Decellularized In Vitro Capillaries for Studies of Metastatic Tendency and Selection of Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Culturing of In Vitro Capillaries
2.2. Decellularization
2.3. Immunocytochemical Staining
2.4. Patient-Derived Tumor Cells
2.5. Culturing of Primary Cancer Cells and Cancer Cell Lines on the Decellularized In Vitro Capillaries
2.6. WST-1 Analysis
2.7. Microscopic Analyses
2.8. Statistical Analyses
3. Results
3.1. Effect of Ficoll-Paque plus on In Vitro Capillaries
3.2. Effects of Decellularization on Capillaries
3.3. Decellularized Capillaries as Growth Platform for Cancer Cell Line Cells
3.4. Drug Responses of Cancer Cells Grown on Decellularized In Vitro Capillary Network
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BSA | Bovine Serum Albumin |
CTC | Circulating tumor cells |
DC | Decellularized in vitro capillaries |
ECM | Extracellular matrix |
EGM-2 | Endothelial Cell Growth Medium-2 BulletKit |
FBS | Fecal bovine serum |
FCS | Fecal calf serum |
FGF-β | Basic fibroblast growth factor |
GCM | General cancer medium |
hASC | Human adipose stromal cell |
HUVEC | Human umbilical vein endothelial cell |
LCM | Liquid cancer sample medium |
MMC | Macromolecular crowder |
VEGF | Vascular endothelial growth factor |
VWF | Von Willebrand factor |
References
- European society for medical oncology Cancer research and development and the drug development process. Ann. Oncol. 2007, 18, iii49–iii54. [CrossRef]
- DiMasi, J.A.; Grabowski, H.G. Economics of new oncology drug development. J. Clin. Oncol. 2007, 25, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Edmondson, R.; Broglie, J.J.; Adcock, A.F.; Yang, L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev. Technol. 2014, 12, 207–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breslin, S.; O’Driscoll, L. Three-dimensional cell culture: The missing link in drug discovery. Drug Discov. Today 2013, 18, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Nii, T.; Katayama, Y. Biomaterial-Assisted Regenerative Medicine. Int. J. Mol. Sci. 2021, 22, 8657. [Google Scholar] [CrossRef] [PubMed]
- Nii, T.; Makino, K.; Tabata, Y. Three-Dimensional Culture System of Cancer Cells Combined with Biomaterials for Drug Screening. Cancers 2020, 12, 2754. [Google Scholar] [CrossRef]
- Shield, K.; Ackland, M.L.; Ahmed, N.; Rice, G.E. Multicellular spheroids in ovarian cancer metastases: Biology and pathology. Gynecol. Oncol. 2009, 113, 143–148. [Google Scholar] [CrossRef]
- Lee, J.; Cuddihy, M.J.; Kotov, N.A. Three-dimensional cell culture matrices: State of the art. Tissue Eng. Part B Rev. 2008, 14, 61–86. [Google Scholar] [CrossRef] [Green Version]
- Zietarska, M.; Maugard, C.M.; Filali-Mouhim, A.; Alam-Fahmy, M.; Tonin, P.N.; Provencher, D.M.; Mes-Masson, A.M. Molecular description of a 3D in vitro model for the study of epithelial ovarian cancer (EOC). Mol. Carcinog. 2007, 46, 872–885. [Google Scholar] [CrossRef]
- Wong, C.W.; Han, H.W.; Tien, Y.W.; Hsu, S.H. Biomaterial substrate-derived compact cellular spheroids mimicking the behavior of pancreatic cancer and microenvironment. Biomaterials 2019, 213, 119202. [Google Scholar] [CrossRef]
- Folkesson, E.; Niederdorfer, B.; Nakstad, V.T.; Thommesen, L.; Klinkenberg, G.; Laegreid, A.; Flobak, A. High-throughput screening reveals higher synergistic effect of MEK inhibitor combinations in colon cancer spheroids. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Cuzzucoli, F.; Jiang, J.; Liang, L.G.; Wang, Y.; Kong, M.; Zhao, X.; Cui, W.; Li, J.; Wang, S. Development of a biomimetic liver tumor-on-a-chip model based on decellularized liver matrix for toxicity testing. Lab Chip 2018, 18, 3379–3392. [Google Scholar] [CrossRef] [PubMed]
- Leeuwenhoek, M.; Groenewoud, F.; van Oosten, K.; Benschop, T.; Allan, M.P.; Groblacher, S. Fabrication of on-chip probes for double-tip scanning tunneling microscopy. Microsyst. Nanoeng. 2020, 6, 99. [Google Scholar] [CrossRef] [PubMed]
- Weis, S.M.; Cheresh, D.A. Tumor angiogenesis: Molecular pathways and therapeutic targets. Nat. Med. 2011, 17, 1359–1370. [Google Scholar] [CrossRef]
- Schaaf, M.B.; Garg, A.D.; Agostinis, P. Defining the role of the tumor vasculature in antitumor immunity and immunotherapy. Cell Death Dis. 2018, 9, 115. [Google Scholar] [CrossRef] [Green Version]
- van Zijl, F.; Krupitza, G.; Mikulits, W. Initial steps of metastasis: Cell invasion and endothelial transmigration. Mutat. Res. 2011, 728, 23–34. [Google Scholar] [CrossRef]
- Welti, J.; Loges, S.; Dimmeler, S.; Carmeliet, P. Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer. J. Clin. Investig. 2013, 123, 3190–3200. [Google Scholar] [CrossRef] [Green Version]
