Evaluation of Bodily Pain Associated with Polycystic Ovary Syndrome: A Review of Health-Related Quality of Life and Potential Risk Factors
Abstract
:1. Introduction
1.1. PCOS
1.2. Causes of PCOS
1.3. Health-Related Quality of Life and Pain Expression in Patients with PCOS
2. Review of Studies on Pain Perception in Patients with PCOS
2.1. Literature Searching
2.2. Pain-Related Results from HRQoL Surveys
2.3. Effects of Obesity on Pain as Reported by HRQoL Surveys
2.4. Effects of Infertility on Pain as Reported by HRQoL Surveys
2.5. Effects of Mental Status on Pain as Reported by HRQoL Surveys
2.6. Increased Pain Threshold among Lean Patients with PCOS
3. Potential Exacerbating Factors for Pain in Patients with PCOS
3.1. Effects of Low-Grade Inflammation on PCOS
3.2. Effects of Adipocytes in Promoting Inflammation
3.3. Effects of Inflammation Cytokines and Proteins on PCOS-Related Pain
3.4. Effects of Reactive Oxygen Species on PCOS-Induced Pain
3.5. Effects of IR on PCOS-Induced Pain
4. Summary and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deswal, R.; Narwal, V.; Dang, A.; Pundir, C.S. The Prevalence of Polycystic Ovary Syndrome: A Brief Systematic Review. J. Hum. Reprod. Sci. 2020, 13, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Dennett, C.C.; Simon, J. The role of polycystic ovary syndrome in reproductive and metabolic health: Overview and approaches for treatment. Diabetes Spectr. 2015, 28, 116–120. [Google Scholar] [CrossRef] [Green Version]
- Balen, A.H.; Morley, L.C.; Misso, M.; Franks, S.; Legro, R.S.; Wijeyaratne, C.N.; Stener-Victorin, E.; Fauser, B.C.; Norman, R.J.; Teede, H. The management of anovulatory infertility in women with polycystic ovary syndrome: An analysis of the evidence to support the development of global WHO guidance. Hum. Reprod. Update 2016, 22, 687–708. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.J.; Ullah, A.; Basit, S. Genetic Basis of Polycystic Ovary Syndrome (PCOS): Current Perspectives. Appl. Clin. Genet. 2019, 12, 249–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, S. Polycystic ovary syndrome (PCOS), an inflammatory, systemic, lifestyle endocrinopathy. J. Steroid Biochem. Mol. Biol. 2018, 182, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Ye, W.; Xie, T.; Song, Y.; Zhou, L. The role of androgen and its related signals in PCOS. J. Cell. Mol. Med. 2021, 25, 1825–1837. [Google Scholar] [CrossRef] [PubMed]
- Szeliga, A.; Rudnicka, E.; Maciejewska-Jeske, M.; Kucharski, M.; Kostrzak, A.; Hajbos, M.; Niwczyk, O.; Smolarczyk, R.; Meczekalski, B. Neuroendocrine Determinants of Polycystic Ovary Syndrome. Int. J. Environ. Res. Public Health 2022, 19, 3089. [Google Scholar] [CrossRef]
- Chen, X.; Jia, X.; Qiao, J.; Guan, Y.; Kang, J. Adipokines in reproductive function: A link between obesity and polycystic ovary syndrome. J. Mol. Endocrinol. 2013, 50, R21–R37. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wu, D.; Guo, H.; Li, M. Hyperandrogenemia and insulin resistance: The chief culprit of polycystic ovary syndrome. Life Sci. 2019, 236, 116940. [Google Scholar] [CrossRef]
- Dapas, M.; Lin, F.T.J.; Nadkarni, G.N.; Sisk, R.; Legro, R.S.; Urbanek, M.; Hayes, M.G.; Dunaif, A. Distinct subtypes of polycystic ovary syndrome with novel genetic associations: An unsupervised, phenotypic clustering analysis. PLoS Med. 2020, 17, e1003132. [Google Scholar] [CrossRef]
- Teede, H.; Deeks, A.; Moran, L. Polycystic ovary syndrome: A complex condition with psychological, reproductive and metabolic manifestations that impacts on health across the lifespan. BMC Med. 2010, 8, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Revicki, D.A.; Kleinman, L.; Cella, D. A history of health-related quality of life outcomes in psychiatry. Dialogues Clin. Neurosci. 2014, 16, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Ware, J.E., Jr.; Sherbourne, C.D. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med. Care 1992, 30, 473–483. [Google Scholar] [CrossRef] [PubMed]
- McHorney, C.A.; Ware, J.E., Jr.; Raczek, A.E. The MOS 36-Item Short-Form Health Survey (SF-36): II. Psychometric and clinical tests of validity in measuring physical and mental health constructs. Med. Care 1993, 31, 247–263. [Google Scholar] [CrossRef] [Green Version]
