. Renal Cell Cancer Stage Migration: Analysis of the National Cancer Data Base. Cancer 2008, 113, 78–83. [Google Scholar] [CrossRef]
- Mancini, M.; Righetto, M.; Baggio, G. Gender-Related Approach to Kidney Cancer Management: Moving Forward. Int. J. Mol. Sci. 2020, 21, 3378. [Google Scholar] [CrossRef] [PubMed]
- Moch, H.; Cubilla, A.L.; Humphrey, P.A.; Reuter, V.E.; Ulbright, T.M. The 2016 WHO Classification of Tumours of the Urinary System and Male Genital Organs-Part A: Renal, Penile, and Testicular Tumours. Eur. Urol. 2016, 70, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Reuter, V.E.; Argani, P.; Zhou, M.; Delahunt, B.; Members of the ISUP Immunohistochemistry in Diagnostic Urologic Pathology Group. Best Practices Recommendations in the Application of Immunohistochemistry in the Kidney Tumors: Report from the International Society of Urologic Pathology Consensus Conference. Am. J. Surg. Pathol. 2014, 38, e35–e49. [Google Scholar] [CrossRef]
- Novacescu, D.; Cut, T.G.; Cumpanas, A.A.; Latcu, S.C.; Bardan, R.; Ferician, O.; Secasan, C.-C.; Rusmir, A.; Raica, M. Evaluating Established Roles, Future Perspectives and Methodological Heterogeneity for Wilms’ Tumor 1 (WT1) Antigen Detection in Adult Renal Cell Carcinoma, Using a Novel N-Terminus Targeted Antibody (Clone WT49). Biomedicines 2022, 10, 912. [Google Scholar] [CrossRef]
- Peckova, K.; Martinek, P.; Ohe, C.; Kuroda, N.; Bulimbasic, S.; Condom Mundo, E.; Perez Montiel, D.; Lopez, J.I.; Daum, O.; Rotterova, P.; et al. Chromophobe Renal Cell Carcinoma with Neuroendocrine and Neuroendocrine-like Features. Morphologic, Immunohistochemical, Ultrastructural, and Array Comparative Genomic Hybridization Analysis of 18 Cases and Review of the Literature. Ann. Diagn. Pathol. 2015, 19, 261–268. [Google Scholar] [CrossRef]
- Hes, O.; Condom Mundo, E.; Peckova, K.; Lopez, J.I.; Martinek, P.; Vanecek, T.; Falconieri, G.; Agaimy, A.; Davidson, W.; Petersson, F.; et al. Biphasic Squamoid Alveolar Renal Cell Carcinoma: A Distinctive Subtype of Papillary Renal Cell Carcinoma? Am. J. Surg. Pathol. 2016, 40, 664–675. [Google Scholar] [CrossRef]
- Trpkov, K.; Hes, O.; Bonert, M.; Lopez, J.I.; Bonsib, S.M.; Nesi, G.; Comperat, E.; Sibony, M.; Berney, D.M.; Martinek, P.; et al. Eosinophilic, Solid, and Cystic Renal Cell Carcinoma: Clinicopathologic Study of 16 Unique, Sporadic Neoplasms Occurring in Women. Am. J. Surg. Pathol. 2016, 40, 60–71. [Google Scholar] [CrossRef]
- Falzarano, S.M.; McKenney, J.K.; Montironi, R.; Eble, J.N.; Osunkoya, A.O.; Guo, J.; Zhou, S.; Xiao, H.; Dhanasekaran, S.M.; Shukla, S.; et al. Renal Cell Carcinoma Occurring in Patients With Prior Neuroblastoma: A Heterogenous Group of Neoplasms. Am. J. Surg. Pathol. 2016, 40, 989–997. [Google Scholar] [CrossRef] [PubMed]
- Kusano, H.; Togashi, Y.; Akiba, J.; Moriya, F.; Baba, K.; Matsuzaki, N.; Yuba, Y.; Shiraishi, Y.; Kanamaru, H.; Kuroda, N.; et al. Two Cases of Renal Cell Carcinoma Harboring a Novel STRN-ALK Fusion Gene. Am. J. Surg. Pathol. 2016, 40, 761–769. [Google Scholar] [CrossRef] [PubMed]
- Hes, O.; Compérat, E.M.; Rioux-Leclercq, N. Clear Cell Papillary Renal Cell Carcinoma, Renal Angiomyoadenomatous Tumor, and Renal Cell Carcinoma with Leiomyomatous Stroma Relationship of 3 Types of Renal Tumors: A Review. Ann. Diagn. Pathol. 2016, 21, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Hakimi, A.A.; Tickoo, S.K.; Jacobsen, A.; Sarungbam, J.; Sfakianos, J.P.; Sato, Y.; Morikawa, T.; Kume, H.; Fukayama, M.; Homma, Y.; et al. TCEB1-Mutated Renal Cell Carcinoma: A Distinct Genomic and Morphological Subtype. Mod. Pathol. 2015, 28, 845–853. [Google Scholar] [CrossRef] [Green Version]
- Dawane, R.; Grindstaff, A.; Parwani, A.V.; Brock, T.; White, W.M.; Nodit, L. Thyroid-like Follicular Carcinoma of the Kidney: One Case Report and Review of the Literature. Am. J. Clin. Pathol. 2015, 144, 796–804. [Google Scholar] [CrossRef]
- Shi, J.; Wang, K.; Xiong, Z.; Yuan, C.; Wang, C.; Cao, Q.; Yu, H.; Meng, X.; Xie, K.; Cheng, Z.; et al. Impact of Inflammation and Immunotherapy in Renal Cell Carcinoma. Oncol. Lett. 2020, 20, 272. [Google Scholar] [CrossRef]
- Iiyama, T.; Udaka, K.; Takeda, S.; Takeuchi, T.; Adachi, Y.C.; Ohtsuki, Y.; Tsuboi, A.; Nakatsuka, S.; Elisseeva, O.A.; Oji, Y.; et al. WT1 (Wilms’ Tumor 1) Peptide Immunotherapy for Renal Cell Carcinoma. Microbiol. Immunol. 2007, 51, 519–530. [Google Scholar] [CrossRef]
- Beisland, C. Incidental Detection of Renal Cell Carcinoma. Scand. J. Urol. 2017, 51, 178–184. [Google Scholar] [CrossRef]
- O’Connor, S.D.; Pickhardt, P.J.; Kim, D.H.; Oliva, M.R.; Silverman, S.G. Incidental Finding of Renal Masses at Unenhanced CT: Prevalence and Analysis of Features for Guiding Management. AJR Am. J. Roentgenol. 2011, 197, 139–145. [Google Scholar] [CrossRef] [Green Version]
- Silverman, S.G.; Israel, G.M.; Herts, B.R.; Richie, J.P. Management of the Incidental Renal Mass. Radiology 2008, 249, 16–31. [Google Scholar] [CrossRef]
- Tsui, K.H.; Shvarts, O.; Smith, R.B.; Figlin, R.; de Kernion, J.B.; Belldegrun, A. Renal Cell Carcinoma: Prognostic Significance of Incidentally Detected Tumors. J. Urol. 2000, 163, 426–430. [Google Scholar] [CrossRef]
- Hu, S.L.; Chang, A.; Perazella, M.A.; Okusa, M.D.; Jaimes, E.A.; Weiss, R.H. The Nephrologist’s Tumor: Basic Biology and Management of Renal Cell Carcinoma. J. Am. Soc. Nephrol. 2016, 27, 2227–2237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, Y.; Yang, B.; Jiang, G.; Lu, W.; Ronco, C. Spontaneous Perirenal Hemorrhage in Hemodialysis Patient Treated with Selective Embolization: A Case Series and Review of the Literature. Hemodial. Int. 2018, 22, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Q.; Fielding, J.R.; Zou, K.H. Etiology of Spontaneous Perirenal Hemorrhage: A Meta-Analysis. J. Urol. 2002, 167, 1593–1596. [Google Scholar] [CrossRef]
- Moreira, D.M.; Gershman, B.; Lohse, C.M.; Boorjian, S.A.; Cheville, J.C.; Leibovich, B.C.; Thompson, R.H. Paraneoplastic Syndromes Are Associated with Adverse Prognosis among Patients with Renal Cell Carcinoma Undergoing Nephrectomy. World J. Urol. 2016, 34, 1465–1472. [Google Scholar] [CrossRef]
- Parsons, J.K.; Schoenberg, M.S.; Carter, H.B. Incidental Renal Tumors: Casting Doubt on the Efficacy of Early Intervention. Urology 2001, 57, 1013–1015. [Google Scholar] [CrossRef]
- Gold, P.J.; Fefer, A.; Thompson, J.A. Paraneoplastic Manifestations of Renal Cell Carcinoma. Semin. Urol. Oncol. 1996, 14, 216–222. [Google Scholar]
- Sufrin, G.; Chasan, S.; Golio, A.; Murphy, G.P. Paraneoplastic and Serologic Syndromes of Renal Adenocarcinoma. Semin. Urol. 1989, 7, 158–171. [Google Scholar]
- Klatte, T.; Said, J.W.; Belldegrun, A.S.; Pantuck, A.J. Differential Diagnosis of Hypercalcemia in Renal Malignancy. Urology 2007, 70, 179.e7–179.e8. [Google Scholar] [CrossRef]
- Partin, A.W.; Wein, A.J.; Kavoussi, L.R.; Peters, C.A.; Dmochowski, R.R. Neoplasms of the Upper Urinary Tract. In Campbell-Walsh-Wein Urology, 12th ed.; Elsevier Health Sciences; Elsevier: Amsterdam, The Netherlands, 2020; Volume 2, pp. 1438–1439, 2148. [Google Scholar]
- Lipton, A.; Zheng, M.; Seaman, J. Zoledronic Acid Delays the Onset of Skeletal-Related Events and Progression of Skeletal Disease in Patients with Advanced Renal Cell Carcinoma. Cancer 2003, 98, 962–969. [Google Scholar] [CrossRef]
- Young, R.J.; Coleman, R.E. Zoledronic Acid to Prevent and Treat Cancer Metastasis: New Prospects for an Old Drug. Future Oncol. 2013, 9, 633–643. [Google Scholar] [CrossRef] [PubMed]
- Moein, M.R.; Dehghani, V.O. Hypertension: A Rare Presentation of Renal Cell Carcinoma. J. Urol. 2000, 164, 2019. [Google Scholar] [CrossRef]
- Wiesener, M.S.; Münchenhagen, P.; Gläser, M.; Sobottka, B.A.; Knaup, K.X.; Jozefowski, K.; Jürgensen, J.S.; Roigas, J.; Warnecke, C.; Gröne, H.-J.; et al. Erythropoietin Gene Expression in Renal Carcinoma Is Considerably More Frequent than Paraneoplastic Polycythemia. Int. J. Cancer 2007, 121, 2434–2442. [Google Scholar] [CrossRef]
- Kranidiotis, G.P.; Voidonikola, P.T.; Dimopoulos, M.K.; Anastasiou-Nana, M.I. Stauffer’s Syndrome as a Prominent Manifestation of Renal Cancer: A Case Report. Cases J. 2009, 2, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giannakos, G.; Papanicolaou, X.; Trafalis, D.; Michaelidis, I.; Margaritis, G.; Christofilakis, C. Stauffer’s Syndrome Variant Associated with Renal Cell Carcinoma. Int. J. Urol. 2005, 12, 757–759. [Google Scholar] [CrossRef] [PubMed]
- Mittal, M.K.; Sureka, B. Solid Renal Masses in Adults. Indian J. Radiol. Imaging 2016, 26, 429–442. [Google Scholar] [CrossRef]
