Identification of Resting-State Network Functional Connectivity and Brain Structural Signatures in Fibromyalgia Using a Machine Learning Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Clinical Assessment
2.3. MRI Acquisitions
2.4. Functional MRI Preprocessing and Resting-State Functional Connectivity Matrix Extraction
2.5. Voxel-Based Morphology Analyses and Gray Matter Volume Matrix Extraction
2.6. Machine Learning Analysis
2.6.1. Preprocessing Data
2.6.2. Feature Selection Methods for Selecting Baseline Models
2.6.3. Classification Algorithms and Hyperparameter Optimization to Build Baseline Models
2.6.4. Permutation Feature Importance Ranking to Building the Final Models for Each Data Type and the Combined Model
2.6.5. Defining the Classification Performance Matrix
2.7. Correlation with Clinical Data
3. Results
3.1. Demographic and Clinical Characteristics
3.2. Fibromyalgia Classification Using Resting-State Functional Connectivity Data
3.2.1. Comparison of Cross-Combination Models and Baseline rs-FC ML Model Selection
3.2.2. The Final ML Model for rs-FC Data
3.3. Fibromyalgia Classification Using Structural Data
3.3.1. Comparison of Cross-Combination Models and Selecting Baseline ML Model for Structural Data
3.3.2. The Final ML Model for Structural Data
3.4. Comparison in the Classification Ability between Functional MRI Data and Structural Data
3.5. Fibromyalgia Classification Using the Combination of Functional and Structural Data
3.6. Correlation between the Selected Features in the Final ML Models with Clinical Data
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Borchers, A.T.; Gershwin, M.E. Fibromyalgia: A Critical and Comprehensive Review. Clin. Rev. Allergy Immunol. 2015, 49, 100–151. [Google Scholar] [CrossRef]
- Pujol, J.; Macià, D.; Garcia-Fontanals, A.; Blanco-Hinojo, L.; López-Solà, M.; Garcia-Blanco, S.; Poca-Dias, V.; Harrison, B.J.; Contreras-Rodríguez, O.; Monfort, J.; et al. The contribution of sensory system functional connectivity reduction to clinical pain in fibromyalgia. Pain 2014, 155, 1492–1503. [Google Scholar] [CrossRef]
- Sluka, K.A.; Clauw, D.J. Neurobiology of fibromyalgia and chronic widespread pain. Neuroscience 2016, 338, 114–129. [Google Scholar] [CrossRef] [Green Version]
- Macfarlane, G.J.; Kronisch, C.; Dean, L.E.; Atzeni, F.; Häuser, W.; Fluß, E.; Choy, E.; Kosek, E.; Amris, K.; Branco, J.; et al. EULAR revised recommendations for the management of fibromyalgia. Ann. Rheum. Dis. 2017, 76, 318–328. [Google Scholar] [CrossRef]
- Cagnie, B.; Coppieters, I.; Denecker, S.; Six, J.; Danneels, L.; Meeus, M. Central sensitization in fibromyalgia? A systematic review on structural and functional brain MRI. Semin. Arthritis Rheum. 2014, 44, 68–75. [Google Scholar] [CrossRef]
- Fallon, N.; Chiu, Y.; Nurmikko, T.; Stancak, A. Functional connectivity with the default mode network is altered in fibromyalgia patients. PLoS ONE 2016, 11, e0159198. [Google Scholar] [CrossRef] [Green Version]