- Martin, M.L.; Halling, K.; Eek, D.; Krohe, M.; Paty, J. Understanding polycystic ovary syndrome from the patient perspective: A concept elicitation patient interview study. Health Qual. Life Outcomes 2017, 15, 162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elsenbruch, S.; Hahn, S.; Kowalsky, D.; Offner, A.H.; Schedlowski, M.; Mann, K.; Janssen, O.E. Quality of life, psychosocial well-being, and sexual satisfaction in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2003, 88, 5801–5807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hahn, S.; Janssen, O.E.; Tan, S.; Pleger, K.; Mann, K.; Schedlowski, M.; Kimmig, R.; Benson, S.; Balamitsa, E.; Elsenbruch, S. Clinical and psychological correlates of quality-of-life in polycystic ovary syndrome. Eur. J. Endocrinol. 2005, 153, 853–860. [Google Scholar] [CrossRef] [Green Version]
- Coffey, S.; Bano, G.; Mason, H.D. Health-related quality of life in women with polycystic ovary syndrome: A comparison with the general population using the Polycystic Ovary Syndrome Questionnaire (PCOSQ) and the Short Form-36 (SF-36). Gynecol. Endocrinol. 2006, 22, 80–86. [Google Scholar] [CrossRef]
- Drosdzol, A.; Skrzypulec, V.; Mazur, B.; Pawlinska-Chmara, R. Quality of life and marital sexual satisfaction in women with polycystic ovary syndrome. Folia Histochem. Et Cytobiol. 2007, 45, S93–S97. [Google Scholar]
- Alvarez-Blasco, F.; Luque-Ramirez, M.; Escobar-Morreale, H.F. Obesity impairs general health-related quality of life (HR-QoL) in premenopausal women to a greater extent than polycystic ovary syndrome (PCOS). Clin. Endocrinol. 2010, 73, 595–601. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Yu Ng, E.H.; Stener-Victorin, E.; Hou, L.; Wu, T.; Han, F.; Wu, X. Polycystic ovary syndrome is associated with negatively variable impacts on domains of health-related quality of life: Evidence from a meta-analysis. Fertil. Steril. 2011, 96, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Acmaz, G.; Albayrak, E.; Acmaz, B.; Baser, M.; Soyak, M.; Zararsiz, G.; IpekMuderris, I. Level of anxiety, depression, self-esteem, social anxiety, and quality of life among the women with polycystic ovary syndrome. Sci. World J. 2013, 2013, 851815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borghi, L.; Leone, D.; Vegni, E.; Galiano, V.; Lepadatu, C.; Sulpizio, P.; Garzia, E. Psychological distress, anger and quality of life in polycystic ovary syndrome: Associations with biochemical, phenotypical andsocio-demographic factors. J. Psychosom. Obstet. Gynecol. 2018, 39, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Angin, P.; Yoldemir, T.; Atasayan, K. Quality of life among infertile PCOS patients. Arch. Gynecol. Obstet. 2019, 300, 461–467. [Google Scholar] [CrossRef]
- Moran-Sanchez, I.; Adoamnei, E.; Sanchez-Ferrer, M.L.; Prieto-Sanchez, M.T.; Arense-Gonzalo, J.J.; Carmona-Barnosi, A.; Hernandez-Penalver, A.I.; Mendiola, J.; Torres-Cantero, A.M. Assessment of Optimism in Women with Polycystic Ovary Syndrome: A Case Control-Study. Int. J. Environ. Res. Public Health 2021, 18, 2352. [Google Scholar] [CrossRef]
- Naumova, I.; Castelo-Branco, C.; Kasterina, I.; Casals, G. Quality of Life in Infertile Women with Polycystic Ovary Syndrome: A Comparative Study. Reprod. Sci. 2021, 28, 1901–1909. [Google Scholar] [CrossRef]
- Sarahian, N.; Noroozzadeh, M.; Saei Ghare Naz, M.; Eskandari-Roozbahani, N.; Mahboobifard, F.; Ramezani Tehrani, F. Is there any association between migraine headache and polycystic ovary syndrome (PCOS)? A review article. Mol. Biol. Rep. 2022, 49, 595–603. [Google Scholar] [CrossRef]
- Kialka, M.; Milewicz, T.; Sztefko, K.; Rogatko, I.; Majewska, R. Metformin increases pressure pain threshold in lean women with polycystic ovary syndrome. Drug Des. Dev. Ther. 2016, 10, 2483–2490. [Google Scholar] [CrossRef] [Green Version]
- Kialka, M.; Milewicz, T.; Mrozinska, S.; Rogatko, I.; Sztefko, K.; Majewska, R. Pressure pain threshold and beta-endorphins plasma level are higher in lean polycystic ovary syndrome women. Minerva Endocrinol. 2017, 42, 297–305. [Google Scholar] [CrossRef]
- Amiri, M.; Alavinia, M.; Singh, M.; Kumbhare, D. Pressure Pain Threshold in Patients With Chronic Pain: A Systematic Review and Meta-Analysis. Am. J. Phys. Med. Rehabil. 2021, 100, 656–674. [Google Scholar] [CrossRef]
- Bruehl, S.; Burns, J.W.; Chung, O.Y.; Chont, M. What do plasma beta-endorphin levels reveal about endogenous opioid analgesic function? Eur. J. Pain 2012, 16, 370–380. [Google Scholar] [CrossRef] [PubMed]
- Regidor, P.A.; de la Rosa, X.; Muller, A.; Mayr, M.; Gonzalez Santos, F.; Gracia Banzo, R.; Rizo, J.M. PCOS: A Chronic Disease That Fails to Produce Adequately Specialized Pro-Resolving Lipid Mediators (SPMs). Biomedicines 2022, 10, 456. [Google Scholar] [CrossRef] [PubMed]
- Dimitriadis, G.K.; Kyrou, I.; Randeva, H.S. Polycystic Ovary Syndrome as a Proinflammatory State: The Role of Adipokines. Curr. Pharm. Des. 2016, 22, 5535–5546. [Google Scholar] [CrossRef] [PubMed]