- Gupta, N.P.; Ansari, M.S.; Khaitan, A.; Sivaramakrishna, M.S.; Hemal, A.K.; Dogra, P.N.; Seth, A. Impact of Imaging and Thrombus Level in Management of Renal Cell Carcinoma Extending to Veins. Urol. Int. 2004, 72, 129–134. [Google Scholar] [CrossRef]
- Ljungberg, B.; Bensalah, K.; Canfield, S.; Dabestani, S.; Hofmann, F.; Hora, M.; Kuczyk, M.A.; Lam, T.; Marconi, L.; Merseburger, A.S.; et al. EAU Guidelines on Renal Cell Carcinoma: 2014 Update. Eur. Urol. 2015, 67, 913–924. [Google Scholar] [CrossRef]
- Piscaglia, F.; Bolondi, L.; Italian Society for Ultrasound in Medicine and Biology (SIUMB) Study Group on Ultrasound Contrast Agents. The Safety of Sonovue in Abdominal Applications: Retrospective Analysis of 23188 Investigations. Ultrasound Med. Biol. 2006, 32, 1369–1375. [Google Scholar] [CrossRef]
- ter Haar, G. Safety and Bio-Effects of Ultrasound Contrast Agents. Med. Biol. Eng. Comput. 2009, 47, 893–900. [Google Scholar] [CrossRef]
- Sidhu, P.S.; Cantisani, V.; Deganello, A.; Dietrich, C.F.; Duran, C.; Franke, D.; Harkanyi, Z.; Kosiak, W.; Miele, V.; Ntoulia, A.; et al. Role of Contrast-Enhanced Ultrasound (CEUS) in Paediatric Practice: An EFSUMB Position Statement. Ultraschall Med. 2017, 38, 33–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwarze, V.; Froelich, M.F.; Marschner, C.; Knösel, T.; Rübenthaler, J.; Clevert, D.-A. Safe and Pivotal Approaches Using Contrast-Enhanced Ultrasound for the Diagnostic Workup of Non-Obstetric Conditions during Pregnancy, a Single-Center Experience. Arch. Gynecol. Obs. 2021, 303, 103–112. [Google Scholar] [CrossRef]
- Rübenthaler, J.; Figueiredo, G.; Mueller-Peltzer, K.; Clevert, D.-A. Evaluation of Renal Lesions Using Contrast-Enhanced Ultrasound (CEUS); a 10-Year Retrospective European Single-Centre Analysis. Eur. Radiol. 2018, 28, 4542–4549. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wang, W.; Zhang, S.; Liu, J.; Zhang, F.; Ji, C.; Li, X.; Gan, W.; Zhang, G.; Guo, H. Improved Outcome of Percutaneous Radiofrequency Ablation in Renal Cell Carcinoma: A Retrospective Study of Intraoperative Contrast-Enhanced Ultrasonography in 73 Patients. Abdom. Imaging 2012, 37, 885–891. [Google Scholar] [CrossRef]
- Israel, G.M.; Bosniak, M.A. An Update of the Bosniak Renal Cyst Classification System. Urology 2005, 66, 484–488. [Google Scholar] [CrossRef]
- Ficarra, V.; Novara, G.; Secco, S.; Macchi, V.; Porzionato, A.; De Caro, R.; Artibani, W. Preoperative Aspects and Dimensions Used for an Anatomical (PADUA) Classification of Renal Tumours in Patients Who Are Candidates for Nephron-Sparing Surgery. Eur. Urol. 2009, 56, 786–793. [Google Scholar] [CrossRef]
- Kutikov, A.; Uzzo, R.G. The R.E.N.A.L. Nephrometry Score: A Comprehensive Standardized System for Quantitating Renal Tumor Size, Location and Depth. J. Urol. 2009, 182, 844–853. [Google Scholar] [CrossRef] [PubMed]
- Simmons, M.N.; Ching, C.B.; Samplaski, M.K.; Park, C.H.; Gill, I.S. Kidney Tumor Location Measurement Using the C Index Method. J. Urol. 2010, 183, 1708–1713. [Google Scholar] [CrossRef]
- Bruner, B.; Breau, R.H.; Lohse, C.M.; Leibovich, B.C.; Blute, M.L. Renal Nephrometry Score Is Associated with Urine Leak after Partial Nephrectomy. BJU Int. 2011, 108, 67–72. [Google Scholar] [CrossRef]
- Stroup, S.P.; Palazzi, K.; Kopp, R.P.; Mehrazin, R.; Santomauro, M.; Cohen, S.A.; Patterson, A.L.; L’Esperance, J.O.; Derweesh, I.H. RENAL Nephrometry Score Is Associated with Operative Approach for Partial Nephrectomy and Urine Leak. Urology 2012, 80, 151–156. [Google Scholar] [CrossRef]
- Tobert, C.M.; Kahnoski, R.J.; Thompson, D.E.; Anema, J.G.; Kuntzman, R.S.; Lane, B.R. RENAL Nephrometry Score Predicts Surgery Type Independent of Individual Surgeon’s Use of Nephron-Sparing Surgery. Urology 2012, 80, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Kopp, R.P.; Aganovic, L.; Palazzi, K.L.; Cassidy, F.H.; Sakamoto, K.; Derweesh, I.H. Differentiation of Clear from Non-Clear Cell Renal Cell Carcinoma Using CT Washout Formula. Can. J. Urol. 2013, 20, 6790–6797. [Google Scholar] [PubMed]
- Young, J.R.; Margolis, D.; Sauk, S.; Pantuck, A.J.; Sayre, J.; Raman, S.S. Clear Cell Renal Cell Carcinoma: Discrimination from Other Renal Cell Carcinoma Subtypes and Oncocytoma at Multiphasic Multidetector CT. Radiology 2013, 267, 444–453. [Google Scholar] [CrossRef] [PubMed]
- Berland, L.L.; Silverman, S.G.; Gore, R.M.; Mayo-Smith, W.W.; Megibow, A.J.; Yee, J.; Brink, J.A.; Baker, M.E.; Federle, M.P.; Foley, W.D.; et al. Managing Incidental Findings on Abdominal CT: White Paper of the ACR Incidental Findings Committee. J. Am. Coll Radiol. 2010, 7, 754–773. [Google Scholar] [CrossRef]
- Davenport, M.S.; Hu, E.M.; Smith, A.D.; Chandarana, H.; Hafez, K.; Palapattu, G.S.; Stuart Wolf, J.; Silverman, S.G.; Society of Abdominal Radiology Disease Focused Panel on Renal Cell Carcinoma. Reporting Standards for the Imaging-Based Diagnosis of Renal Masses on CT and MRI: A National Survey of Academic Abdominal Radiologists and Urologists. Abdom. Radiol. 2017, 42, 1229–1240. [Google Scholar] [CrossRef]
- Nelson, C.P.; Sanda, M.G. Contemporary Diagnosis and Management of Renal Angiomyolipoma. J. Urol. 2002, 168 Pt 1, 1315–1325. [Google Scholar] [CrossRef]
- Rofsky, N.M.; Weinreb, J.C.; Bosniak, M.A.; Libes, R.B.; Birnbaum, B.A. Renal Lesion Characterization with Gadolinium-Enhanced MR Imaging: Efficacy and Safety in Patients with Renal Insufficiency. Radiology 1991, 180, 85–89. [Google Scholar] [CrossRef]
- Pierorazio, P.M.; Hyams, E.S.; Tsai, S.; Feng, Z.; Trock, B.J.; Mullins, J.K.; Johnson, P.T.; Fishman, E.K.; Allaf, M.E. Multiphasic Enhancement Patterns of Small Renal Masses (≤4 Cm) on Preoperative Computed Tomography: Utility for Distinguishing Subtypes of Renal Cell Carcinoma, Angiomyolipoma, and Oncocytoma. Urology 2013, 81, 1265–1271. [Google Scholar] [CrossRef] [Green Version]
- Bagheri, M.H.; Ahlman, M.A.; Lindenberg, L.; Turkbey, B.; Lin, J.; Cahid Civelek, A.; Malayeri, A.A.; Agarwal, P.K.; Choyke, P.L.; Folio, L.R.; et al. Advances in Medical Imaging for the Diagnosis and Management of Common Genitourinary Cancers. Urol. Oncol. 2017, 35, 473–491. [Google Scholar] [CrossRef]
- Gorin, M.A.; Rowe, S.P.; Baras, A.S.; Solnes, L.B.; Ball, M.W.; Pierorazio, P.M.; Pavlovich, C.P.; Epstein, J.I.; Javadi, M.S.; Allaf, M.E. Prospective Evaluation of (99m)Tc-Sestamibi SPECT/CT for the Diagnosis of Renal Oncocytomas and Hybrid Oncocytic/Chromophobe Tumors. Eur. Urol. 2016, 69, 413–416. [Google Scholar] [CrossRef]
- Divgi, C.R.; Uzzo, R.G.; Gatsonis, C.; Bartz, R.; Treutner, S.; Yu, J.Q.; Chen, D.; Carrasquillo, J.A.; Larson, S.; Bevan, P.; et al. Positron Emission Tomography/Computed Tomography Identification of Clear Cell Renal Cell Carcinoma: Results from the REDECT Trial. J. Clin. Oncol. 2013, 31, 187–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rowe, S.P.; Gorin, M.A.; Hammers, H.J.; Som Javadi, M.; Hawasli, H.; Szabo, Z.; Cho, S.Y.; Pomper, M.G.; Allaf, M.E. Imaging of Metastatic Clear Cell Renal Cell Carcinoma with PSMA-Targeted 18F-DCFPyL PET/CT. Ann. Nucl. Med. 2015, 29, 877–882. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.B.; Epstein, J.I.; Ulbright, T.M.; Humphrey, P.A.; Egevad, L.; Montironi, R.; Grignon, D.; Trpkov, K.; Lopez-Beltran, A.; Zhou, M.; et al. Best Practices Recommendations in the Application of Immunohistochemistry in Urologic Pathology: Report From the International Society of Urological Pathology Consensus Conference. Am. J. Surg. Pathol. 2014, 38, 1017–1022. [Google Scholar] [CrossRef]
- Zhou, M.; Roma, A.; Magi-Galluzzi, C. The Usefulness of Immunohistochemical Markers in the Differential Diagnosis of Renal Neoplasms. Clin. Lab. Med. 2005, 25, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Skinnider, B.F.; Amin, M.B. An Immunohistochemical Approach to the Differential Diagnosis of Renal Tumors. Semin. Diagn. Pathol. 2005, 22, 51–68. [Google Scholar] [CrossRef] [PubMed]
- Reuter, V.E.; Tickoo, S.K. Differential Diagnosis of Renal Tumours with Clear Cell Histology. Pathology 2010, 42, 374–383. [Google Scholar] [CrossRef]
- Tickoo, S.K.; Reuter, V.E. Differential Diagnosis of Renal Tumors with Papillary Architecture. Adv. Anat. Pathol. 2011, 18, 120–132. [Google Scholar] [CrossRef]
- Truong, L.D.; Shen, S.S. Immunohistochemical Diagnosis of Renal Neoplasms. Arch. Pathol. Lab. Med. 2011, 135, 92–109. [Google Scholar] [CrossRef]
- Shen, S.S.; Truong, L.D.; Scarpelli, M.; Lopez-Beltran, A. Role of Immunohistochemistry in Diagnosing Renal Neoplasms: When Is It Really Useful? Arch. Pathol. Lab. Med. 2012, 136, 410–417. [Google Scholar] [CrossRef]