- Hsiao, F.J.; Wang, S.J.; Lin, Y.Y.; Fuh, J.L.; Ko, Y.C.; Wang, P.N.; Chen, W.T. Altered insula-default mode network connectivity in fibromyalgia: A resting-state magnetoencephalographic study. J. Headache Pain 2017, 18, 89. [Google Scholar] [CrossRef]
- Ettinger-Veenstra, H.V.; Boehme, R.; Ghafouri, B.; Olausson, H.; Wicksell, R.K.; Gerdle, B. Exploration of functional connectivity changes previously reported in fibromyalgia and their relation to psychological distress and pain measures. J. Clin. Med. 2020, 9, 3560. [Google Scholar] [CrossRef]
- De Ridder, D.; Vanneste, S.; Smith, M.; Adhia, D. Pain and the triple network model. Front. Neurol. 2022, 13, 757241. [Google Scholar] [CrossRef]
- Flodin, P.; Martinsen, S.; Löfgren, M.; Bileviciute-Ljungar, I.; Kosek, E.; Fransson, P. Fibromyalgia Is Associated with Decreased Connectivity Between Pain- and Sensorimotor Brain Areas. Brain Connect. 2014, 4, 587–594. [Google Scholar] [CrossRef]
- Schmidt-Wilcke, T.; Luerding, R.; Weigand, T.; Jurgens, T.; Schuierer, G.; Leinisch, E.; Bogdahn, U. Striatal grey matter increase in patients suffering from fibromyalgia--a voxel-based morphometry study. Pain 2007, 132 (Suppl. S1), S109–S116. [Google Scholar] [CrossRef]
- Burgmer, M.; Gaubitz, M.; Konrad, C.; Wrenger, M.; Hilgart, S.; Heuft, G.; Pfleiderer, B. Decreased gray matter volumes in the cingulo-frontal cortex and the amygdala in patients with fibromyalgia. Psychosom. Med. 2009, 71, 566–573. [Google Scholar] [CrossRef]
- Pomares, F.B.; Funck, T.; Feier, N.A.; Roy, S.; Daigle-Martel, A.; Ceko, M.; Narayanan, S.; Araujo, D.; Thiel, A.; Stikov, N.; et al. Histological Underpinnings of Grey Matter Changes in Fibromyalgia Investigated Using Multimodal Brain Imaging. J. Neurosci. 2017, 37, 1090–1101. [Google Scholar] [CrossRef] [Green Version]
- Khosla, M.; Jamison, K.; Ngo, G.H.; Kuceyeski, A.; Sabuncu, M.R. Machine learning in resting-state fmri analysis. Magn. Reson. Imaging 2019, 64, 101–121. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Sola, M.; Woo, C.W.; Pujol, J.; Deus, J.; Harrison, B.J.; Monfort, J.; Wager, T.D. Towards a neurophysiological signature for fibromyalgia. Pain 2017, 158, 34–47. [Google Scholar] [CrossRef] [Green Version]
- Robinson, M.E.; O’Shea, A.M.; Craggs, J.G.; Price, D.D.; Letzen, J.E.; Staud, R. Comparison of machine classification algorithms for fibromyalgia: Neuroimages versus self-report. J. Pain 2015, 16, 472–477. [Google Scholar] [CrossRef] [Green Version]
- Wolfe, F.; Clauw, D.J.; Fitzcharles, M.A.; Goldenberg, D.L.; Hauser, W.; Katz, R.L.; Mease, P.J.; Russell, A.S.; Russell, I.J.; Walitt, B. 2016 revisions to the 2010/2011 fibromyalgia diagnostic criteria. Semin. Arthritis Rheum. 2016, 46, 319–329. [Google Scholar] [CrossRef]
- Schmidt-Wilcke, T.; Ichesco, E.; Hampson, J.P.; Kairys, A.; Peltier, S.; Harte, S.; Clauw, D.J.; Harris, R.E. Resting state connectivity correlates with drug and placebo response in fibromyalgia patients. Neuroimage Clin. 2014, 6, 252–261. [Google Scholar] [CrossRef]