- Escobar-Morreale, H.F.; Luque-Ramirez, M.; Gonzalez, F. Circulating inflammatory markers in polycystic ovary syndrome: A systematic review and metaanalysis. Fertil. Steril. 2011, 95, 1048–1058.E2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aboeldalyl, S.; James, C.; Seyam, E.; Ibrahim, E.M.; Shawki, H.E.; Amer, S. The Role of Chronic Inflammation in Polycystic Ovarian Syndrome-A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2021, 22, 2734. [Google Scholar] [CrossRef]
- Watkins, L.R.; Milligan, E.D.; Maier, S.F. Glial proinflammatory cytokines mediate exaggerated pain states: Implications for clinical pain. Adv. Exp. Med. Biol. 2003, 521, 1–21. [Google Scholar]
- Voscopoulos, C.; Lema, M. When does acute pain become chronic? Br. J. Anaesth. 2010, 105, i69–i85. [Google Scholar] [CrossRef] [Green Version]
- Baral, P.; Udit, S.; Chiu, I.M. Pain and immunity: Implications for host defence. Nat. Rev. Immunol. 2019, 19, 433–447. [Google Scholar] [CrossRef]
- Barber, T.M.; Franks, S. Genetics of polycystic ovary syndrome. Polycystic Ovary Syndr. 2013, 40, 28–39. [Google Scholar] [CrossRef]
- Rudnicka, E.; Kunicki, M.; Suchta, K.; Machura, P.; Grymowicz, M.; Smolarczyk, R. Inflammatory Markers in Women with Polycystic Ovary Syndrome. BioMed Res. Int. 2020, 2020, 4092470. [Google Scholar] [CrossRef] [Green Version]
- Duleba, A.J.; Dokras, A. Is PCOS an inflammatory process? Fertil. Steril. 2012, 97, 7–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sima, C.; Van Dyke, T.E. Therapeutic Targets for Management of Periodontitis and Diabetes. Curr. Pharm. Des. 2016, 22, 2216–2237. [Google Scholar] [CrossRef]
- Spritzer, P.M.; Lecke, S.B.; Satler, F.; Morsch, D.M. Adipose tissue dysfunction, adipokines, and low-grade chronic inflammation in polycystic ovary syndrome. Reproduction 2015, 149, R219–R227. [Google Scholar] [CrossRef] [Green Version]
- Lumeng, C.N.; Bodzin, J.L.; Saltiel, A.R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Investig. 2007, 117, 175–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Huang, F. N-3 Polyunsaturated Fatty Acids and Inflammation in Obesity: Local Effect and Systemic Benefit. BioMed Res. Int. 2015, 2015, 581469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rojas, J.; Chavez, M.; Olivar, L.; Rojas, M.; Morillo, J.; Mejias, J.; Calvo, M.; Bermudez, V. Polycystic ovary syndrome, insulin resistance, and obesity: Navigating the pathophysiologic labyrinth. Int. J. Reprod. Med. 2014, 2014, 719050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, J.E.; Gabler, N.K.; Walker-Daniels, J.; Spurlock, M.E. Tlr-4 deficiency selectively protects against obesity induced by diets high in saturated fat. Obesity 2008, 16, 1248–1255. [Google Scholar] [CrossRef]
- Schaeffler, A.; Gross, P.; Buettner, R.; Bollheimer, C.; Buechler, C.; Neumeier, M.; Kopp, A.; Schoelmerich, J.; Falk, W. Fatty acid-induced induction of Toll-like receptor-4/nuclear factor-kappaB pathway in adipocytes links nutritional signalling with innate immunity. Immunology 2009, 126, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.W.; Lee, M.; Oh, K.J. Adipose Tissue-Derived Signatures for Obesity and Type 2 Diabetes: Adipokines, Batokines and MicroRNAs. J. Clin. Med. 2019, 8, 854. [Google Scholar] [CrossRef] [Green Version]
- Toulis, K.A.; Goulis, D.G.; Farmakiotis, D.; Georgopoulos, N.A.; Katsikis, I.; Tarlatzis, B.C.; Papadimas, I.; Panidis, D. Adiponectin levels in women with polycystic ovary syndrome: A systematic review and a meta-analysis. Hum. Reprod. Update 2009, 15, 297–307. [Google Scholar] [CrossRef]
- Li, S.; Schwartz, A.V.; LaValley, M.P.; Wang, N.; Desai, N.; Sun, X.; Neogi, T.; Nevitt, M.; Lewis, C.E.; Guermazi, A.; et al. Association of Visceral Adiposity With Pain but Not Structural Osteoarthritis. Arthritis Rheumatol. 2020, 72, 1103–1110. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Ma, Y.; Wang, J.; Nie, L.; Hou, X.; Wu, W.; Zhang, X.; Tian, Y. Leptin Contributes to Neuropathic Pain via Extrasynaptic NMDAR-nNOS Activation. Mol. Neurobiol. 2021, 58, 1185–1195. [Google Scholar] [CrossRef] [PubMed]
- Younger, J.; Kapphahn, K.; Brennan, K.; Sullivan, S.D.; Stefanick, M.L. Association of Leptin with Body Pain in Women. J. Women’s Health 2016, 25, 752–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hozumi, J.; Sumitani, M.; Nishizawa, D.; Nagashima, M.; Ikeda, K.; Abe, H.; Kato, R.; Kusakabe, Y.; Yamada, Y.; Japanese Translational Research-Cancer Pain Research Group. Resistin Is a Novel Marker for Postoperative Pain Intensity. Anesth. Analg. 2019, 128, 563–568. [Google Scholar] [CrossRef]
