Bioengineered Ciprofloxacin-Loaded Chitosan Nanoparticles for the Treatment of Bovine Mastitis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Nanoparticle Preparation
2.2.1. Nanoparticle Size Determination
2.2.2. Nanoparticle Zeta Potential
2.2.3. Surface Morphology Study
2.3. Encapsulation Efficiency
2.4. Release Study
2.5. Uptake Study
2.6. Toxicity Assays
2.6.1. Trypan Blue Dye Exclusion Test
2.6.2. Neutral Red Uptake Assay
2.6.3. Hemoglobin Release Assay
OD positive control − OD negative control
2.7. Lipid Peroxidation Assay
EC—amount of sample taken
2.8. Minimum Inhibitory Concentration Determination (MIC) of CPX-CS NPs
2.9. Antibacterial Activity
3. Results
3.1. Ciprofloxacin-Loaded Nanoparticle Characteristics
3.2. Drug Release and Stability of Chitosan Nanoparticles
3.3. Cellular Uptake of FITC-Loaded Chitosan Nanoparticles
3.4. Antimicrobial Activity of Nanoparticles against Clinical Isolates
3.5. Minimum Inhibition Concentration (MIC)
3.6. Cytotoxicity of CPX-Loaded Nanoparticles
3.7. Lipid Peroxidation for Membrane Damage Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fetrow, J.; Mann, D.; Butcher, K.; McDaniel, B. Production losses from mastitis: Carry-over from the previous lactation. J. Dairy Sci. 1991, 74, 833–839. [Google Scholar] [CrossRef] [PubMed]
- Houben, E.H.; Dijkhuizen, A.A.; Van Arendonk, J.A.; Huirne, R.B. Short- and long-term productionlossesandrepeatabilityofclinicalmastitisindairycattle. J. Dairy Sci. 1993, 76, 2561–2578. [Google Scholar] [CrossRef]
- Mungube, E.O.; Tenhagen, B.A.; Regassa, F.; Kyule, M.N.; Shiferaw, Y.; Kassa, T.; Baumann, M.P. ReducedmilkproductioninudderquarterswithsubclinicalmastitisandassociatedeconomiclossesincrossbreddairycowsinEthiopia. Trop. Anim. Health Prod. 2005, 37, 503–512. [Google Scholar] [CrossRef]
- Sharma, N.; Maiti, S.K. Prevalence and etiology of subclinical mastitis in cows. Indian J. Vet. Res. 2010, 19, 45–54. [Google Scholar]
- Varella Coelho, M.L.; Santos Nascimento, J.D.; Fagundes, P.C.; Madureira, D.J.; Oliveira, S.S.; Vasconcelosde Paiva Brito, M.A.; Freire Bastos Mdo, C. Activity of staphylococcal bacteriocins against Staphylococcus aureus and Streptococcus agalactiae involved in bovine mastitis. Res. Microbiol. 2007, 158, 625–630. [Google Scholar] [CrossRef]
- Chaneton, L.; Tirante, L.; Maito, J.; Chaves, J.; Bussmann, L.E. Relationshipbetweenmilklactoferrinandetiologicalagentinthemastiticbovinemammarygland. J. Dairy Sci. 2008, 91, 1865–1873. [Google Scholar] [CrossRef] [Green Version]
- Sharma, D.; Misba, L.; Khan, A.U. Antibiotics versus biofilm: An emerging battleground in microbial communities. Antimicrob. Resist. Infect. Control 2019, 8, 76. [Google Scholar] [CrossRef] [Green Version]
- Tong, S.Y.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef] [Green Version]
- Thomas, N.; Thorn, C.; Richter, K.; Thierry, B.; Prestidge, C. Efficacy of poly-lactic-co-glycolic acid micro- and nanoparticles of ciprofloxacin against bacterial biofilms. J. Pharm. Sci. 2016, 105, 3115–3122. [Google Scholar] [CrossRef]
- Petros, R.A.; DeSimone, J.M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 2010, 9, 615–627. [Google Scholar] [CrossRef]