- Ellingsen, D.M.; Beissner, F.; Moher Alsady, T.; Lazaridou, A.; Paschali, M.; Berry, M.; Isaro, L.; Grahl, A.; Lee, J.; Wasan, A.D.; et al. A picture is worth a thousand words: Linking fibromyalgia pain widespreadness from digital pain drawings with pain catastrophizing and brain cross-network connectivity. Pain 2021, 162, 1352–1363. [Google Scholar] [CrossRef]
- Buysse, D.J.; Reynolds, C.F., III; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The pittsburgh sleep quality index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Climent-Sanz, C.; Marco-Mitjavila, A.; Pastells-Peiro, R.; Valenzuela-Pascual, F.; Blanco-Blanco, J.; Gea-Sanchez, M. Patient reported outcome measures of sleep quality in fibromyalgia: A cosmin systematic review. Int. J. Environ. Res. Public Health 2020, 17, 2992. [Google Scholar] [CrossRef]
- Beck, A.T.; Epstein, N.; Brown, G.; Steer, R.A. An inventory for measuring clinical anxiety: Psychometric properties. J. Consult. Clin. Psychol. 1988, 56, 893–897. [Google Scholar] [CrossRef]
- Osman, A.; Barrios, F.X.; Gutierrez, P.M.; Williams, J.E.; Bailey, J. Psychometric properties of the beck depression inventory-ii in nonclinical adolescent samples. J. Clin. Psychol. 2008, 64, 83–102. [Google Scholar] [CrossRef]
- Vazquez Morejon, A.J.; Vazquez-Morejon Jimenez, R.; Zanin, G.B. Beck anxiety inventory: Psychometric characteristics in a sample from the clinical spanish population. Span. J. Psychol. 2014, 17, E76. [Google Scholar] [CrossRef]
- Harris, C.A.; D’Eon, J.L. Psychometric properties of the beck depression inventory--second edition (bdi-ii) in individuals with chronic pain. Pain 2008, 137, 609–622. [Google Scholar] [CrossRef]
- Dudeney, J.; Law, E.F.; Meyyappan, A.; Palermo, T.M.; Rabbitts, J.A. Evaluating the psychometric properties of the widespread pain index and the symptom severity scale in youth with painful conditions. Can. J. Pain 2019, 3, 137–147. [Google Scholar] [CrossRef] [Green Version]
- Burckhardt, C.S.; Clark, S.R.; Bennett, R.M. The fibromyalgia impact questionnaire: Development and validation. J. Rheumatol. 1991, 18, 728–733. [Google Scholar]
- Bennett, R.M. The fibromyalgia impact questionnaire (fiq): A review of its development, current version, operating characteristics and uses. Clin. Exp. Rheumatol. 2005, 23, S154–S162. [Google Scholar]
- Wolfe, F.; Smythe, H.A.; Yunus, M.B.; Bennett, R.M.; Bombardier, C.; Goldenberg, D.L.; Tugwell, P.; Campbell, S.M.; Abeles, M.; Clark, P.; et al. The american college of rheumatology 1990 criteria for the classification of fibromyalgia. Arthritis Rheum. 1990, 33, 160–172. [Google Scholar] [CrossRef]
- Nieto-Castanon, A. Handbook of Functional Connectivity Magnetic Resonance Imaging Methods in CONN; Hilbert Press: Boston, MA, USA, 2020. [Google Scholar]
- Iglesias, J.E.; Augustinack, J.C.; Nguyen, K.; Player, C.M.; Player, A.; Wright, M.; Roy, N.; Frosch, M.P.; McKee, A.C.; Wald, L.L.; et al. Alzheimer’s Disease Neuroimaging Initiative A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI. Neuroimage 2015, 115, 117–137. [Google Scholar] [CrossRef]