- Tan, P.H.; Cheng, L.; Rioux-Leclercq, N.; Merino, M.J.; Netto, G.; Reuter, V.E.; Shen, S.S.; Grignon, D.J.; Montironi, R.; Egevad, L.; et al. Renal Tumors: Diagnostic and Prognostic Biomarkers. Am. J. Surg. Pathol. 2013, 37, 1518–1531. [Google Scholar] [CrossRef] [Green Version]
- Ordóñez, N.G. Value of PAX 8 Immunostaining in Tumor Diagnosis: A Review and Update. Adv. Anat. Pathol. 2012, 19, 140–151. [Google Scholar] [CrossRef] [PubMed]
- Sangoi, A.R.; Karamchandani, J.; Kim, J.; Pai, R.K.; McKenney, J.K. The Use of Immunohistochemistry in the Diagnosis of Metastatic Clear Cell Renal Cell Carcinoma: A Review of PAX-8, PAX-2, HKIM-1, RCCma, and CD10. Adv. Anat. Pathol. 2010, 17, 377–393. [Google Scholar] [CrossRef] [PubMed]
- Chi, N.; Epstein, J.A. Getting Your Pax Straight: Pax Proteins in Development and Disease. Trends Genet. 2002, 18, 41–47. [Google Scholar] [CrossRef]
- Sangoi, A.R.; Fujiwara, M.; West, R.B.; Montgomery, K.D.; Bonventre, J.V.; Higgins, J.P.; Rouse, R.V.; Gokden, N.; McKenney, J.K. Immunohistochemical Distinction of Primary Adrenal Cortical Lesions from Metastatic Clear Cell Renal Cell Carcinoma: A Study of 248 Cases. Am. J. Surg. Pathol. 2011, 35, 678–686. [Google Scholar] [CrossRef]
- Ozcan, A.; Zhai, J.; Hamilton, C.; Shen, S.S.; Ro, J.Y.; Krishnan, B.; Truong, L.D. PAX-2 in the Diagnosis of Primary Renal Tumors: Immunohistochemical Comparison With Renal Cell Carcinoma Marker Antigen and Kidney-Specific Cadherin. Am. J. Clin. Pathol. 2009, 131, 393–404. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.G.; Gokden, M.; McKenney, J.K.; Phan, D.C.; Cox, R.M.; Kelly, T.; Gokden, N. The Utility of PAX-2 and Renal Cell Carcinoma Marker Immunohistochemistry in Distinguishing Papillary Renal Cell Carcinoma from Nonrenal Cell Neoplasms with Papillary Features. Appl. Immunohistochem. Mol. Morphol. 2010, 18, 494–498. [Google Scholar] [CrossRef]
- Zhai, Q.J.; Ozcan, A.; Hamilton, C.; Shen, S.S.; Coffey, D.; Krishnan, B.; Truong, L.D. PAX-2 Expression in Non-Neoplastic, Primary Neoplastic, and Metastatic Neoplastic Tissue: A Comprehensive Immunohistochemical Study. Appl. Immunohistochem. Mol. Morphol. 2010, 18, 323–332. [Google Scholar] [CrossRef]
- Lorenzo, P.I.; Moreno, C.; Delgado, I.; Cobo-Vuilleumier, N.; Meier, R.; Gomez-Izquierdo, L.; Berney, T.; Garcia-Carbonero, R.; Rojas, A.; Gauthier, B. Immunohistochemical Assessment of Pax8 Expression during Pancreatic Islet Development and in Human Neuroendocrine Tumors. Histochem. Cell Biol. 2011, 136, 595–607. [Google Scholar] [CrossRef] [Green Version]
- Paner, G.P.; Srigley, J.R.; Radhakrishnan, A.; Cohen, C.; Skinnider, B.F.; Tickoo, S.K.; Young, A.N.; Amin, M.B. Immunohistochemical Analysis of Mucinous Tubular and Spindle Cell Carcinoma and Papillary Renal Cell Carcinoma of the Kidney: Significant Immunophenotypic Overlap Warrants Diagnostic Caution. Am. J. Surg. Pathol. 2006, 30, 13–19. [Google Scholar] [CrossRef]
- The Cancer Genome Atlas Research Network. Comprehensive Molecular Characterization of Clear Cell Renal Cell Carcinoma. Nature 2013, 499, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Srigley, J.R.; Delahunt, B.; Eble, J.N.; Egevad, L.; Epstein, J.I.; Grignon, D.; Hes, O.; Moch, H.; Montironi, R.; Tickoo, S.K.; et al. The International Society of Urological Pathology (ISUP) Vancouver Classification of Renal Neoplasia. Am. J. Surg. Pathol. 2013, 37, 1469–1489. [Google Scholar] [CrossRef] [PubMed]
- Cheville, J.C.; Lohse, C.M.; Zincke, H.; Weaver, A.L.; Leibovich, B.C.; Frank, I.; Blute, M.L. Sarcomatoid Renal Cell Carcinoma: An Examination of Underlying Histologic Subtype and an Analysis of Associations with Patient Outcome. Am. J. Surg. Pathol. 2004, 28, 435–441. [Google Scholar] [CrossRef]
- Mantilla, J.G.; Antic, T.; Tretiakova, M. GATA3 as a Valuable Marker to Distinguish Clear Cell Papillary Renal Cell Carcinomas from Morphologic Mimics. Hum. Pathol. 2017, 66, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Chevarie-Davis, M.; Riazalhosseini, Y.; Arseneault, M.; Aprikian, A.; Kassouf, W.; Tanguay, S.; Latour, M.; Brimo, F. The Morphologic and Immunohistochemical Spectrum of Papillary Renal Cell Carcinoma: Study Including 132 Cases with Pure Type 1 and Type 2 Morphology as Well as Tumors with Overlapping Features. Am. J. Surg. Pathol. 2014, 38, 887–894. [Google Scholar] [CrossRef] [PubMed]
- Perret, A.G.; Clemencon, A.; Li, G.; Tostain, J.; Peoc’h, M. Differential Expression of Prognostic Markers in Histological Subtypes of Papillary Renal Cell Carcinoma. BJU Int. 2008, 102, 183–187. [Google Scholar] [CrossRef]
- Pal, S.K.; Ali, S.M.; Yakirevich, E.; Geynisman, D.M.; Karam, J.A.; Elvin, J.A.; Frampton, G.M.; Huang, X.; Lin, D.I.; Rosenzweig, M.; et al. Characterization of Clinical Cases of Advanced Papillary Renal Cell Carcinoma via Comprehensive Genomic Profiling. Eur. Urol. 2018, 73, 71–78. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Research Network; Linehan, W.M.; Spellman, P.T.; Ricketts, C.J.; Creighton, C.J.; Fei, S.S.; Davis, C.; Wheeler, D.A.; Murray, B.A.; Schmidt, L.; et al. Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma. N. Engl. J. Med. 2016, 374, 135–145. [Google Scholar] [CrossRef]
- Saleeb, R.M.; Brimo, F.; Farag, M.; Rompré-Brodeur, A.; Rotondo, F.; Beharry, V.; Wala, S.; Plant, P.; Downes, M.R.; Pace, K.; et al. Toward Biological Subtyping of Papillary Renal Cell Carcinoma With Clinical Implications Through Histologic, Immunohistochemical, and Molecular Analysis. Am. J. Surg. Pathol. 2017, 41, 1618–1629. [Google Scholar] [CrossRef]
- Yang, X.J.; Tan, M.-H.; Kim, H.L.; Ditlev, J.A.; Betten, M.W.; Png, C.E.; Kort, E.J.; Futami, K.; Furge, K.A.; Takahashi, M.; et al. A Molecular Classification of Papillary Renal Cell Carcinoma. Cancer Res. 2005, 65, 5628–5637. [Google Scholar] [CrossRef] [Green Version]
- Antonelli, A.; Tardanico, R.; Balzarini, P.; Arrighi, N.; Perucchini, L.; Zanotelli, T.; Cozzoli, A.; Zani, D.; Cunico, S.C.; Simeone, C. Cytogenetic Features, Clinical Significance and Prognostic Impact of Type 1 and Type 2 Papillary Renal Cell Carcinoma. Cancer Genet. Cytogenet. 2010, 199, 128–133. [Google Scholar] [CrossRef]
- Klatte, T.; Rao, P.N.; de Martino, M.; LaRochelle, J.; Shuch, B.; Zomorodian, N.; Said, J.; Kabbinavar, F.F.; Belldegrun, A.S.; Pantuck, A.J. Cytogenetic Profile Predicts Prognosis of Patients with Clear Cell Renal Cell Carcinoma. J. Clin. Oncol. 2009, 27, 746–753. [Google Scholar] [CrossRef] [PubMed]
- Sanders, M.E.; Mick, R.; Tomaszewski, J.E.; Barr, F.G. Unique Patterns of Allelic Imbalance Distinguish Type 1 from Type 2 Sporadic Papillary Renal Cell Carcinoma. Am. J. Pathol. 2002, 161, 997–1005. [Google Scholar] [CrossRef]
- Schraml, P.; Müller, D.; Bednar, R.; Gasser, T.; Sauter, G.; Mihatsch, M.J.; Moch, H. Allelic Loss at the D9S171 Locus on Chromosome 9p13 Is Associated with Progression of Papillary Renal Cell Carcinoma. J. Pathol. 2000, 190, 457–461. [Google Scholar] [CrossRef]
- Delahunt, B.; Eble, J.N.; Egevad, L.; Samaratunga, H. Grading of Renal Cell Carcinoma. Histopathology 2019, 74, 4–17. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Tian, B.; Wu, C.; Peng, Y.; Wang, H.; Gu, W.-L.; Gao, F.-H. DOG1, Cyclin D1, CK7, CD117 and Vimentin Are Useful Immunohistochemical Markers in Distinguishing Chromophobe Renal Cell Carcinoma from Clear Cell Renal Cell Carcinoma and Renal Oncocytoma. Pathol. Res. Pract. 2015, 211, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Memeo, L.; Jhang, J.; Assaad, A.M.; McKiernan, J.M.; Murty, V.V.V.S.; Hibshoosh, H.; Tong, G.-X.; Mansukhani, M.M. Immunohistochemical Analysis for Cytokeratin 7, KIT, and PAX2: Value in the Differential Diagnosis of Chromophobe Cell Carcinoma. Am. J. Clin. Pathol. 2007, 127, 225–229. [Google Scholar] [CrossRef]
- Huo, L.; Sugimura, J.; Tretiakova, M.S.; Patton, K.T.; Gupta, R.; Popov, B.; Laskin, W.B.; Yeldandi, A.; Teh, B.T.; Yang, X.J. C-Kit Expression in Renal Oncocytomas and Chromophobe Renal Cell Carcinomas. Hum. Pathol. 2005, 36, 262–268. [Google Scholar] [CrossRef]
- Hornsby, C.D.; Cohen, C.; Amin, M.B.; Picken, M.M.; Lawson, D.; Yin-Goen, Q.; Young, A.N. Claudin-7 Immunohistochemistry in Renal Tumors: A Candidate Marker for Chromophobe Renal Cell Carcinoma Identified by Gene Expression Profiling. Arch. Pathol. Lab. Med. 2007, 131, 1541–1546. [Google Scholar] [CrossRef]
- Osunkoya, A.O.; Cohen, C.; Lawson, D.; Picken, M.M.; Amin, M.B.; Young, A.N. Claudin-7 and Claudin-8: Immunohistochemical Markers for the Differential Diagnosis of Chromophobe Renal Cell Carcinoma and Renal Oncocytoma. Hum. Pathol. 2009, 40, 206–210. [Google Scholar] [CrossRef]