- Zhang, L.; Pornpattananangku, D.; Hu, C.M.; Huang, C.M. Development of nanoparticles for antimicrobial drug delivery. Curr. Med. Chem. 2010, 17, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Nie, X.; Zou, M.; Shi, Y.; Cheng, G. Recent advances in materials for extended-release antibiotic delivery system. J. Antibiot. 2011, 64, 625–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mascellino, M.T.; Farinelli, S.; Iegri, F.; Iona, E.; DeSimone, C. Antimicrobial activity of fluoroquinolones and other antibiotics on 1,116 clinical gram-positive and gram-negative isolates. Drugs Exp. Clin. Res. 1998, 24, 139–151. [Google Scholar] [PubMed]
- Grillon, A.; Schramm, F.; Kleinberg, M.; Jehl, F. Comparative activity of ciprofloxacin, levofloxacin and moxifloxacin against Klebsiella pneumoniae, Pseudomonas aeruginosa and Stenotrophomonas maltophilia assessed by minimum inhibitory concentrations and time-kill studies. PLoS ONE 2016, 11, e0156690. [Google Scholar] [CrossRef]
- Fan, W.; Yan, W.; Xu, Z.; Ni, H. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids Surf. B. Biointerfaces 2012, 1, 21–27. [Google Scholar] [CrossRef]
- Honary, S.; Ebrahimi, P.; Hadianamrei, R. Optimization of particle size and encapsulation efficiency of vancomycin nanoparticles by response surface methodology. Pharm. Dev. Technol. 2014, 19, 987–998. [Google Scholar] [CrossRef]
- Tennant, J.R. Evaluation of the trypan blue technique for determination of cell viability. Transplantation 1964, 2, 685–694. [Google Scholar] [CrossRef]
- Bonfoco, E.; Krainc, D.; Ankarcrona, M.; Nicotera, P.; Lipton, S.A. Apoptosis and necrosis: Two distinct events induced, respectively, by mild and intense insults with N-Methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc. Natl. Acad. Sci. USA 1995, 92, 7162–7166. [Google Scholar] [CrossRef] [Green Version]
- Borenfreund, E.; Puerner, J.A. Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol. Lett. 1985, 24, 119–124. [Google Scholar] [CrossRef]
- Repetto, G.; del Peso, A.; Zurita, J.L. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat. Protoc. 2008, 3, 1125–1131. [Google Scholar] [CrossRef]
- Ravikumara, N.R.; Madhusudhan, B.; Nagaraj, T.S.; Hiremat, S.R.; Raina, G. Preparation and evaluation of nimesulide-loaded ethylcellulose and methylcellulose nanoparticles and microparticles for oral delivery. J. Biomater. Appl. 2009, 24, 47–64. [Google Scholar] [CrossRef] [PubMed]
- Potter, T.M.; Neun, B.W.; Stern, S.T. Assay to detect lipid peroxidation upon exposure to nanoparticles. Methods Mol. Biol. 2011, 697, 181–189. [Google Scholar] [PubMed]
- Huma, Z.I.; Sharma, N.; Kour, S.; Lee, S.J. Phenotypic and molecular characterization of bovine mastitis milk origin bacteria and linkage of intramammary infection with milk quality. Front. Vet. Sci. 2022, 9, 885134. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.F.; Yang, Y.N. Protective effects of calcium antagonists on cadmium-induced toxicity in rats. Biomed. Environ. Sci. 1997, 10, 402–407. [Google Scholar]
- Pang, M.; Xie, X.; Bao, H.; Sun, L.; He, T.; Zhao, H.; Zhou, Y.; Zhang, L.; Zhang, H.; Wei, R.; et al. Insights into the bovine milk microbiota in dairy farms with different incidence rates of subclinical mastitis. Front. Microbiol. 2018, 9, 2379. [Google Scholar] [CrossRef] [Green Version]