- Schaefer, A.; Kong, R.; Gordon, E.M.; Laumann, T.O.; Zuo, X.N.; Holmes, A.J.; Eickhoff, S.B.; Yeo, B.T.T. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity mri. Cereb. Cortex 2018, 28, 3095–3114. [Google Scholar] [CrossRef] [Green Version]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Guyon, S.; Weston, J.; Barnhill, S.; Vapnik, V. Gene selection for cancer classification using support vector machines. Mach. Learn. 2002, 46, 389–422. [Google Scholar] [CrossRef]
- Ravishankar, H.; Madhavan, R.; Mullick, R.; Shetty, T.; Marinelli, L.; Joel, S.E. Recursive feature elimination for biomarker discovery in resting-state functional connectivity. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 4071–4074. [Google Scholar]
- Abraham, A.; Pedregosa, F.; Eickenberg, M.; Gervais, P.; Mueller, A.; Kossaifi, J.; Gramfort, A.; Thirion, B.; Varoquaux, G. Machine learning for neuroimaging with scikit-learn. Front. Neuroinform. 2014, 8, 14. [Google Scholar] [CrossRef] [Green Version]
- Minka, T. Automatic choice of dimensionality for pca. NIPS 2000, 13, 598–604. [Google Scholar]
- Haq, A.U.; Li, J.P.; Memon, M.H.; Khan, J.; Malik, A.; Ahmad, T.; Ali, A.; Nazir, S.; Ahad, I.; Shahid, M. Feature selection based on l1-norm support vector machine and effective recognition system for parkinson’s disease using voice recordings. IEEE Access 2019, 7, 37718–37734. [Google Scholar] [CrossRef]
- Sun, P.; Wang, D.; Mok, V.C.; Shi, L. Comparison of feature selection methods and machine learning classifiers for radiomics analysis in glioma grading. IEEE Access 2019, 7, 102010–102020. [Google Scholar] [CrossRef]
- Gomez, O.V.; Herraiz, J.L.; Udias, J.M.; Haug, A.; Papp, L.; Cioni, D.; Neri, E. Analysis of cross-combinations of feature selection and machine-learning classification methods based on [(18)f]f-fdg pet/ct radiomic features for metabolic response prediction of metastatic breast cancer lesions. Cancers 2022, 14, 2922. [Google Scholar] [CrossRef]
- Pereira, F.; Mitchell, T.; Botvinick, M. Machine learning classifiers and fmri: A tutorial overview. Neuroimage 2009, 45, S199–S209. [Google Scholar] [CrossRef] [Green Version]
- Jitsuishi, T.; Yamaguchi, A. Searching for optimal machine learning model to classify mild cognitive impairment (mci) subtypes using multimodal mri data. Sci. Rep. 2022, 12, 4284. [Google Scholar] [CrossRef]
- Tahmassebi, A.; Gandomi, A.H.; Schulte, M.H.J.; Goudriaan, A.E.; Foo, S.Y.; Meyer-Baese, A. Optimized naive-bayes and decision tree approaches for fmri smoking cessation classification. Complexity 2018, 2018, 2740817. [Google Scholar] [CrossRef]
- Mandelkow, H.; de Zwart, J.A.; Duyn, J.H. Linear discriminant analysis achieves high classification accuracy for the bold fmri response to naturalistic movie stimuli. Front. Hum. Neurosci. 2016, 10, 128. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Wu, Q.; Zhang, J.; He, L.; Huang, J.; Zhang, J.; Huang, H.; Gong, Q. Discriminative analysis of migraine without aura: Using functional and structural mri with a multi-feature classification approach. PLoS ONE 2016, 11, e0163875. [Google Scholar] [CrossRef] [Green Version]