- Adley, B.P.; Gupta, A.; Lin, F.; Luan, C.; Teh, B.T.; Yang, X.J. Expression of Kidney-Specific Cadherin in Chromophobe Renal Cell Carcinoma and Renal Oncocytoma. Am. J. Clin. Pathol. 2006, 126, 79–85. [Google Scholar] [CrossRef]
- Shen, S.S.; Krishna, B.; Chirala, R.; Amato, R.J.; Truong, L.D. Kidney-Specific Cadherin, a Specific Marker for the Distal Portion of the Nephron and Related Renal Neoplasms. Mod. Pathol. 2005, 18, 933–940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langner, C.; Ratschek, M.; Rehak, P.; Schips, L.; Zigeuner, R. Expression of MUC1 (EMA) and E-Cadherin in Renal Cell Carcinoma: A Systematic Immunohistochemical Analysis of 188 Cases. Mod. Pathol. 2004, 17, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Martignoni, G.; Pea, M.; Brunelli, M.; Chilosi, M.; Zamó, A.; Bertaso, M.; Cossu-Rocca, P.; Eble, J.N.; Mikuz, G.; Puppa, G.; et al. CD10 Is Expressed in a Subset of Chromophobe Renal Cell Carcinomas. Mod. Pathol. 2004, 17, 1455–1463. [Google Scholar] [CrossRef] [PubMed]
- Martignoni, G.; Pea, M.; Chilosi, M.; Brunelli, M.; Scarpa, A.; Colato, C.; Tardanico, R.; Zamboni, G.; Bonetti, F. Parvalbumin Is Constantly Expressed in Chromophobe Renal Carcinoma. Mod. Pathol. 2001, 14, 760–767. [Google Scholar] [CrossRef] [Green Version]
- Adam, A.C.; Scriba, A.; Ortmann, M.; Huss, S.; Kahl, P.; Steiner, S.; Störkel, S.; Büttner, R. Immunohistochemical Analysis of Cytochrome C Oxidase Facilitates Differentiation between Oncocytoma and Chromophobe Renal Cell Carcinoma. Appl. Immunohistochem. Mol. Morphol. 2015, 23, 54–59. [Google Scholar] [CrossRef]
- Iczkowski, K.A.; Czaja, R.C. Eosinophilic Kidney Tumors: Old and New. Arch. Pathol. Lab. Med. 2019, 143, 1455–1463. [Google Scholar] [CrossRef] [Green Version]
- Erlmeier, F.; Hartmann, A.; Autenrieth, M.; Wiedemann, M.; Ivanyi, P.; Steffens, S.; Weichert, W. PD-1/PD-L1 Expression in Chromophobe Renal Cell Carcinoma: An Immunological Exception? Med. Oncol. 2016, 33, 120. [Google Scholar] [CrossRef]
- Michalova, K.; Tretiakova, M.; Pivovarcikova, K.; Alaghehbandan, R.; Perez Montiel, D.; Ulamec, M.; Osunkoya, A.; Trpkov, K.; Yuan, G.; Grossmann, P.; et al. Expanding the Morphologic Spectrum of Chromophobe Renal Cell Carcinoma: A Study of 8 Cases with Papillary Architecture. Ann. Diagn. Pathol. 2020, 44, 151448. [Google Scholar] [CrossRef]
- Ng, K.L.; Ellis, R.J.; Samaratunga, H.; Morais, C.; Gobe, G.C.; Wood, S.T. Utility of Cytokeratin 7, S100A1 and Caveolin-1 as Immunohistochemical Biomarkers to Differentiate Chromophobe Renal Cell Carcinoma from Renal Oncocytoma. Transl. Urol. 2019, 8 (Suppl. 2), S123–S137. [Google Scholar] [CrossRef]
- Liu, Y.J.; Ussakli, C.; Antic, T.; Liu, Y.; Wu, Y.; True, L.; Tretiakova, M.S. Sporadic Oncocytic Tumors with Features Intermediate between Oncocytoma and Chromophobe Renal Cell Carcinoma: Comprehensive Clinicopathological and Genomic Profiling. Hum. Pathol. 2020, 104, 18–29. [Google Scholar] [CrossRef]
- Brunelli, M.; Eble, J.N.; Zhang, S.; Martignoni, G.; Delahunt, B.; Cheng, L. Eosinophilic and Classic Chromophobe Renal Cell Carcinomas Have Similar Frequent Losses of Multiple Chromosomes from among Chromosomes 1, 2, 6, 10, and 17, and This Pattern of Genetic Abnormality Is Not Present in Renal Oncocytoma. Mod. Pathol. 2005, 18, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.; Ricketts, C.J.; Wang, M.; Yang, L.; Cherniack, A.; Shen, H.; Buhay, C.; Kang, H.; Kim, S.; Fahey, C.; et al. The Somatic Genomic Landscape of Chromophobe Renal Cell Carcinoma. Cancer Cell 2014, 26, 319–330. [Google Scholar] [CrossRef]
- Casuscelli, J.; Weinhold, N.; Gundem, G.; Wang, L.; Zabor, E.C.; Drill, E.; Wang, P.I.; Nanjangud, G.J.; Redzematovic, A.; Nargund, A.M.; et al. Genomic Landscape and Evolution of Metastatic Chromophobe Renal Cell Carcinoma. JCI Insight 2017, 2, 92688. [Google Scholar] [CrossRef] [PubMed]
- Adam, J.; Couturier, J.; Molinié, V.; Vieillefond, A.; Sibony, M. Clear-Cell Papillary Renal Cell Carcinoma: 24 Cases of a Distinct Low-Grade Renal Tumour and a Comparative Genomic Hybridization Array Study of Seven Cases. Histopathology 2011, 58, 1064–1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rohan, S.M.; Xiao, Y.; Liang, Y.; Dudas, M.E.; Al-Ahmadie, H.A.; Fine, S.W.; Gopalan, A.; Reuter, V.E.; Rosenblum, M.K.; Russo, P.; et al. Clear-Cell Papillary Renal Cell Carcinoma: Molecular and Immunohistochemical Analysis with Emphasis on the von Hippel-Lindau Gene and Hypoxia-Inducible Factor Pathway-Related Proteins. Mod. Pathol. 2011, 24, 1207–1220. [Google Scholar] [CrossRef] [Green Version]
- Albadine, R.; Schultz, L.; Illei, P.; Ertoy, D.; Hicks, J.; Sharma, R.; Epstein, J.I.; Netto, G.J. PAX8(+)/P63(−) Immunostaining Pattern in Renal Collecting Duct Carcinoma (CDC): A Useful Immunoprofile in the Differential Diagnosis of CDC versus Urothelial Carcinoma of Upper Urinary Tract. Am. J. Surg. Pathol. 2010, 34, 965–969. [Google Scholar] [CrossRef] [Green Version]
- Pal, S.K.; Choueiri, T.K.; Wang, K.; Khaira, D.; Karam, J.A.; Van Allen, E.; Palma, N.A.; Stein, M.N.; Johnson, A.; Squillace, R.; et al. Characterization of Clinical Cases of Collecting Duct Carcinoma of the Kidney Assessed by Comprehensive Genomic Profiling. Eur. Urol. 2016, 70, 516–521. [Google Scholar] [CrossRef]
- Wang, J.; Papanicolau-Sengos, A.; Chintala, S.; Wei, L.; Liu, B.; Hu, Q.; Miles, K.M.; Conroy, J.M.; Glenn, S.T.; Costantini, M.; et al. Collecting Duct Carcinoma of the Kidney Is Associated with CDKN2A Deletion and SLC Family Gene Up-Regulation. Oncotarget 2016, 7, 29901–29915. [Google Scholar] [CrossRef] [Green Version]
- Assad, L.; Resetkova, E.; Oliveira, V.L.; Sun, W.; Stewart, J.M.; Katz, R.L.; Caraway, N.P. Cytologic Features of Renal Medullary Carcinoma. Cancer 2005, 105, 28–34. [Google Scholar] [CrossRef]
- Swartz, M.A.; Karth, J.; Schneider, D.T.; Rodriguez, R.; Beckwith, J.B.; Perlman, E.J. Renal Medullary Carcinoma: Clinical, Pathologic, Immunohistochemical, and Genetic Analysis with Pathogenetic Implications. Urology 2002, 60, 1083–1089. [Google Scholar] [CrossRef]
- Rao, P.; Tannir, N.M.; Tamboli, P. Expression of OCT3/4 in Renal Medullary Carcinoma Represents a Potential Diagnostic Pitfall. Am. J. Surg. Pathol. 2012, 36, 583–588. [Google Scholar] [CrossRef] [PubMed]
- Beckermann, K.E.; Sharma, D.; Chaturvedi, S.; Msaouel, P.; Abboud, M.R.; Allory, Y.; Bourdeaut, F.; Calderaro, J.; De Cubas, A.A.; Derebail, V.K.; et al. Renal Medullary Carcinoma: Establishing Standards in Practice. J. Oncol. Pract. 2017, 13, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Galli, S.; Srinivasan, R.; Linehan, W.M.; Tsokos, M.; Merino, M.J. Renal Medullary Carcinoma: Molecular, Immunohistochemistry, and Morphologic Correlation. Am. J. Surg. Pathol. 2013, 37, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Gatalica, Z.; Lilleberg, S.L.; Monzon, F.A.; Koul, M.S.; Bridge, J.A.; Knezetic, J.; Legendre, B.; Sharma, P.; McCue, P.A. Renal Medullary Carcinomas: Histopathologic Phenotype Associated with Diverse Genotypes. Hum. Pathol. 2011, 42, 1979–1988. [Google Scholar] [CrossRef]
- Mariño-Enríquez, A.; Ou, W.-B.; Weldon, C.B.; Fletcher, J.A.; Pérez-Atayde, A.R. ALK Rearrangement in Sickle Cell Trait-Associated Renal Medullary Carcinoma. Genes Chromosom. Cancer 2011, 50, 146–153. [Google Scholar] [CrossRef]
- Schaeffer, E.M.; Guzzo, T.J.; Furge, K.A.; Netto, G.; Westphal, M.; Dykema, K.; Yang, X.; Zhou, M.; Teh, B.T.; Pavlovich, C.P. Renal Medullary Carcinoma: Molecular, Pathological and Clinical Evidence for Treatment with Topoisomerase-Inhibiting Therapy. BJU Int. 2010, 106, 62–65. [Google Scholar] [CrossRef] [Green Version]
- Smith, N.E.; Deyrup, A.T.; Mariño-Enriquez, A.; Fletcher, J.A.; Bridge, J.A.; Illei, P.B.; Netto, G.J.; Argani, P. VCL-ALK Renal Cell Carcinoma in Children with Sickle-Cell Trait: The Eighth Sickle-Cell Nephropathy? Am. J. Surg. Pathol. 2014, 38, 858–863. [Google Scholar] [CrossRef] [Green Version]
- Williamson, S.R.; Eble, J.N.; Amin, M.B.; Gupta, N.S.; Smith, S.C.; Sholl, L.M.; Montironi, R.; Hirsch, M.S.; Hornick, J.L. Succinate Dehydrogenase-Deficient Renal Cell Carcinoma: Detailed Characterization of 11 Tumors Defining a Unique Subtype of Renal Cell Carcinoma. Mod. Pathol. 2015, 28, 80–94. [Google Scholar] [CrossRef] [Green Version]