- Dehghani, S.; Alipoor, E.; Salimzadeh, A.; Yaseri, M.; Hosseini, M.; Feinle-Bisset, C.; Hosseinzadeh-Attar, M.J. The effect of a garlic supplement on the pro-inflammatory adipocytokines, resistin and tumor necrosis factor-alpha, and on pain severity, in overweight or obese women with knee osteoarthritis. Phytomedicine 2018, 48, 70–75. [Google Scholar] [CrossRef]
- Rubino, E.; Vacca, A.; Govone, F.; Gai, A.; Boschi, S.; Zucca, M.; De Martino, P.; Gentile, S.; Pinessi, L.; Rainero, I. Investigating the role of adipokines in chronic migraine. Cephalalgia 2017, 37, 1067–1073. [Google Scholar] [CrossRef]
- Darwish Iel, S.; Dessouky, I.S. Does Serum Visfatin Represent a Biochemical Marker to an Experimental Peripheral Neuropathic Pain in Mice. Pharmacology 2015, 96, 248–252. [Google Scholar] [CrossRef]
- Bas, S.; Finckh, A.; Puskas, G.J.; Suva, D.; Hoffmeyer, P.; Gabay, C.; Lubbeke, A. Adipokines correlate with pain in lower limb osteoarthritis: Different associations in hip and knee. Int. Orthop. 2014, 38, 2577–2583. [Google Scholar] [CrossRef]
- Sun, L.; Li, H.; Tai, L.W.; Gu, P.; Cheung, C.W. Adiponectin regulates thermal nociception in a mouse model of neuropathic pain. Br. J. Anaesth. 2018, 120, 1356–1367. [Google Scholar] [CrossRef] [Green Version]
- Iannitti, T.; Graham, A.; Dolan, S. Adiponectin-Mediated Analgesia and Anti-Inflammatory Effects in Rat. PLoS ONE 2015, 10, e0136819. [Google Scholar] [CrossRef]
- Turtay, M.G.; Karabas, M.; Parlakpinar, H.; Colak, C.; Sagir, M. The analgesic effect of apelin-13 and its mechanism of action within the nitric oxide and serotonin pathways. Hippokratia 2015, 19, 319–323. [Google Scholar] [PubMed]
- Xu, N.; Wang, H.; Fan, L.; Chen, Q. Supraspinal administration of apelin-13 induces antinociception via the opioid receptor in mice. Peptides 2009, 30, 1153–1157. [Google Scholar] [CrossRef] [PubMed]
- Woolf, C.J.; Allchorne, A.; Safieh-Garabedian, B.; Poole, S. Cytokines, nerve growth factor and inflammatory hyperalgesia: The contribution of tumour necrosis factor alpha. Br. J. Pharmacol. 1997, 121, 417–424. [Google Scholar] [CrossRef] [Green Version]
- Cunha, F.Q.; Poole, S.; Lorenzetti, B.B.; Ferreira, S.H. The pivotal role of tumour necrosis factor alpha in the development of inflammatory hyperalgesia. Br. J. Pharmacol. 1992, 107, 660–664. [Google Scholar] [CrossRef]
- Perkins, M.N.; Kelly, D. Interleukin-1 beta induced-desArg9bradykinin-mediated thermal hyperalgesia in the rat. Neuropharmacology 1994, 33, 657–660. [Google Scholar] [CrossRef] [PubMed]
- Creange, A.; Barlovatz-Meimon, G.; Gherardi, R.K. Cytokines and peripheral nerve disorders. Eur. Cytokine Netw. 1997, 8, 145–151. [Google Scholar] [PubMed]
- Wagner, R.; Myers, R.R. Endoneurial injection of TNF-alpha produces neuropathic pain behaviors. Neuroreport 1996, 7, 2897–2901. [Google Scholar] [CrossRef]
- Zhang, J.M.; Li, H.; Liu, B.; Brull, S.J. Acute topical application of tumor necrosis factor alpha evokes protein kinase A-dependent responses in rat sensory neurons. J. Neurophysiol. 2002, 88, 1387–1392. [Google Scholar] [CrossRef]
- Sorkin, L.S.; Xiao, W.H.; Wagner, R.; Myers, R.R. Tumour necrosis factor-alpha induces ectopic activity in nociceptive primary afferent fibres. Neuroscience 1997, 81, 255–262. [Google Scholar] [CrossRef]
- White, F.A.; Sun, J.; Waters, S.M.; Ma, C.; Ren, D.; Ripsch, M.; Steflik, J.; Cortright, D.N.; Lamotte, R.H.; Miller, R.J. Excitatory monocyte chemoattractant protein-1 signaling is up-regulated in sensory neurons after chronic compression of the dorsal root ganglion. Proc. Natl. Acad. Sci. USA 2005, 102, 14092–14097. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.B.; Tran, P.B.; Gillard, S.E.; Hurley, R.W.; Hammond, D.L.; Miller, R.J. Chemokines and glycoprotein120 produce pain hypersensitivity by directly exciting primary nociceptive neurons. J. Neurosci. 2001, 21, 5027–5035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.H.; Yang, B.; Donnelly, D.F.; Ma, C.; LaMotte, R.H. MCP-1 enhances excitability of nociceptive neurons in chronically compressed dorsal root ganglia. J. Neurophysiol. 2006, 96, 2189–2199. [Google Scholar] [CrossRef] [PubMed]
- Klein, M.A.; Moller, J.C.; Jones, L.L.; Bluethmann, H.; Kreutzberg, G.W.; Raivich, G. Impaired neuroglial activation in interleukin-6 deficient mice. Glia 1997, 19, 227–233. [Google Scholar] [CrossRef]
- Ramer, M.S.; Murphy, P.G.; Richardson, P.M.; Bisby, M.A. Spinal nerve lesion-induced mechanoallodynia and adrenergic sprouting in sensory ganglia are attenuated in interleukin-6 knockout mice. Pain 1998, 78, 115–121. [Google Scholar] [CrossRef]
- Zhou, Y.Q.; Liu, Z.; Liu, Z.H.; Chen, S.P.; Li, M.; Shahveranov, A.; Ye, D.W.; Tian, Y.K. Interleukin-6: An emerging regulator of pathological pain. J. NeuroInflamm. 2016, 13, 141. [Google Scholar] [CrossRef] [Green Version]