- Ojala, M.; Garriga, G.C. Permutation tests for studying classifier performance. J. Mach. Learn. Res. 2010, 11, 1833–1863. [Google Scholar]
- Kim, D.J.; Lim, M.; Kim, J.S.; Chung, C.K. Structural and functional thalamocortical connectivity study in female fibromyalgia. Sci. Rep. 2021, 11, 23323. [Google Scholar] [CrossRef]
- Shi, H.; Yuan, C.; Dai, Z.; Ma, H.; Sheng, L. Gray matter abnormalities associated with fibromyalgia: A meta-analysis of voxel-based morphometric studies. Semin. Arthritis Rheum. 2016, 46, 330–337. [Google Scholar] [CrossRef]
- Pamfil, C.; Choy, E.H.S. Functional mri in rheumatic diseases with a focus on fibromyalgia. Clin Exp Rheumatol 2018, 36 (Suppl. S114), 82–85. [Google Scholar]
- Provenzano, D.; Washington, S.D.; Rao, Y.J.; Loew, M.; Baraniuk, J. Machine Learning Detects Pattern of Differences in Functional Magnetic Resonance Imaging (fMRI) Data between Chronic Fatigue Syndrome (CFS) and Gulf War Illness (GWI). Brain Sci. 2020, 10, 456. [Google Scholar] [CrossRef]
- Provenzano, D.; Washington, S.D.; Baraniuk, J.N. A machine learning approach to the differentiation of functional magnetic resonance imaging data of chronic fatigue syndrome (cfs) from a sedentary control. Front. Comput. Neurosci. 2020, 14, 2. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Xiao, Z.; Wu, J. Functional connectivity-based classification of autism and control using svm-rfecv on rs-fmri data. Phys. Med. 2019, 65, 99–105. [Google Scholar] [CrossRef]
- Rashid, M.; Singh, H.; Goyal, V. The use of machine learning and deep learning algorithms in functional magnetic resonance imaging—a systematic review. Expert Syst. 2020, 37, 12644. [Google Scholar] [CrossRef]
- Santana, A.N.; Cifre, I.; de Santana, C.N.; Montoya, P. Using deep learning and resting-state fmri to classify chronic pain conditions. Front. Neurosci. 2019, 13, 1313. [Google Scholar] [CrossRef]
- Tu, Y.; Zeng, F.; Lan, L.; Li, Z.; Maleki, N.; Liu, B.; Chen, J.; Wang, C.; Park, J.; Lang, C.; et al. An fmri-based neural marker for migraine without aura. Neurology 2020, 94, e741–e751. [Google Scholar] [CrossRef]
- Ceko, M.; Bushnell, M.C.; Fitzcharles, M.A.; Schweinhardt, P. Fibromyalgia interacts with age to change the brain. Neuroimage Clin. 2013, 3, 249–260. [Google Scholar] [CrossRef] [Green Version]
- Coppieters, I.; Meeus, M.; Kregel, J.; Caeyenberghs, K.; De Pauw, R.; Goubert, D.; Cagnie, B. Relations between brain alterations and clinical pain measures in chronic musculoskeletal pain: A systematic review. J. Pain 2016, 17, 949–962. [Google Scholar] [CrossRef] [Green Version]
- Wood, P.B. Variations in brain gray matter associated with chronic pain. Curr. Rheumatol. Rep. 2010, 12, 462–469. [Google Scholar] [CrossRef]
- Sundermann, B.; Dehghan Nayyeri, M.; Pfleiderer, B.; Stahlberg, K.; Junke, L.; Baie, L.; Dieckmann, R.; Liem, D.; Happe, T.; Burgmer, M. Subtle changes of gray matter volume in fibromyalgia reflect chronic musculoskeletal pain rather than disease-specific effects. Eur. J. Neurosci. 2019, 50, 3958–3967. [Google Scholar] [CrossRef]