- Gill, A.J.; Hes, O.; Papathomas, T.; Šedivcová, M.; Tan, P.H.; Agaimy, A.; Andresen, P.A.; Kedziora, A.; Clarkson, A.; Toon, C.W.; et al. Succinate Dehydrogenase (SDH)-Deficient Renal Carcinoma: A Morphologically Distinct Entity: A Clinicopathologic Series of 36 Tumors from 27 Patients. Am. J. Surg. Pathol. 2014, 38, 1588–1602. [Google Scholar] [CrossRef] [Green Version]
- Gill, A.J.; Pachter, N.S.; Clarkson, A.; Tucker, K.M.; Winship, I.M.; Benn, D.E.; Robinson, B.G.; Clifton-Bligh, R.J. Renal Tumors and Hereditary Pheochromocytoma-Paraganglioma Syndrome Type 4. N. Engl. J. Med. 2011, 364, 885–886. [Google Scholar] [CrossRef]
- Cardaci, S.; Ciriolo, M.R. TCA Cycle Defects and Cancer: When Metabolism Tunes Redox State. Int. J. Cell Biol. 2012, 2012, e161837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Argani, P. MiT Family Translocation Renal Cell Carcinoma. Semin. Diagn. Pathol. 2015, 32, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Zhong, M.; De Angelo, P.; Osborne, L.; Paniz-Mondolfi, A.E.; Geller, M.; Yang, Y.; Linehan, W.M.; Merino, M.J.; Cordon-Cardo, C.; Cai, D. Translocation Renal Cell Carcinomas in Adults: A Single-Institution Experience. Am. J. Surg. Pathol. 2012, 36, 654–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Argani, P.; Olgac, S.; Tickoo, S.K.; Goldfischer, M.; Moch, H.; Chan, D.Y.; Eble, J.N.; Bonsib, S.M.; Jimeno, M.; Lloreta, J.; et al. Xp11 Translocation Renal Cell Carcinoma in Adults: Expanded Clinical, Pathologic, and Genetic Spectrum. Am. J. Surg. Pathol. 2007, 31, 1149–1160. [Google Scholar] [CrossRef]
- Cheng, L.; Williamson, S.R.; Zhang, S.; Maclennan, G.T.; Montironi, R.; Lopez-Beltran, A. Understanding the Molecular Genetics of Renal Cell Neoplasia: Implications for Diagnosis, Prognosis and Therapy. Expert. Rev. Anticancer 2010, 10, 843–864. [Google Scholar] [CrossRef]
- Rao, Q.; Shen, Q.; Xia, Q.Y.; Wang, Z.Y.; Liu, B.; Shi, S.S.; Shi, Q.L.; Yin, H.L.; Wu, B.; Ye, S.B.; et al. PSF/SFPQ Is a Very Common Gene Fusion Partner in TFE3 Rearrangement-Associated Perivascular Epithelioid Cell Tumors (PEComas) and Melanotic Xp11 Translocation Renal Cancers: Clinicopathologic, Immunohistochemical, and Molecular Characteristics Suggesting Classification as a Distinct Entity. Am. J. Surg. Pathol. 2015, 39, 1181–1196. [Google Scholar] [CrossRef] [PubMed]
- Rivera, M.; Tickoo, S.K.; Saqi, A.; Lin, O. Cytologic Findings of Acquired Cystic Disease-Associated Renal Cell Carcinoma: A Report of Two Cases. Diagn. Cytopathol. 2008, 36, 344–347. [Google Scholar] [CrossRef]
- Sule, N.; Yakupoglu, U.; Shen, S.S.; Krishnan, B.; Yang, G.; Lerner, S.; Sheikh-Hamad, D.; Truong, L.D. Calcium Oxalate Deposition in Renal Cell Carcinoma Associated with Acquired Cystic Kidney Disease: A Comprehensive Study. Am. J. Surg. Pathol. 2005, 29, 443–451. [Google Scholar] [CrossRef]
- Cossu-Rocca, P.; Eble, J.N.; Zhang, S.; Martignoni, G.; Brunelli, M.; Cheng, L. Acquired Cystic Disease-Associated Renal Tumors: An Immunohistochemical and Fluorescence in Situ Hybridization Study. Mod. Pathol. 2006, 19, 780–787. [Google Scholar] [CrossRef] [Green Version]
- Williamson, S.R.; Halat, S.; Eble, J.N.; Grignon, D.J.; Lopez-Beltran, A.; Montironi, R.; Tan, P.-H.; Wang, M.; Zhang, S.; Maclennan, G.T.; et al. Multilocular Cystic Renal Cell Carcinoma: Similarities and Differences in Immunoprofile Compared with Clear Cell Renal Cell Carcinoma. Am. J. Surg. Pathol. 2012, 36, 1425–1433. [Google Scholar] [CrossRef]
- von Teichman, A.; Compérat, E.; Behnke, S.; Storz, M.; Moch, H.; Schraml, P. VHL Mutations and Dysregulation of PVHL- and PTEN-Controlled Pathways in Multilocular Cystic Renal Cell Carcinoma. Mod. Pathol. 2011, 24, 571–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halat, S.; Eble, J.N.; Grignon, D.J.; Lopez-Beltran, A.; Montironi, R.; Tan, P.-H.; Wang, M.; Zhang, S.; MacLennan, G.T.; Cheng, L. Multilocular Cystic Renal Cell Carcinoma Is a Subtype of Clear Cell Renal Cell Carcinoma. Mod. Pathol. 2010, 23, 931–936. [Google Scholar] [CrossRef] [PubMed]
- Lawrie, C.H.; Armesto, M.; Fernandez-Mercado, M.; Arestín, M.; Manterola, L.; Goicoechea, I.; Larrea, E.; Caffarel, M.M.; Araujo, A.M.; Sole, C.; et al. Noncoding RNA Expression and Targeted Next-Generation Sequencing Distinguish Tubulocystic Renal Cell Carcinoma (TC-RCC) from Other Renal Neoplasms. J. Mol. Diagn. 2018, 20, 34–45. [Google Scholar] [CrossRef] [Green Version]
- Fine, S.W.; Argani, P.; DeMarzo, A.M.; Delahunt, B.; Sebo, T.J.; Reuter, V.E.; Epstein, J.I. Expanding the Histologic Spectrum of Mucinous Tubular and Spindle Cell Carcinoma of the Kidney. Am. J. Surg. Pathol. 2006, 30, 1554–1560. [Google Scholar] [CrossRef]
- Shen, S.S.; Ro, J.Y.; Tamboli, P.; Truong, L.D.; Zhai, Q.; Jung, S.-J.; Tibbs, R.G.; Ordonez, N.G.; Ayala, A.G. Mucinous Tubular and Spindle Cell Carcinoma of Kidney Is Probably a Variant of Papillary Renal Cell Carcinoma with Spindle Cell Features. Ann. Diagn. Pathol. 2007, 11, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.J.; Yoon, H.K.; Chung, J.I.; Ayala, A.G.; Ro, J.Y. Mucinous Tubular and Spindle Cell Carcinoma of the Kidney With Neuroendocrine Differentiation: Report of Two Cases. Am. J. Clin. Pathol. 2006, 125, 99–104. [Google Scholar] [CrossRef]
- Owens, C.L.; Argani, P.; Ali, S.Z. Mucinous Tubular and Spindle Cell Carcinoma of the Kidney: Cytopathologic Findings. Diagn. Cytopathol. 2007, 35, 593–596. [Google Scholar] [CrossRef]
- Marks-Jones, D.A.; Zynger, D.L.; Parwani, A.V.; Cai, G. Fine Needle Aspiration Biopsy of Renal Mucinous Tubular and Spindle Cell Carcinoma: Report of Two Cases. Diagn. Cytopathol. 2010, 38, 51–55. [Google Scholar] [CrossRef]
- Molinié, V.; Balaton, A.; Rotman, S.; Mansouri, D.; De Pinieux, I.; Homsi, T.; Guillou, L. Alpha-Methyl CoA Racemase Expression in Renal Cell Carcinomas. Hum. Pathol. 2006, 37, 698–703. [Google Scholar] [CrossRef]
- Zhao, M.; He, X.-L.; Teng, X.-D. Mucinous Tubular and Spindle Cell Renal Cell Carcinoma: A Review of Clinicopathologic Aspects. Diagn. Pathol. 2015, 10, 168. [Google Scholar] [CrossRef] [Green Version]
- Kuroda, N.; Hes, O.; Miyazaki, E.; Shuin, T.; Enzan, H. Frequent Expression of Neuroendocrine Markers in Mucinous Tubular and Spindle Cell Carcinoma of the Kidney. Histol. Histopathol. 2006, 21, 7–10. [Google Scholar] [CrossRef] [PubMed]
- Brandal, P.; Lie, A.K.; Bassarova, A.; Svindland, A.; Risberg, B.; Danielsen, H.; Heim, S. Genomic Aberrations in Mucinous Tubular and Spindle Cell Renal Cell Carcinomas. Mod. Pathol. 2006, 19, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Petersson, F.; Gatalica, Z.; Grossmann, P.; Perez Montiel, M.D.; Alvarado Cabrero, I.; Bulimbasic, S.; Swatek, A.; Straka, L.; Tichy, T.; Hora, M.; et al. Sporadic Hybrid Oncocytic/Chromophobe Tumor of the Kidney: A Clinicopathologic, Histomorphologic, Immunohistochemical, Ultrastructural, and Molecular Cytogenetic Study of 14 Cases. Virchows Arch. 2010, 456, 355–365. [Google Scholar] [CrossRef] [PubMed]
- Poté, N.; Vieillefond, A.; Couturier, J.; Arrufat, S.; Metzger, I.; Delongchamps, N.B.; Camparo, P.; Mège-Lechevallier, F.; Molinié, V.; Sibony, M. Hybrid Oncocytic/Chromophobe Renal Cell Tumours Do Not Display Genomic Features of Chromophobe Renal Cell Carcinomas. Virchows Arch. 2013, 462, 633–638. [Google Scholar] [CrossRef] [PubMed]
- Adley, B.P.; Schafernak, K.T.; Yeldandi, A.V.; Yang, X.J.; Nayar, R. Cytologic and Histologic Findings in Multiple Renal Hybrid Oncocytic Tumors in a Patient with Birt-Hogg-Dubé Syndrome: A Case Report. Acta Cytol. 2006, 50, 584–588. [Google Scholar] [CrossRef]
- Hes, O.; Petersson, F.; Kuroda, N.; Hora, M.; Michal, M. Renal Hybrid Oncocytic/Chromophobe Tumors—A Review. Histol. Histopathol. 2013, 28, 1257–1264. [Google Scholar] [CrossRef]
- Iribe, Y.; Kuroda, N.; Nagashima, Y.; Yao, M.; Tanaka, R.; Gotoda, H.; Kawakami, F.; Imamura, Y.; Nakamura, Y.; Ando, M.; et al. Immunohistochemical Characterization of Renal Tumors in Patients with Birt-Hogg-Dubé Syndrome. Pathol. Int. 2015, 65, 126–132. [Google Scholar] [CrossRef]
- Caliò, A.; Segala, D.; Munari, E.; Brunelli, M.; Martignoni, G. MiT Family Translocation Renal Cell Carcinoma: From the Early Descriptions to the Current Knowledge. Cancers 2019, 11, 1110. [Google Scholar] [CrossRef] [Green Version]
- Athanazio, D.A.; Amorim, L.S.; da Cunha, I.W.; Leite, K.R.; da Paz, A.R.; de Paula Xavier Gomes, R.; Tavora, F.R.; Faraj, S.F.; Cavalcanti, M.S.; Bezerra, S.M. Classification of Renal Cell Tumors—Current Concepts and Use of Ancillary Tests: Recommendations of the Brazilian Society of Pathology. Surg. Exp. Pathol. 2021, 4, 4. [Google Scholar] [CrossRef]
- Available online: https://www.pathologyoutlines.com/kidneytumor.html (accessed on 18 September 2022).