- Copray, J.C.; Mantingh, I.; Brouwer, N.; Biber, K.; Kust, B.M.; Liem, R.S.; Huitinga, I.; Tilders, F.J.; Van Dam, A.M.; Boddeke, H.W. Expression of interleukin-1 beta in rat dorsal root ganglia. J. Neuroimmunol. 2001, 118, 203–211. [Google Scholar] [CrossRef]
- Watkins, L.R.; Wiertelak, E.P.; Goehler, L.E.; Smith, K.P.; Martin, D.; Maier, S.F. Characterization of cytokine-induced hyperalgesia. Brain Res. 1994, 654, 15–26. [Google Scholar] [CrossRef]
- Jeanjean, A.P.; Moussaoui, S.M.; Maloteaux, J.M.; Laduron, P.M. Interleukin-1 beta induces long-term increase of axonally transported opiate receptors and substance P. Neuroscience 1995, 68, 151–157. [Google Scholar] [CrossRef]
- Schweizer, A.; Feige, U.; Fontana, A.; Muller, K.; Dinarello, C.A. Interleukin-1 enhances pain reflexes. Mediation through increased prostaglandin E2 levels. Agents Actions 1988, 25, 246–251. [Google Scholar] [CrossRef]
- Goyal, M.; Dawood, A.S. Debates Regarding Lean Patients with Polycystic Ovary Syndrome: A Narrative Review. J. Hum. Reprod. Sci. 2017, 10, 154–161. [Google Scholar] [CrossRef]
- Gonzalez, F.; Minium, J.; Rote, N.S.; Kirwan, J.P. Hyperglycemia alters tumor necrosis factor-alpha release from mononuclear cells in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2005, 90, 5336–5342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez, F.; Rote, N.S.; Minium, J.; Kirwan, J.P. Reactive oxygen species-induced oxidative stress in the development of insulin resistance and hyperandrogenism in polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2006, 91, 336–340. [Google Scholar] [CrossRef]
- Gonzalez, F.; Rote, N.S.; Minium, J.; Kirwan, J.P. Increased activation of nuclear factor kappaB triggers inflammation and insulin resistance in polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2006, 91, 1508–1512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez, F.; Rote, N.S.; Minium, J.; Kirwan, J.P. In vitro evidence that hyperglycemia stimulates tumor necrosis factor-alpha release in obese women with polycystic ovary syndrome. J. Endocrinol. 2006, 188, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Carmina, E.; Bucchieri, S.; Esposito, A.; Del Puente, A.; Mansueto, P.; Orio, F.; Di Fede, G.; Rini, G. Abdominal fat quantity and distribution in women with polycystic ovary syndrome and extent of its relation to insulin resistance. J. Clin. Endocrinol. Metab. 2007, 92, 2500–2505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pepys, M.B.; Hirschfield, G.M. C-reactive protein: A critical update. J. Clin. Investig. 2003, 111, 1805–1812. [Google Scholar] [CrossRef] [PubMed]
- Lau, D.C.; Dhillon, B.; Yan, H.; Szmitko, P.E.; Verma, S. Adipokines: Molecular links between obesity and atheroslcerosis. Am. J. Physiol. -Heart Circ. Physiol. 2005, 288, H2031–H2041. [Google Scholar] [CrossRef] [Green Version]
- Hughan, K.S.; Tfayli, H.; Warren-Ulanch, J.G.; Barinas-Mitchell, E.; Arslanian, S.A. Early Biomarkers of Subclinical Atherosclerosis in Obese Adolescent Girls with Polycystic Ovary Syndrome. J. Pediatr. 2016, 168, 104–111.e101. [Google Scholar] [CrossRef] [Green Version]
- Afari, N.; Mostoufi, S.; Noonan, C.; Poeschla, B.; Succop, A.; Chopko, L.; Strachan, E. C-reactive protein and pain sensitivity: Findings from female twins. Ann. Behav. Med. 2011, 42, 277–283. [Google Scholar] [CrossRef] [Green Version]
- Petzke, F.; Clauw, D.J.; Ambrose, K.; Khine, A.; Gracely, R.H. Increased pain sensitivity in fibromyalgia: Effects of stimulus type and mode of presentation. Pain 2003, 105, 403–413. [Google Scholar] [CrossRef]
- Giesecke, T.; Gracely, R.H.; Grant, M.A.; Nachemson, A.; Petzke, F.; Williams, D.A.; Clauw, D.J. Evidence of augmented central pain processing in idiopathic chronic low back pain. Arthritis Rheum. 2004, 50, 613–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, H.R.; Song, I.A.; Oh, T.K.; Jeon, Y.T. Perioperative C-reactive protein is associated with pain outcomes after major laparoscopic abdominal surgery: A retrospective analysis. J. Pain Res. 2019, 12, 1041–1051. [Google Scholar] [CrossRef] [PubMed]
- Sturmer, T.; Raum, E.; Buchner, M.; Gebhardt, K.; Schiltenwolf, M.; Richter, W.; Brenner, H. Pain and high sensitivity C reactive protein in patients with chronic low back pain and acute sciatic pain. Ann. Rheum. Dis. 2005, 64, 921–925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lund Haheim, L.; Nafstad, P.; Olsen, I.; Schwarze, P.; Ronningen, K.S. C-reactive protein variations for different chronic somatic disorders. Scand. J. Public Health 2009, 37, 640–646. [Google Scholar] [CrossRef]