- Fahim, K.M.; Ismael, E.; Khalefa, H.S.; Farag, H.S.; Hamza, D.A. Isolation and characterization of E. coli strains causing intramammary infections from dairy animals and wild birds. Int. J. Vet. Sci. Med. 2019, 7, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Algharib, S.A.; Dawood, A.; Xie, S. Nanoparticles for treatment of bovine Staphylococcus aureus mastitis. Drug Deliv. 2020, 27, 292–308. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, A.I.; Costa Lima, S.A.; Reis, S. Application of pH-responsive fucoidan/chitosan nanoparticles to improve oral quercetin delivery. Molecules 2019, 24, 346. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Qin, F.; Tan, H.; Zhang, Y.; Jiang, M.; Lu, M.; Yao, X. pH-responsive glycol chitosan-cross-linked carboxymethyl-β-cyclodextrin nanoparticles for controlled release of anticancer drugs. Int. J. Nanomed. 2015, 10, 7359–7369. [Google Scholar]
- Mohammed, M.A.; Syeda, J.T.M.; Wasan, K.M.; Wasan, E.K. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics 2017, 9, 53. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, S.; Murthy, R.S. Effect of different polymer concentration on drug release rate and physicochemical properties of mucoadhesive gastroretentive tablets. Indian J. Pharm. Sci. 2015, 77, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Sobhani, Z.; Samani, S.M.; Monteseri, H.; Khezri, E. Nanoparticles of chitosan loaded ciprofloxacin: Fabrication and antimicrobial activity. Adv. Pharm. Bull. 2017, 7, 427–432. [Google Scholar] [CrossRef] [PubMed]
CS/TPP Weight Ratio | Ciprofloxacin Hydrochloride (mg/mL) | Average Particle Size (nm) | Polydispersity (PDI) | Zeta Potential (mV) | Encapsulation Efficiency (%) |
---|---|---|---|---|---|
5:1 (CS 1 mg/mL) & TPP (0.5 mg/mL) Formulation 1 | 0.5 | 195.6 ± 11 | 0.249 | +24.86 ± 1.2 | 43 ± 2.29% |
1 | 185.5 ± 2 | 0.217 | +24.91 ± 0.6 | 42 ± 2.35% | |
5:1 (CS 2 mg/mL) & PP (1 mg/mL) Formulation 2 | 0.5 | 214.8 ± 8 | 0.249 | +29.6 ± 0.8 | 46 ± 2.15% |
1 | 252.9 ± 9 | 0.254 | +27.0 ± 0.7 | 43 ± 2.27% | |
9:1 (CS 1 mg/mL) & TPP (1 mg/mL) Formulation 3 | 0.5 | 229.1 ± 13 | 0.250 | +28.35 ± 2.6 | 43 ± 2.25% |
1 | 235.4 ± 16 | 0.289 | +29.31 ± 2.1 | 43 ± 4.54% |
CS/TPP Weight Ratio | Average Particle Size (nm) | Polydispersity (PDI) | Drug Content |
---|---|---|---|
5:1 (CS 1 mg/mL & TPP) (0.5 mg/mL) | 203.6 ± 22 | 0.269 | 96% |
5:1 (CS 2 mg/mL & TPP) (1 mg/mL) | 262.9 ± 35 | 0.284 | 96.2% |
9:1 (CS 1 mg/mL & TPP) (1 mg/mL) | 300.8 ± 31 | 0.350 | 85% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yadav, P.; Yadav, A.B.; Gaur, P.; Mishra, V.; Huma, Z.-I.; Sharma, N.; Son, Y.-O. Bioengineered Ciprofloxacin-Loaded Chitosan Nanoparticles for the Treatment of Bovine Mastitis. Biomedicines 2022, 10, 3282. https://doi.org/10.3390/biomedicines10123282
Yadav P, Yadav AB, Gaur P, Mishra V, Huma Z-I, Sharma N, Son Y-O. Bioengineered Ciprofloxacin-Loaded Chitosan Nanoparticles for the Treatment of Bovine Mastitis. Biomedicines. 2022; 10(12):3282. https://doi.org/10.3390/biomedicines10123282
Chicago/Turabian StyleYadav, Preeti, Awadh Bihari Yadav, Preksha Gaur, Vartika Mishra, Zul-I Huma, Neelesh Sharma, and Young-Ok Son. 2022. "Bioengineered Ciprofloxacin-Loaded Chitosan Nanoparticles for the Treatment of Bovine Mastitis" Biomedicines 10, no. 12: 3282. https://doi.org/10.3390/biomedicines10123282
APA StyleYadav, P., Yadav, A. B., Gaur, P., Mishra, V., Huma, Z. -I., Sharma, N., & Son, Y. -O. (2022). Bioengineered Ciprofloxacin-Loaded Chitosan Nanoparticles for the Treatment of Bovine Mastitis. Biomedicines, 10(12), 3282. https://doi.org/10.3390/biomedicines10123282