- Moretti, L.; Medeiros, L.J.; Kunkalla, K.; Williams, M.D.; Singh, R.R.; Vega, F. N-Terminal PAX8 Polyclonal Antibody Shows Cross-Reactivity with N-Terminal Region of PAX5 and Is Responsible for Reports of PAX8 Positivity in Malignant Lymphomas. Mod. Pathol. 2012, 25, 231–236. [Google Scholar] [CrossRef] [Green Version]
- Miettinen, M.; McCue, P.A.; Sarlomo-Rikala, M.; Rys, J.; Czapiewski, P.; Wazny, K.; Langfort, R.; Waloszczyk, P.; Biernat, W.; Lasota, J.; et al. GATA3: A Multispecific but Potentially Useful Marker in Surgical Pathology: A Systematic Analysis of 2500 Epithelial and Nonepithelial Tumors. Am. J. Surg. Pathol. 2014, 38, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Roibon, N.; Faraj, S.F.; Munari, E.; Bezerra, S.M.; Albadine, R.; Sharma, R.; Argani, P.; Allaf, M.E.; Netto, G.J. Comprehensive Profile of GATA Binding Protein 3 Immunohistochemical Expression in Primary and Metastatic Renal Neoplasms. Hum. Pathol. 2014, 45, 244–248. [Google Scholar] [CrossRef] [PubMed]
- Bakshi, N.; Kunju, L.P.; Giordano, T.; Shah, R.B. Expression of Renal Cell Carcinoma Antigen (RCC) in Renal Epithelial and Nonrenal Tumors: Diagnostic Implications. Appl. Immunohistochem. Mol. Morphol. 2007, 15, 310–315. [Google Scholar] [CrossRef] [PubMed]
- McGregor, D.K.; Khurana, K.K.; Cao, C.; Tsao, C.C.; Ayala, G.; Krishnan, B.; Ro, J.Y.; Lechago, J.; Truong, L.D. Diagnosing Primary and Metastatic Renal Cell Carcinoma: The Use of the Monoclonal Antibody “Renal Cell Carcinoma Marker”. Am. J. Surg. Pathol. 2001, 25, 1485–1492. [Google Scholar] [CrossRef]
- Clayton, E.F.; Ziober, A.; Yao, Y.; Bing, Z. Malignant Tumors with Clear Cell Morphology: A Comparative Immunohistochemical Study with Renal Cell Carcinoma Antibody, Pax8, Steroidogenic Factor 1, and Brachyury. Ann. Diagn. Pathol. 2013, 17, 192–197. [Google Scholar] [CrossRef]
- Chu, P.; Arber, D.A. Paraffin-Section Detection of CD10 in 505 Nonhematopoietic Neoplasms. Frequent Expression in Renal Cell Carcinoma and Endometrial Stromal Sarcoma. Am. J. Clin. Pathol. 2000, 113, 374–382. [Google Scholar] [CrossRef] [Green Version]
- Kuehn, A.; Paner, G.P.; Skinnider, B.F.; Cohen, C.; Datta, M.W.; Young, A.N.; Srigley, J.R.; Amin, M.B. Expression Analysis of Kidney-Specific Cadherin in a Wide Spectrum of Traditional and Newly Recognized Renal Epithelial Neoplasms: Diagnostic and Histogenetic Implications. Am. J. Surg. Pathol. 2007, 31, 1528–1533. [Google Scholar] [CrossRef]
- Novacescu, D.; Cut, T.G.; Cumpanas, A.A.; Bratosin, F.; Ceausu, R.A.; Raica, M. Novel Expression of Thymine Dimers in Renal Cell Carcinoma, Demonstrated through Immunohistochemistry. Biomedicines 2022, 10, 2673. [Google Scholar] [CrossRef]
- Zhang, L.; Zha, Z.; Qu, W.; Zhao, H.; Yuan, J.; Feng, Y.; Wu, B. Tumor Necrosis as a Prognostic Variable for the Clinical Outcome in Patients with Renal Cell Carcinoma: A Systematic Review and Meta-Analysis. BMC Cancer 2018, 18, 870. [Google Scholar] [CrossRef]
- Kim, H.L.; Belldegrun, A.S.; Freitas, D.G.; Bui, M.H.T.; Han, K.; Dorey, F.J.; Figlin, R.A. Paraneoplastic Signs and Symptoms of Renal Cell Carcinoma: Implications for Prognosis. J. Urol. 2003, 170, 1742–1746. [Google Scholar] [CrossRef] [Green Version]
- Lee, Z.; Jegede, O.A.; Haas, N.B.; Pins, M.R.; Messing, E.M.; Manola, J.; Wood, C.G.; Kane, C.J.; Jewett, M.A.S.; Flaherty, K.T.; et al. Local Recurrence Following Resection of Intermediate-High Risk Nonmetastatic Renal Cell Carcinoma: An Anatomical Classification and Analysis of the ASSURE (ECOG-ACRIN E2805) Adjuvant Trial. J. Urol. 2020, 203, 684–689. [Google Scholar] [CrossRef] [PubMed]
- Bensalah, K.; Leray, E.; Fergelot, P.; Rioux-Leclercq, N.; Tostain, J.; Guillé, F.; Patard, J.-J. Prognostic Value of Thrombocytosis in Renal Cell Carcinoma. J. Urol. 2006, 175 Pt 1, 859–863. [Google Scholar] [CrossRef]
- Kim, H.L.; Han, K.-R.; Zisman, A.; Figlin, R.A.; Belldegrun, A.S. Cachexia-like Symptoms Predict a Worse Prognosis in Localized T1 Renal Cell Carcinoma. J. Urol. 2004, 171, 1810–1813. [Google Scholar] [CrossRef] [PubMed]
- Patard, J.-J.; Leray, E.; Cindolo, L.; Ficarra, V.; Rodriguez, A.; De La Taille, A.; Tostain, J.; Artibani, W.; Abbou, C.C.; Guillé, F.; et al. Multi-Institutional Validation of a Symptom Based Classification for Renal Cell Carcinoma. J. Urol. 2004, 172, 858–862. [Google Scholar] [CrossRef]
- Cho, D.S.; Kim, S.I.; Choo, S.H.; Jang, S.H.; Ahn, H.S.; Kim, S.J. Prognostic Significance of Modified Glasgow Prognostic Score in Patients with Non-Metastatic Clear Cell Renal Cell Carcinoma. Scand. J. Urol. 2016, 50, 186–191. [Google Scholar] [CrossRef]
- Patel, A.; Ravaud, A.; Motzer, R.J.; Pantuck, A.J.; Staehler, M.; Escudier, B.; Martini, J.-F.; Lechuga, M.; Lin, X.; George, D.J. Neutrophil-to-Lymphocyte Ratio as a Prognostic Factor of Disease-Free Survival in Postnephrectomy High-Risk Locoregional Renal Cell Carcinoma: Analysis of the S-TRAC Trial. Clin. Cancer Res. 2020, 26, 4863–4868. [Google Scholar] [CrossRef]
- Schraml, P.; Struckmann, K.; Hatz, F.; Sonnet, S.; Kully, C.; Gasser, T.; Sauter, G.; Mihatsch, M.J.; Moch, H. VHL Mutations and Their Correlation with Tumour Cell Proliferation, Microvessel Density, and Patient Prognosis in Clear Cell Renal Cell Carcinoma. J. Pathol. 2002, 196, 186–193. [Google Scholar] [CrossRef]
- Yao, M.; Yoshida, M.; Kishida, T.; Nakaigawa, N.; Baba, M.; Kobayashi, K.; Miura, T.; Moriyama, M.; Nagashima, Y.; Nakatani, Y.; et al. VHL Tumor Suppressor Gene Alterations Associated with Good Prognosis in Sporadic Clear-Cell Renal Carcinoma. J. Natl. Cancer Inst. 2002, 94, 1569–1575. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Jung, C.W.; Cho, Y.H.; Lee, J.; Lee, S.-H.; Kim, H.Y.; Park, J.; Park, J.-O.; Kim, K.; Kim, W.S.; et al. Somatic VHL Alteration and Its Impact on Prognosis in Patients with Clear Cell Renal Cell Carcinoma. Oncol. Rep. 2005, 13, 859–864. [Google Scholar] [CrossRef]
- Eichelberg, C.; Junker, K.; Ljungberg, B.; Moch, H. Diagnostic and Prognostic Molecular Markers for Renal Cell Carcinoma: A Critical Appraisal of the Current State of Research and Clinical Applicability. Eur. Urol. 2009, 55, 851–863. [Google Scholar] [CrossRef]
- Ghini, V.; Laera, L.; Fantechi, B.; Monte, F.D.; Benelli, M.; McCartney, A.; Leonardo, T.; Luchinat, C.; Pozzessere, D. Metabolomics to Assess Response to Immune Checkpoint Inhibitors in Patients with Non-Small-Cell Lung Cancer. Cancers 2020, 12, 3574. [Google Scholar] [CrossRef] [PubMed]
- Varela, I.; Tarpey, P.; Raine, K.; Huang, D.; Ong, C.K.; Stephens, P.; Davies, H.; Jones, D.; Lin, M.-L.; Teague, J.; et al. Exome Sequencing Identifies Frequent Mutation of the SWI/SNF Complex Gene PBRM1 in Renal Carcinoma. Nature 2011, 469, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Choueiri, T.K.; Vaziri, S.A.J.; Jaeger, E.; Elson, P.; Wood, L.; Bhalla, I.P.; Small, E.J.; Weinberg, V.; Sein, N.; Simko, J.; et al. Von Hippel-Lindau Gene Status and Response to Vascular Endothelial Growth Factor Targeted Therapy for Metastatic Clear Cell Renal Cell Carcinoma. J. Urol. 2008, 180, 860–865; discussion 865–866. [Google Scholar] [CrossRef] [PubMed]
- Cho, D.; Signoretti, S.; Dabora, S.; Regan, M.; Seeley, A.; Mariotti, M.; Youmans, A.; Polivy, A.; Mandato, L.; McDermott, D.; et al. Potential Histologic and Molecular Predictors of Response to Temsirolimus in Patients with Advanced Renal Cell Carcinoma. Clin. Genitourin. Cancer 2007, 5, 379–385. [Google Scholar] [CrossRef]
- Lidgren, A.; Hedberg, Y.; Grankvist, K.; Rasmuson, T.; Bergh, A.; Ljungberg, B. Hypoxia-Inducible Factor 1α Expression in Renal Cell Carcinoma Analyzed by Tissue Microarray. Eur. Urol. 2006, 50, 1272–1277. [Google Scholar] [CrossRef]
- Klatte, T.; Seligson, D.B.; Riggs, S.B.; Leppert, J.T.; Berkman, M.K.; Kleid, M.D.; Yu, H.; Kabbinavar, F.F.; Pantuck, A.J.; Belldegrun, A.S. Hypoxia-Inducible Factor 1 Alpha in Clear Cell Renal Cell Carcinoma. Clin. Cancer Res. 2007, 13, 7388–7393. [Google Scholar] [CrossRef] [Green Version]
- Rini, B.I.; Michaelson, M.D.; Rosenberg, J.E.; Bukowski, R.M.; Sosman, J.A.; Stadler, W.M.; Hutson, T.E.; Margolin, K.; Harmon, C.S.; DePrimo, S.E.; et al. Antitumor Activity and Biomarker Analysis of Sunitinib in Patients With Bevacizumab-Refractory Metastatic Renal Cell Carcinoma. J. Clin. Oncol. 2008, 26, 3743–3748. [Google Scholar] [CrossRef] [PubMed]