- Lee, J.; Mawla, I.; Kim, J.; Loggia, M.L.; Ortiz, A.; Jung, C.; Chan, S.T.; Gerber, J.; Schmithorst, V.J.; Edwards, R.R.; et al. Machine learning-based prediction of clinical pain using multimodal neuroimaging and autonomic metrics. Pain 2019, 160, 550–560. [Google Scholar] [CrossRef]
- Sylvester, C.M.; Corbetta, M.; Raichle, M.E.; Rodebaugh, T.L.; Schlaggar, B.L.; Sheline, Y.I.; Zorumski, C.F.; Lenze, E.J. Functional network dysfunction in anxiety and anxiety disorders. Trends Neurosci. 2012, 35, 527–535. [Google Scholar] [CrossRef] [Green Version]
- Ceko, M.; Frangos, E.; Gracely, J.; Richards, E.; Wang, B.; Schweinhardt, P.; Catherine Bushnell, M. Default mode network changes in fibromyalgia patients are largely dependent on current clinical pain. Neuroimage 2020, 216, 116877. [Google Scholar] [CrossRef]
- De Ridder, D.; Maciaczyk, J.; Vanneste, S. The future of neuromodulation: Smart neuromodulation. Expert Rev. Med. Devices 2021, 18, 307–317. [Google Scholar] [CrossRef]
- Shen, W.; Tu, Y.; Gollub, R.L.; Ortiz, A.; Napadow, V.; Yu, S.; Wilson, G.; Park, J.; Lang, C.; Jung, M.; et al. Visual network alterations in brain functional connectivity in chronic low back pain: A resting state functional connectivity and machine learning study. Neuroimage Clin. 2019, 22, 101775. [Google Scholar] [CrossRef]
FM (n = 26) | Control (n = 30) | p-Value | |
---|---|---|---|
Age | 49.6 ± 11 | 52.1 ± 10.5 | 0.393 |
Gender (Female/male) | 25/1 | 28/2 | 1.000 |
BMI (kg/m2) | 21.6 ± 3.8 | 23.2 ± 4.5 | 0.183 |
PSQI | 11.7 ± 3.5 | 5.3 ± 2.4 | 2.1 × 10−8 |
BAI | 19.2 ± 13.8 | 4.1 ± 4.2 | 5.5 × 10−7 |
BDI | 18.7 ± 12.9 | 4.6 ± 4.5 | 4.3 × 10−7 |
VAS | 5.6 ± 2.3 | - | - |
WPI | 8.9 ± 4.5 | - | - |
SSS | 6.9 ± 2.8 | - | - |
FIQ | 53.1 ± 16.0 | - | - |
PPT (kg/cm2) | 2.37 ± 1.14 | - | - |
Selection Method | Classifier | Accuracy | Sensitivity | Specificity | F1-Score | ROC_AUC | p-Value (Permutation Test) |
---|---|---|---|---|---|---|---|
RFE (14 features) | SVM | 0.89 | 0.85 | 0.93 | 0.88 | 0.93 | 9.9 × 10−4 |
LR | 0.88 | 0.85 | 0.90 | 0.86 | 0.94 | 9.9 × 10−4 | |
KNN | 0.79 | 0.81 | 0.77 | 0.78 | 0.83 | 9.9 × 10−4 | |
RF | 0.77 | 0.81 | 0.73 | 0.76 | 0.83 | 9.9 × 10−4 | |
LDA | 0.84 | 0.85 | 0.83 | 0.83 | 0.93 | 9.9 × 10−4 | |
GNB | 0.79 | 0.81 | 0.77 | 0.78 | 0.89 | 9.9 × 10−4 | |
Univar (11 features) | SVM | 0.77 | 0.69 | 0.83 | 0.73 | 0.80 | 9.9 × 10−4 |
LR | 0.82 | 0.77 | 0.87 | 0.80 | 0.87 | 9.9 × 10−4 | |
KNN | 0.73 | 0.73 | 0.73 | 0.72 | 0.80 | 0.002 | |
RF | 0.71 | 0.69 | 0.73 | 0.69 | 0.74 | 0.002 | |
LDA | 0.73 | 0.69 | 0.77 | 0.71 | 0.82 | 9.9 × 10−4 | |
GNB | 0.75 | 0.77 | 0.73 | 0.74 | 0.85 | 9.9 × 10−4 | |
PCA (44 components) | SVM | 0.59 | 0.54 | 0.63 | 0.55 | 0.17 | 0.175 |
LR | 0.55 | 0.54 | 0.57 | 0.53 | 0.56 | 0.283 | |
KNN | 0.61 | 0.65 | 0.57 | 0.61 | 0.61 | 0.089 | |
RF | 0.55 | 0.46 | 0.63 | 0.49 | 0.55 | 0.266 | |
LDA | 0.45 | 0.42 | 0.47 | 0.42 | 0.45 | 0.753 | |