- Kushner, I.; Rzewnicki, D.; Samols, D. What does minor elevation of C-reactive protein signify? Am. J. Med. 2006, 119, 166.e17–166.e28. [Google Scholar] [CrossRef]
- Hyderali, B.N.; Mala, K. Oxidative stress and cardiovascular complications in polycystic ovarian syndrome. Eur. J. Obstet. Gynecol. Reprod. Biol. 2015, 191, 15–22. [Google Scholar] [CrossRef]
- Papalou, O.; Victor, V.M.; Diamanti-Kandarakis, E. Oxidative Stress in Polycystic Ovary Syndrome. Curr. Pharm. Des. 2016, 22, 2709–2722. [Google Scholar] [CrossRef]
- Zhao, H.; Zhao, Y.; Li, T.; Li, M.; Li, J.; Li, R.; Liu, P.; Yu, Y.; Qiao, J. Metabolism alteration in follicular niche: The nexus among intermediary metabolism, mitochondrial function, and classic polycystic ovary syndrome. Free Radic. Biol. Med. 2015, 86, 295–307. [Google Scholar] [CrossRef]
- Chung, J.M. The role of reactive oxygen species (ROS) in persistent pain. Mol. Interv. 2004, 4, 248–250. [Google Scholar] [CrossRef]
- Khasabova, I.A.; Khasabov, S.G.; Olson, J.K.; Uhelski, M.L.; Kim, A.H.; Albino-Ramirez, A.M.; Wagner, C.L.; Seybold, V.S.; Simone, D.A. Pioglitazone, a PPARgamma agonist, reduces cisplatin-evoked neuropathic pain by protecting against oxidative stress. Pain 2019, 160, 688–701. [Google Scholar] [CrossRef]
- Yowtak, J.; Lee, K.Y.; Kim, H.Y.; Wang, J.; Kim, H.K.; Chung, K.; Chung, J.M. Reactive oxygen species contribute to neuropathic pain by reducing spinal GABA release. Pain 2011, 152, 844–852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, G.; Li, Z.; Neugebauer, V. Reactive oxygen species mediate visceral pain-related amygdala plasticity and behaviors. Pain 2015, 156, 825–836. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Chen, R.; Wang, H.; Liang, F. Mechanisms Linking Inflammation to Insulin Resistance. Int. J. Endocrinol. 2015, 2015, 508409. [Google Scholar] [CrossRef] [Green Version]
- Zhai, X.; Sun, C.; Rong, P.; Li, S.; McCabe, M.F.; Wang, X.; Mao, J.; Wang, S. A Correlative Relationship Between Chronic Pain and Insulin Resistance in Zucker Fatty Rats: Role of Downregulation of Insulin Receptors. J. Pain 2016, 17, 404–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narouze, S.; Souzdalnitski, D. Obesity and chronic pain: Systematic review of prevalence and implications for pain practice. Reg. Anesth. Pain Med. 2015, 40, 91–111. [Google Scholar] [CrossRef] [PubMed]
- Malfliet, A.; Quiroz Marnef, A.; Nijs, J.; Clarys, P.; Huybrechts, I.; Elma, O.; Tumkaya Yilmaz, S.; Deliens, T. Obesity Hurts: The Why and How of Integrating Weight Reduction With Chronic Pain Management. Phys. Ther. 2021, 101, pzab198. [Google Scholar] [CrossRef] [PubMed]
- Pappolla, M.A.; Manchikanti, L.; Candido, K.D.; Grieg, N.; Seffinger, M.; Ahmed, F.; Fang, X.; Andersen, C.; Trescot, A.M. Insulin Resistance is Associated with Central Pain in Patients with Fibromyalgia. Pain Physician 2021, 24, 175–184. [Google Scholar]
- Soyupek, F.; Yildiz, S.; Akkus, S.; Guney, M.; Mungan, M.T.; Eris, S. The Frequency of Fibromyalgia Syndrome in Patients with Polycystic Ovary Syndrome. J. Musculoskelet. Pain 2010, 18, 120–126. [Google Scholar] [CrossRef]
- Wu, W.L.; Cheng, C.F.; Sun, W.H.; Wong, C.W.; Chen, C.C. Targeting ASIC3 for pain, anxiety, and insulin resistance. Pharmacol. Ther. 2012, 134, 127–138. [Google Scholar] [CrossRef]
- Garcia, G.; Gutierrez-Lara, E.J.; Centurion, D.; Granados-Soto, V.; Murbartian, J. Fructose-Induced Insulin Resistance as a Model of Neuropathic Pain in Rats. Neuroscience 2019, 404, 233–245. [Google Scholar] [CrossRef]
- Huang, S.J.; Yang, W.S.; Lin, Y.W.; Wang, H.C.; Chen, C.C. Increase of insulin sensitivity and reversal of age-dependent glucose intolerance with inhibition of ASIC3. Biochem. Biophys. Res. Commun. 2008, 371, 729–734. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes, A. Introduction: Standards of Medical Care in Diabetes-2022. Diabetes Care 2022, 45, S1–S2. [Google Scholar] [CrossRef] [PubMed]
- Maruthur, N.M.; Tseng, E.; Hutfless, S.; Wilson, L.M.; Suarez-Cuervo, C.; Berger, Z.; Chu, Y.; Iyoha, E.; Segal, J.B.; Bolen, S. Diabetes Medications as Monotherapy or Metformin-Based Combination Therapy for Type 2 Diabetes: A Systematic Review and Meta-analysis. Ann. Intern. Med. 2016, 164, 740–751. [Google Scholar] [CrossRef]
- Lord, J.M.; Flight, I.H.; Norman, R.J. Metformin in polycystic ovary syndrome: Systematic review and meta-analysis. BMJ 2003, 327, 951–953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naderpoor, N.; Shorakae, S.; de Courten, B.; Misso, M.L.; Moran, L.J.; Teede, H.J. Metformin and lifestyle modification in polycystic ovary syndrome: Systematic review and meta-analysis. Hum. Reprod. Update 2016, 22, 408–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baeza-Flores, G.D.C.; Guzman-Priego, C.G.; Parra-Flores, L.I.; Murbartian, J.; Torres-Lopez, J.E.; Granados-Soto, V. Metformin: A Prospective Alternative for the Treatment of Chronic Pain. Front. Pharmacol. 2020, 11, 558474. [Google Scholar] [CrossRef]