- Ricketts, C.J.; De Cubas, A.A.; Fan, H.; Smith, C.C.; Lang, M.; Reznik, E.; Bowlby, R.; Gibb, E.A.; Akbani, R.; Beroukhim, R.; et al. The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma. Cell Rep. 2018, 23, 313–326.e5. [Google Scholar] [CrossRef] [Green Version]
- Kandoth, C.; McLellan, M.D.; Vandin, F.; Ye, K.; Niu, B.; Lu, C.; Xie, M.; Zhang, Q.; McMichael, J.F.; Wyczalkowski, M.A.; et al. Mutational Landscape and Significance across 12 Major Cancer Types. Nature 2013, 502, 333–339. [Google Scholar] [CrossRef] [Green Version]
- Kapur, P.; Peña-Llopis, S.; Christie, A.; Zhrebker, L.; Pavía-Jiménez, A.; Rathmell, W.K.; Xie, X.-J.; Brugarolas, J. Effects on Survival of BAP1 and PBRM1 Mutations in Sporadic Clear-Cell Renal-Cell Carcinoma: A Retrospective Analysis with Independent Validation. Lancet Oncol. 2013, 14, 159–167. [Google Scholar] [CrossRef] [Green Version]
- Bui, M.H.T.; Seligson, D.; Han, K.; Pantuck, A.J.; Dorey, F.J.; Huang, Y.; Horvath, S.; Leibovich, B.C.; Chopra, S.; Liao, S.-Y.; et al. Carbonic Anhydrase IX Is an Independent Predictor of Survival in Advanced Renal Clear Cell Carcinoma: Implications for Prognosis and Therapy. Clin. Cancer Res. 2003, 9, 802–811. [Google Scholar] [PubMed]
- Leibovich, B.C.; Sheinin, Y.; Lohse, C.M.; Thompson, R.H.; Cheville, J.C.; Zavada, J.; Kwon, E.D. Carbonic Anhydrase IX Is Not an Independent Predictor of Outcome for Patients with Clear Cell Renal Cell Carcinoma. J. Clin. Oncol. 2007, 25, 4757–4764. [Google Scholar] [CrossRef]
- Sandlund, J.; Oosterwijk, E.; Grankvist, K.; Oosterwijk-Wakka, J.; Ljungberg, B.; Rasmuson, T. Prognostic Impact of Carbonic Anhydrase IX Expression in Human Renal Cell Carcinoma. BJU Int. 2007, 100, 556–560. [Google Scholar] [CrossRef] [PubMed]
- Atkins, M.; Regan, M.; McDermott, D.; Mier, J.; Stanbridge, E.; Youmans, A.; Febbo, P.; Upton, M.; Lechpammer, M.; Signoretti, S. Carbonic Anhydrase IX Expression Predicts Outcome of Interleukin 2 Therapy for Renal Cancer. Clin. Cancer Res. 2005, 11, 3714–3721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choueiri, T.K.; Regan, M.M.; Rosenberg, J.E.; Oh, W.K.; Clement, J.; Amato, A.M.; McDermott, D.; Cho, D.C.; Atkins, M.B.; Signoretti, S. Carbonic Anhydrase IX and Pathological Features as Predictors of Outcome in Patients with Metastatic Clear-Cell Renal Cell Carcinoma Receiving Vascular Endothelial Growth Factor-Targeted Therapy. BJU Int. 2010, 106, 772–778. [Google Scholar] [CrossRef] [PubMed]
- Hakimi, A.A.; Ostrovnaya, I.; Reva, B.; Schultz, N.; Chen, Y.-B.; Gonen, M.; Liu, H.; Takeda, S.; Voss, M.H.; Tickoo, S.K.; et al. Adverse Outcomes in Clear Cell Renal Cell Carcinoma with Mutations of 3p21 Epigenetic Regulators BAP1 and SETD2: A Report by MSKCC and the KIRC TCGA Research Network. Clin. Cancer Res. 2013, 19, 3259–3267. [Google Scholar] [CrossRef] [Green Version]
- Hakimi, A.A.; Chen, Y.-B.; Wren, J.; Gonen, M.; Abdel-Wahab, O.; Heguy, A.; Liu, H.; Takeda, S.; Tickoo, S.K.; Reuter, V.E.; et al. Clinical and Pathologic Impact of Select Chromatin-Modulating Tumor Suppressors in Clear Cell Renal Cell Carcinoma. Eur. Urol. 2013, 63, 848–854. [Google Scholar] [CrossRef] [Green Version]
- Pawłowski, R.; Mühl, S.M.; Sulser, T.; Krek, W.; Moch, H.; Schraml, P. Loss of PBRM1 Expression Is Associated with Renal Cell Carcinoma Progression. Int. J. Cancer 2013, 132, E11–E17. [Google Scholar] [CrossRef]
- Kapur, P.; Christie, A.; Raman, J.D.; Then, M.T.; Nuhn, P.; Buchner, A.; Bastian, P.; Seitz, C.; Shariat, S.F.; Bensalah, K.; et al. BAP1 Immunohistochemistry Predicts Outcomes in a Multi-Institutional Cohort with Clear Cell Renal Cell Carcinoma. J. Urol. 2014, 191, 603–610. [Google Scholar] [CrossRef]
- Joseph, R.W.; Kapur, P.; Serie, D.J.; Eckel-Passow, J.E.; Parasramka, M.; Ho, T.; Cheville, J.C.; Frenkel, E.; Rakheja, D.; Brugarolas, J.; et al. Loss of BAP1 Protein Expression Is an Independent Marker of Poor Prognosis in Patients with Low-Risk Clear Cell Renal Cell Carcinoma. Cancer 2014, 120, 1059–1067. [Google Scholar] [CrossRef] [Green Version]
- Turajlic, S.; Xu, H.; Litchfield, K.; Rowan, A.; Chambers, T.; Lopez, J.I.; Nicol, D.; O’Brien, T.; Larkin, J.; Horswell, S.; et al. Tracking Cancer Evolution Reveals Constrained Routes to Metastases: TRACERx Renal. Cell 2018, 173, 581–594.e12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kroeger, N.; Klatte, T.; Chamie, K.; Rao, P.N.; Birkhäuser, F.D.; Sonn, G.A.; Riss, J.; Kabbinavar, F.F.; Belldegrun, A.S.; Pantuck, A.J. Deletions of Chromosomes 3p and 14q Molecularly Subclassify Clear Cell Renal Cell Carcinoma. Cancer 2013, 119, 1547–1554. [Google Scholar] [CrossRef] [PubMed]
- Santaguida, S.; Amon, A. Short- and Long-Term Effects of Chromosome Mis-Segregation and Aneuploidy. Nat. Rev. Mol. Cell Biol. 2015, 16, 473–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davoli, T.; Uno, H.; Wooten, E.C.; Elledge, S.J. Tumor Aneuploidy Correlates with Markers of Immune Evasion and with Reduced Response to Immunotherapy. Science 2017, 355, eaaf8399. [Google Scholar] [CrossRef] [Green Version]
- Rini, B.; Goddard, A.; Knezevic, D.; Maddala, T.; Zhou, M.; Aydin, H.; Campbell, S.; Elson, P.; Koscielny, S.; Lopatin, M.; et al. A 16-Gene Assay to Predict Recurrence after Surgery in Localised Renal Cell Carcinoma: Development and Validation Studies. Lancet Oncol. 2015, 16, 676–685. [Google Scholar] [CrossRef]
- Lucarelli, G.; Loizzo, D.; Franzin, R.; Battaglia, S.; Ferro, M.; Cantiello, F.; Castellano, G.; Bettocchi, C.; Ditonno, P.; Battaglia, M. Metabolomic Insights into Pathophysiological Mechanisms and Biomarker Discovery in Clear Cell Renal Cell Carcinoma. Expert Rev. Mol. Diagn. 2019, 19, 397–407. [Google Scholar] [CrossRef]
- Bianchi, C.; Meregalli, C.; Bombelli, S.; Di Stefano, V.; Salerno, F.; Torsello, B.; De Marco, S.; Bovo, G.; Cifola, I.; Mangano, E.; et al. The Glucose and Lipid Metabolism Reprogramming Is Grade-Dependent in Clear Cell Renal Cell Carcinoma Primary Cultures and Is Targetable to Modulate Cell Viability and Proliferation. Oncotarget 2017, 8, 113502–113515. [Google Scholar] [CrossRef] [Green Version]
- Weiss, R.H. Metabolomics and Metabolic Reprogramming in Kidney Cancer. Semin. Nephrol. 2018, 38, 175–182. [Google Scholar] [CrossRef]
- Ragone, R.; Sallustio, F.; Piccinonna, S.; Rutigliano, M.; Vanessa, G.; Palazzo, S.; Lucarelli, G.; Ditonno, P.; Battaglia, M.; Fanizzi, F.P.; et al. Renal Cell Carcinoma: A Study through NMR-Based Metabolomics Combined with Transcriptomics. Diseases 2016, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Lucarelli, G.; Galleggiante, V.; Rutigliano, M.; Sanguedolce, F.; Cagiano, S.; Bufo, P.; Lastilla, G.; Maiorano, E.; Ribatti, D.; Giglio, A.; et al. Metabolomic Profile of Glycolysis and the Pentose Phosphate Pathway Identifies the Central Role of Glucose-6-Phosphate Dehydrogenase in Clear Cell-Renal Cell Carcinoma. Oncotarget 2015, 6, 13371–13386. [Google Scholar] [CrossRef] [Green Version]
- Lucarelli, G.; Rutigliano, M.; Sallustio, F.; Ribatti, D.; Giglio, A.; Lepore Signorile, M.; Grossi, V.; Sanese, P.; Napoli, A.; Maiorano, E.; et al. Integrated Multi-Omics Characterization Reveals a Distinctive Metabolic Signature and the Role of NDUFA4L2 in Promoting Angiogenesis, Chemoresistance, and Mitochondrial Dysfunction in Clear Cell Renal Cell Carcinoma. Aging 2018, 10, 3957–3985. [Google Scholar] [CrossRef] [PubMed]
- Bombelli, S.; Torsello, B.; De Marco, S.; Lucarelli, G.; Cifola, I.; Grasselli, C.; Strada, G.; Bovo, G.; Perego, R.A.; Bianchi, C. 36-KDa Annexin A3 Isoform Negatively Modulates Lipid Storage in Clear Cell Renal Cell Carcinoma Cells. Am. J. Pathol. 2020, 190, 2317–2326. [Google Scholar] [CrossRef] [PubMed]
- Bristol-Myers Squibb. A Phase 3, Randomized, Open-Label Study of Nivolumab Combined with Ipilimumab versus Sunitinib Monotherapy in Subjects with Previously Untreated, Advanced or Metastatic Renal Cell Carcinoma; Clinical Trial Registration NCT02231749; 2022. Available online: https://clinicaltrials.gov/ct2/show/NCT02231749 (accessed on 18 September 2022).