GNB | 0.39 | 0.31 | 0.47 | 0.32 | 0.32 | 0.889 | |
L1-based (2 features) | SVM | 0.68 | 0.85 | 0.53 | 0.71 | 0.63 | 0.008 |
LR | 0.66 | 0.65 | 0.67 | 0.64 | 0.68 | 0.013 | |
KNN | 0.61 | 0.58 | 0.63 | 0.58 | 0.61 | 0.110 | |
RF | 0.64 | 0.62 | 0.67 | 0.62 | 0.64 | 0.027 | |
LDA | 0.64 | 0.65 | 0.63 | 0.63 | 0.67 | 0.024 | |
GNB | 0.66 | 0.69 | 0.63 | 0.65 | 0.69 | 0.018 |
Selection Method | Classifier | Accuracy | Sensitivity | Specificity | F1-Score | ROC_AUC | p-Value (Permutation Test) |
---|---|---|---|---|---|---|---|
RFE (9 features) | SVM | 0.82 | 0.85 | 0.80 | 0.81 | 0.89 | 9.9 × 10−4 |
LR | 0.86 | 0.85 | 0.87 | 0.85 | 0.86 | 9.9 × 10−4 | |
KNN | 0.79 | 0.85 | 0.73 | 0.79 | 0.79 | 0.002 | |
RF | 0.71 | 0.73 | 0.70 | 0.70 | 0.64 | 0.217 | |
LDA | 0.82 | 0.81 | 0.83 | 0.81 | 0.89 | 9.9 × 10−4 | |
GNB | 0.70 | 0.65 | 0.73 | 0.67 | 0.78 | 0.004 | |
Univar (96 features) | SVM | 0.71 | 0.73 | 0.70 | 0.70 | 0.76 | 0.006 |
LR | 0.77 | 0.73 | 0.80 | 0.75 | 0.76 | 9.9 × 10−4 | |
KNN | 0.63 | 0.81 | 0.47 | 0.67 | 0.60 | 0.415 | |
RF | 0.66 | 0.62 | 0.70 | 0.63 | 0.58 | 9.9 × 10−4 | |
LDA | 0.57 | 0.73 | 0.43 | 0.61 | 0.66 | 0.225 | |
GNB | 0.55 | 0.58 | 0.53 | 0.55 | 0.62 | 0.327 | |
PCA (44 components) | SVM | 0.59 | 0.54 | 0.63 | 0.55 | 0.24 | 0.146 |
LR | 0.55 | 0.54 | 0.57 | 0.53 | 0.59 | 0.285 | |
KNN | 0.50 | 0.85 | 0.20 | 0.61 | 0.44 | 0.408 | |
RF | 0.53 | 0.54 | 0.53 | 0.52 | 0.53 | 0.250 | |
LDA | 0.38 | 0.42 | 0.33 | 0.39 | 0.40 | 0.948 | |
GNB | 0.46 | 0.42 | 0.50 | 0.42 | 0.46 | 0.644 | |
L1-based (1 feature) | SVM | 0.70 | 0.62 | 0.77 | 0.65 | 0.55 | 0.007 |
LR | 0.70 | 0.62 | 0.67 | 0.65 | 0.64 | 9.9 × 10−4 | |
KNN | 0.61 | 0.73 | 0.50 | 0.63 | 0.58 | 0.096 | |
RF | 0.48 | 0.38 | 0.57 | 0.41 | 0.46 | 0.618 | |
LDA | 0.70 | 0.62 | 0.77 | 0.65 | 0.64 | 0.002 | |
GNB | 0.61 | 0.50 | 0.70 | 0.54 | 0.59 | 0.071 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thanh Nhu, N.; Chen, D.Y.-T.; Kang, J.-H. Identification of Resting-State Network Functional Connectivity and Brain Structural Signatures in Fibromyalgia Using a Machine Learning Approach. Biomedicines 2022, 10, 3002. https://doi.org/10.3390/biomedicines10123002
Thanh Nhu N, Chen DY-T, Kang J-H. Identification of Resting-State Network Functional Connectivity and Brain Structural Signatures in Fibromyalgia Using a Machine Learning Approach. Biomedicines. 2022; 10(12):3002. https://doi.org/10.3390/biomedicines10123002
Chicago/Turabian StyleThanh Nhu, Nguyen, David Yen-Ting Chen, and Jiunn-Horng Kang. 2022. "Identification of Resting-State Network Functional Connectivity and Brain Structural Signatures in Fibromyalgia Using a Machine Learning Approach" Biomedicines 10, no. 12: 3002. https://doi.org/10.3390/biomedicines10123002
APA StyleThanh Nhu, N., Chen, D. Y.-T., & Kang, J.-H. (2022). Identification of Resting-State Network Functional Connectivity and Brain Structural Signatures in Fibromyalgia Using a Machine Learning Approach. Biomedicines, 10(12), 3002. https://doi.org/10.3390/biomedicines10123002