- Singh, K.B.; Patel, Y.C.; Wortsman, J. Coexistence of polycystic ovary syndrome and pelvic endometriosis. Obstet. Gynecol. 1989, 74, 650–652. [Google Scholar]
- Kichukova, D. Polycystic ovaries in association with pelvic endometriosis in infertile women diagnosed by laparoscopy. Folia Med. 1996, 38, 71–73. [Google Scholar]
- Holoch, K.J.; Savaris, R.F.; Forstein, D.A.; Miller, P.B.; Higdon, H.L.; Likes, C.E.; Lessey, B.A. Coexistence of Polycystic Ovary Syndrome and Endometriosis in Women with Infertility. J. Endometr. Pelvic Pain Disord. 2014, 6, 79–83. [Google Scholar] [CrossRef]
- Ding, D.C.; Chen, W.; Wang, J.H.; Lin, S.Z. Association between polycystic ovarian syndrome and endometrial, ovarian, and breast cancer: A population-based cohort study in Taiwan. Medicine 2018, 97, e12608. [Google Scholar] [CrossRef]
- Lu, J.; Wang, Z.; Cao, J.; Chen, Y.; Dong, Y. A novel and compact review on the role of oxidative stress in female reproduction. Reprod. Biol. Endocrinol. 2018, 16, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loh, H.H.; Yee, A.; Loh, H.S.; Kanagasundram, S.; Francis, B.; Lim, L.L. Sexual dysfunction in polycystic ovary syndrome: A systematic review and meta-analysis. Hormones 2020, 19, 413–423. [Google Scholar] [CrossRef] [PubMed]
- Nohr, E.A.; Hansen, A.B.; Andersen, M.S.; Hjorth, S. Sexual health in parous women with a history of polycystic ovary syndrome: A national cross-sectional study in Denmark. Int. J. Gynecol. Obstet. 2022, 157, 702–709. [Google Scholar] [CrossRef] [PubMed]
- Taghavi, S.A.; Bazarganipour, F.; Hugh-Jones, S.; Hosseini, N. Health-related quality of life in Iranian women with polycystic ovary syndrome: A qualitative study. BMC Women’s Health 2015, 15, 111. [Google Scholar] [CrossRef] [Green Version]
- Sharmeen, S.; Nomani, H.; Taub, E.; Carlson, H.; Yao, Q. Polycystic ovary syndrome: Epidemiologic assessment of prevalence of systemic rheumatic and autoimmune diseases. Clin. Rheumatol. 2021, 40, 4837–4843. [Google Scholar] [CrossRef]
- Tseng, P.H.; Chiu, H.M.; Tu, C.H.; Wu, M.S.; Ho, H.N.; Chen, M.J. Obesity Exacerbates Irritable Bowel Syndrome-Related Sleep and Psychiatric Disorders in Women With Polycystic Ovary Syndrome. Front. Endocrinol. 2021, 12, 779456. [Google Scholar] [CrossRef]
- Kaluzna, M.; Kompf, P.; Wachowiak-Ochmanska, K.; Moczko, J.; Krolczyk, A.; Janicki, A.; Szapel, K.; Grzymislawski, M.; Ruchala, M.; Ziemnicka, K. Are patients with polycystic ovary syndrome more prone to irritable bowel syndrome? Endocr. Connect. 2022, 11, e210309. [Google Scholar] [CrossRef]
- Bazarganipour, F.; Taghavi, S.A.; Asemi, Z.; Allan, H.; Khashavi, Z.; Safarzadeh, T.; Pourchangiz, S.; Zare, F.; Ghasemi, S.; Karimi, Z.; et al. The impact of irritable bowel syndrome on health-related quality of life in women with polycystic ovary syndrome. Health Qual. Life Outcomes 2020, 18, 226. [Google Scholar] [CrossRef]
- Cronin, L.; Guyatt, G.; Griffith, L.; Wong, E.; Azziz, R.; Futterweit, W.; Cook, D.; Dunaif, A. Development of a health-related quality-of-life questionnaire (PCOSQ) for women with polycystic ovary syndrome (PCOS). J. Clin. Endocrinol. Metab. 1998, 83, 1976–1987. [Google Scholar] [CrossRef]
- Michaelides, A.; Zis, P. Depression, anxiety and acute pain: Links and management challenges. Postgrad. Med. 2019, 131, 438–444. [Google Scholar] [CrossRef]
- Bair, M.J.; Robinson, R.L.; Katon, W.; Kroenke, K. Depression and pain comorbidity: A literature review. Arch. Intern. Med. 2003, 163, 2433–2445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sykioti, P.; Zis, P.; Vadalouca, A.; Siafaka, I.; Argyra, E.; Bouhassira, D.; Stavropoulou, E.; Karandreas, N. Validation of the Greek Version of the DN4 Diagnostic Questionnaire for Neuropathic Pain. Pain Pract. 2015, 15, 627–632. [Google Scholar] [CrossRef] [PubMed]
- Varrassi, G.; Fusco, M.; Coaccioli, S.; Paladini, A. Chronic pain and neurodegenerative processes in elderly people. Pain Pract. 2015, 15, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Patten, R.K.; Pascoe, M.C.; Moreno-Asso, A.; Boyle, R.A.; Stepto, N.K.; Parker, A.G. Effectiveness of exercise interventions on mental health and health-related quality of life in women with polycystic ovary syndrome: A systematic review. BMC Public Health 2021, 21, 2310. [Google Scholar] [CrossRef]