- Fan, D.; Liu, Q.; Wu, F.; Liu, N.; Qu, H.; Yuan, Y.; Li, Y.; Gao, H.; Ge, J.; Xu, Y.; et al. Prognostic Significance of PI3K/AKT/MTOR Signaling Pathway Members in Clear Cell Renal Cell Carcinoma. PeerJ 2020, 8, e9261. [Google Scholar] [CrossRef] [PubMed]
- Sabatino, M.; Kim-Schulze, S.; Panelli, M.C.; Stroncek, D.; Wang, E.; Taback, B.; Kim, D.W.; Deraffele, G.; Pos, Z.; Marincola, F.M.; et al. Serum Vascular Endothelial Growth Factor and Fibronectin Predict Clinical Response to High-Dose Interleukin-2 Therapy. J. Clin. Oncol. 2009, 27, 2645–2652. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Feng, G.; Gentil-Perret, A.; Genin, C.; Tostain, J. Serum Carbonic Anhydrase 9 Level Is Associated with Postoperative Recurrence of Conventional Renal Cell Cancer. J. Urol. 2008, 180, 510–513; discussion 513–514. [Google Scholar] [CrossRef]
- Sim, S.H.; Messenger, M.P.; Gregory, W.M.; Wind, T.C.; Vasudev, N.S.; Cartledge, J.; Thompson, D.; Selby, P.J.; Banks, R.E. Prognostic Utility of Pre-Operative Circulating Osteopontin, Carbonic Anhydrase IX and CRP in Renal Cell Carcinoma. Br. J. Cancer 2012, 107, 1131–1137. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Pal, S.K.; McDermott, D.F.; Morrissey, S.; Ferguson, K.C.; Holland, J.; Kaelin, W.G.; Dutcher, J.P. A Phase I Study of Cabozantinib (XL184) in Patients with Renal Cell Cancer. Ann. Oncol. 2014, 25, 1603–1608. [Google Scholar] [CrossRef]
- Raimondi, A.; Sepe, P.; Zattarin, E.; Mennitto, A.; Stellato, M.; Claps, M.; Guadalupi, V.; Verzoni, E.; de Braud, F.; Procopio, G. Predictive Biomarkers of Response to Immunotherapy in Metastatic Renal Cell Cancer. Front. Oncol. 2020, 10, 1644. [Google Scholar] [CrossRef]
- Klatte, T.; Rossi, S.H.; Stewart, G.D. Prognostic Factors and Prognostic Models for Renal Cell Carcinoma: A Literature Review. World J. Urol. 2018, 36, 1943–1952. [Google Scholar] [CrossRef]
- Scelo, G.; Muller, D.C.; Riboli, E.; Johansson, M.; Cross, A.J.; Vineis, P.; Tsilidis, K.K.; Brennan, P.; Boeing, H.; Peeters, P.H.M.; et al. KIM-1 as a Blood-Based Marker for Early Detection of Kidney Cancer: A Prospective Nested Case-Control Study. Clin. Cancer Res. 2018, 24, 5594–5601. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.J.; Wilson, G.D.; Kara, S.; Majeske, A.; Zhang, P.L.; Hafron, J.M. Diagnostic Role of Kidney Injury Molecule-1 in Renal Cell Carcinoma. Int. Urol. Nephrol. 2019, 51, 1893–1902. [Google Scholar] [CrossRef] [PubMed]
- Vuong, L.; Kotecha, R.R.; Voss, M.H.; Hakimi, A.A. Tumor Microenvironment Dynamics in Clear-Cell Renal Cell Carcinoma. Cancer Discov. 2019, 9, 1349–1357. [Google Scholar] [CrossRef] [PubMed]
- Tamma, R.; Rutigliano, M.; Lucarelli, G.; Annese, T.; Ruggieri, S.; Cascardi, E.; Napoli, A.; Battaglia, M.; Ribatti, D. Microvascular Density, Macrophages, and Mast Cells in Human Clear Cell Renal Carcinoma with and without Bevacizumab Treatment. Urol. Oncol. 2019, 37, 355.e11–355.e19. [Google Scholar] [CrossRef] [PubMed]
- Netti, G.S.; Lucarelli, G.; Spadaccino, F.; Castellano, G.; Gigante, M.; Divella, C.; Rocchetti, M.T.; Rascio, F.; Mancini, V.; Stallone, G.; et al. PTX3 Modulates the Immunoflogosis in Tumor Microenvironment and Is a Prognostic Factor for Patients with Clear Cell Renal Cell Carcinoma. Aging 2020, 12, 7585–7602. [Google Scholar] [CrossRef]
- Lucarelli, G.; Rutigliano, M.; Ferro, M.; Giglio, A.; Intini, A.; Triggiano, F.; Palazzo, S.; Gigante, M.; Castellano, G.; Ranieri, E.; et al. Activation of the Kynurenine Pathway Predicts Poor Outcome in Patients with Clear Cell Renal Cell Carcinoma. Urol. Oncol. 2017, 35, 461.e15–461.e27. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Tomczak, P.; Park, S.H.; Venugopal, B.; Ferguson, T.; Chang, Y.-H.; Hajek, J.; Symeonides, S.N.; Lee, J.L.; Sarwar, N.; et al. Adjuvant Pembrolizumab after Nephrectomy in Renal-Cell Carcinoma. N. Engl. J. Med. 2021, 385, 683–694. [Google Scholar] [CrossRef]
- Fukuda, S.; Saito, K.; Yasuda, Y.; Kijima, T.; Yoshida, S.; Yokoyama, M.; Ishioka, J.; Matsuoka, Y.; Kageyama, Y.; Fujii, Y. Impact of C-Reactive Protein Flare-Response on Oncological Outcomes in Patients with Metastatic Renal Cell Carcinoma Treated with Nivolumab. J. Immunother. Cancer 2021, 9, e001564. [Google Scholar] [CrossRef]
- Ueda, K.; Ogasawara, N.; Yonekura, S.; Matsunaga, Y.; Hoshino, R.; Kurose, H.; Chikui, K.; Uemura, K.; Nakiri, M.; Nishihara, K.; et al. The Prognostic Value of Systemic Inflammatory Markers in Advanced Renal Cell Carcinoma Patients Treated With Molecular Targeted Therapies. Anticancer Res. 2020, 40, 1739–1745. [Google Scholar] [CrossRef]
- Motzer, R.J.; Robbins, P.B.; Powles, T.; Albiges, L.; Haanen, J.B.; Larkin, J.; Mu, X.J.; Ching, K.A.; Uemura, M.; Pal, S.K.; et al. Avelumab plus Axitinib versus Sunitinib in Advanced Renal Cell Carcinoma: Biomarker Analysis of the Phase 3 JAVELIN Renal 101 Trial. Nat. Med. 2020, 26, 1733–1741. [Google Scholar] [CrossRef]
- Rini, B.I.; Huseni, M.; Atkins, M.B.; McDermott, D.F.; Powles, T.B.; Escudier, B.; Banchereau, R.; Liu, L.-F.; Leng, N.; Fan, J.; et al. Molecular Correlates Differentiate Response to Atezolizumab (Atezo) + Bevacizumab (Bev) vs Sunitinib (Sun): Results from a Phase III Study (IMmotion151) in Untreated Metastatic Renal Cell Carcinoma (MRCC). Ann. Oncol. 2018, 29, viii724–viii725. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novacescu, D.; Feciche, B.O.; Cumpanas, A.A.; Bardan, R.; Rusmir, A.V.; Bitar, Y.A.; Barbos, V.I.; Cut, T.G.; Raica, M.; Latcu, S.C. Contemporary Clinical Definitions, Differential Diagnosis, and Novel Predictive Tools for Renal Cell Carcinoma. Biomedicines 2022, 10, 2926. https://doi.org/10.3390/biomedicines10112926
Novacescu D, Feciche BO, Cumpanas AA, Bardan R, Rusmir AV, Bitar YA, Barbos VI, Cut TG, Raica M, Latcu SC. Contemporary Clinical Definitions, Differential Diagnosis, and Novel Predictive Tools for Renal Cell Carcinoma. Biomedicines. 2022; 10(11):2926. https://doi.org/10.3390/biomedicines10112926
Chicago/Turabian StyleNovacescu, Dorin, Bogdan Ovidiu Feciche, Alin Adrian Cumpanas, Razvan Bardan, Andrei Valentin Rusmir, Yahya Almansour Bitar, Vlad Ilie Barbos, Talida Georgiana Cut, Marius Raica, and Silviu Constantin Latcu. 2022. "Contemporary Clinical Definitions, Differential Diagnosis, and Novel Predictive Tools for Renal Cell Carcinoma" Biomedicines 10, no. 11: 2926. https://doi.org/10.3390/biomedicines10112926
APA StyleNovacescu, D., Feciche, B. O., Cumpanas, A. A., Bardan, R., Rusmir, A. V., Bitar, Y. A., Barbos, V. I., Cut, T. G., Raica, M., & Latcu, S. C. (2022). Contemporary Clinical Definitions, Differential Diagnosis, and Novel Predictive Tools for Renal Cell Carcinoma. Biomedicines, 10(11), 2926. https://doi.org/10.3390/biomedicines10112926