Author and Year | Research Type | Location | PCOS Diagnosis Criteria | Control | Case Number | Questionnaires | Bodily Pain in SF-36 Scores in Mean ± SD (PCOS vs. Control) | Statics | Pain Perception | Note |
---|---|---|---|---|---|---|---|---|---|---|
Elsenbruch et al., 2003 [16] | Case–control study | Germany | 1990 NIH | Age-matched healthy women | PCOS n = 50 Healthy controls n = 50 | SF-36, SCL-90-R, FLZ | 73 ± 30 vs. 85 ± 26 (p < 0.05) | * | Up | |
Hahn et al., 2005 [17] | Case–control study | Germany | 1990 NIH | Age-matched healthy women | PCOS n = 120 Healthy controls n = 50 | SF-36, SCL-90-R, VASs | 74 ± 28 vs. 85 ± 26 (p < 0.05) | * | Up | |
Drosdzol et al., 2007 [19] | Case–control study | Poland | PSE and 2003 Rotterdam | Age-matched healthy women | PCOS n = 50 Healthy controls n = 40 | SF-36, ISS | 64.8 ± 25.1 vs. 72.6 ± 19.8 | * | Up | |
Coffey et al., 2006 [18] | Case–control study | The UK | 2003 Rotterdam | Age-matched healthy women | PCOS n = 22 Healthy controls n = 96 | SF-36 PCOSQ | 70.2 vs. 81.8 | * | Up | |
Alvarez-Blasco et al., 2010 [20] | Case–control study | Spain | 2003 Rotterdam | Overweight and obesity age-matched women | Overweight and obesity PCOS n = 32 Overweight and obesity control n = 72 | SF-36 Nottingham Health Profile (NHP) | NA | NA | No difference in SF-36; down in NHP | Obesity impairs the pain perception in PCOS patients |
Li et al., 2011 [21] | Meta-analysis | Germany, Poland, China | 1990 NIH 2003 Rotterdam | Age-matched healthy women | PCOS n = 336 Healthy controls n = 235 | SF-36 | NA | ** | Up | Pain scores were lower in PCOS women |
Acmaz et al., 2013 [22] | Case–control study | Turkey | 2003 Rotterdam | Age-matched healthy women | PCOS n = 86 Healthy controls n = 47 | SF-36, LSAS, RSES, BAI, and BDI | PCOS with hirsutism (74.5), infertility (75), obesity (79) vs. control (89) | ** | Up | |
Martin et al., 2017 [15] | Semi-structure interview | The US | 2003 Rotterdam | NA | PCOS n = 20 | NA | NA | NA | NA | Pain- and discomfort-related symptoms accounted for the highest proportion (27.6%) of the 735 patient expressions |
Borghi et al., 2018 [23] | Case–control study | Italy | 1990 NIH | Age-matched healthy women | PCOS n = 30 Healthy controls n = 30 | SF-36, SCL-90R, STAXI-2 | 61 vs. 84 | *** | Up | |
Angin et al., 2019 [24] | Case–control study | Turkey | 2003 Rotterdam | Age-matched infertile women | 49 infertile PCOS patients, 47 infertile non-PCOS patients, and 62 fertile PCOS patients | SF-36 PCOSQ | PCOS with infertility (60.9 ± 26.9) vs. infertility control 68.7 ± 21.9 | Not significant | Up | |
Naumova et al., 2021 [26] | Case–control study | Spain | 2003 Rotterdam | Age-matched healthy women | 37 infertile PCOS patients, 36 women with tubal factor infertility(TFI), and 31 women with male factor (MFI) | SF-36 | PCOS(78.2 ± 22.3) vs. MFI(92.4 ± 13.2) | ** | Up | |
Moran-Sanchez et al., 2021 [25] | Case–control study | Spain | 2003 Rotterdam | Age-matched healthy women | PCOS n = 156 Healthy controls n = 117 | SF12v2 LOT-R | 81.3 ± 24.6 vs. 90.5 ± 18.3 | *** | Up | |
Kialka et al., 2016 [28] | Case–control study | Poland | 2003 Rotterdam | Age-matched healthy lean women | PCOS n = 27 Healthy controls n = 18 | NA | NA | NA | Down | Pain threshold is increased in lean PCOS patients |
Kialka et al., 2017 [29] | Case–control study | Poland | 2003 Rotterdam | Age-matched healthy lean women | PCOS n = 48 Healthy controls n = 38 | NA | NA | NA | Down | Pain threshold is increased in lean PCOS patients |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, K.-T.; Ho, Y.-C.; Chang, C.-L.; Lan, K.-C.; Wu, C.-C.; Su, Y.-T. Evaluation of Bodily Pain Associated with Polycystic Ovary Syndrome: A Review of Health-Related Quality of Life and Potential Risk Factors. Biomedicines 2022, 10, 3197. https://doi.org/10.3390/biomedicines10123197
Lu K-T, Ho Y-C, Chang C-L, Lan K-C, Wu C-C, Su Y-T. Evaluation of Bodily Pain Associated with Polycystic Ovary Syndrome: A Review of Health-Related Quality of Life and Potential Risk Factors. Biomedicines. 2022; 10(12):3197. https://doi.org/10.3390/biomedicines10123197
Chicago/Turabian StyleLu, Kuan-Ta, Yu-Cheng Ho, Chen-Lin Chang, Kuo-Chung Lan, Cheng-Chun Wu, and Yu-Ting Su. 2022. "Evaluation of Bodily Pain Associated with Polycystic Ovary Syndrome: A Review of Health-Related Quality of Life and Potential Risk Factors" Biomedicines 10, no. 12: 3197. https://doi.org/10.3390/biomedicines10123197
APA StyleLu, K.-T., Ho, Y.-C., Chang, C.-L., Lan, K.-C., Wu, C.-C., & Su, Y.-T. (2022). Evaluation of Bodily Pain Associated with Polycystic Ovary Syndrome: A Review of Health-Related Quality of Life and Potential Risk Factors. Biomedicines, 10(12), 3197. https://doi.org/10.3390/biomedicines10123197