- Quail, D.F.; Joyce, J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 2013, 19, 1423–1437. [Google Scholar] [CrossRef]
- Frantz, C.; Stewart, K.M.; Weaver, V.M. The extracellular matrix at a glance. J. Cell. Sci. 2010, 123, 4195–4200. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Patil, S.; Gao, Y.G.; Qian, A. The Bone Extracellular Matrix in Bone Formation and Regeneration. Front. Pharmacol. 2020, 11, 757. [Google Scholar] [CrossRef]
- Pickup, M.W.; Mouw, J.K.; Weaver, V.M. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. 2014, 15, 1243–1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huttala, O.; Staff, S.; Heinonen, T.; Maenpaa, J.; Tanner, M.; Ylikomi, T. In Vitro Vascular Network Modified to Function as Culture Platform and Angiogenic Induction Potential Test for Cancer Cells. Int. J. Mol. Sci. 2020, 21, 1833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huttala, O.; Vuorenpaa, H.; Toimela, T.; Uotila, J.; Kuokkanen, H.; Ylikomi, T.; Sarkanen, J.R.; Heinonen, T. Human vascular model with defined stimulation medium—A characterization study. ALTEX 2015, 32, 125–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarkanen, J.R.; Vuorenpaa, H.; Huttala, O.; Mannerstrom, B.; Kuokkanen, H.; Miettinen, S.; Heinonen, T.; Ylikomi, T. Adipose stromal cell tubule network model provides a versatile tool for vascular research and tissue engineering. Cells Tissues Organs 2012, 196, 385–397. [Google Scholar] [CrossRef] [PubMed]
- Ng, W.H.; Ramasamy, R.; Yong, Y.K.; Ngalim, S.H.; Lim, V.; Shaharuddin, B.; Tan, J.J. Extracellular matrix from decellularized mesenchymal stem cells improves cardiac gene expressions and oxidative resistance in cardiac C-kit cells. Regen. Ther. 2019, 11, 8–16. [Google Scholar] [CrossRef]
- Huttala, O.; Sarkanen, J.R.; Heinonen, T.; Ylikomi, T. Presence of vasculature results in faster insulin response in adipocytes in vascularized adipose tissue model. ALTEX 2019, 36, 419–434. [Google Scholar] [CrossRef] [Green Version]
- Giard, D.J.; Aaronson, S.A.; Todaro, G.J.; Arnstein, P.; Kersey, J.H.; Dosik, H.; Parks, W.P. In vitro cultivation of human tumors: Establishment of cell lines derived from a series of solid tumors. J. Natl. Cancer Inst. 1973, 51, 1417–1423. [Google Scholar] [CrossRef]
- Loop, S.M.; Rozanski, T.A.; Ostenson, R.C. Human primary prostate tumor cell line, ALVA-31: A new model for studying the hormonal regulation of prostate tumor cell growth. Prostate 1993, 22, 93–108. [Google Scholar] [CrossRef]
- Harma, V.; Schukov, H.P.; Happonen, A.; Ahonen, I.; Virtanen, J.; Siitari, H.; Akerfelt, M.; Lotjonen, J.; Nees, M. Quantification of dynamic morphological drug responses in 3D organotypic cell cultures by automated image analysis. PLoS ONE 2014, 9, e96426. [Google Scholar] [CrossRef] [Green Version]
- Namekawa, T.; Ikeda, K.; Horie-Inoue, K.; Inoue, S. Application of Prostate Cancer Models for Preclinical Study: Advantages and Limitations of Cell Lines, Patient-Derived Xenografts, and Three-Dimensional Culture of Patient-Derived Cells. Cells 2019, 8, 74. [Google Scholar] [CrossRef] [Green Version]
- Bussemakers, M.J.; Van Bokhoven, A.; Tomita, K.; Jansen, C.F.; Schalken, J.A. Complex cadherin expression in human prostate cancer cells. Int. J. Cancer 2000, 85, 446–450. [Google Scholar] [CrossRef]
- Nishi, Y.; Yanase, T.; Mu, Y.; Oba, K.; Ichino, I.; Saito, M.; Nomura, M.; Mukasa, C.; Okabe, T.; Goto, K.; et al. Establishment and characterization of a steroidogenic human granulosa-like tumor cell line, KGN, that expresses functional follicle-stimulating hormone receptor. Endocrinology 2001, 142, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Imai, M.; Muraki, M.; Takamatsu, K.; Saito, H.; Seiki, M.; Takahashi, Y. Spontaneous transformation of human granulosa cell tumours into an aggressive phenotype: A metastasis model cell line. BMC Cancer 2008, 8, 319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Connolly, J.M.; Rose, D.P. Angiogenesis in two human prostate cancer cell lines with differing metastatic potential when growing as solid tumors in nude mice. J. Urol. 1998, 160, 932–936. [Google Scholar] [CrossRef]
- Biedler, J.L.; Roffler-Tarlov, S.; Schachner, M.; Freedman, L.S. Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Res. 1978, 38, 3751–3757. [Google Scholar] [PubMed]
- Nevo, I.; Sagi-Assif, O.; Edry Botzer, L.; Amar, D.; Maman, S.; Kariv, N.; Leider-Trejo, L.E.; Savelyeva, L.; Schwab, M.; Yron, I.; et al. Generation and characterization of novel local and metastatic human neuroblastoma variants. Neoplasia 2008, 10, 816–827. [Google Scholar] [CrossRef] [Green Version]
- Allen, M.; Bjerke, M.; Edlund, H.; Nelander, S.; Westermark, B. Origin of the U87MG glioma cell line: Good news and bad news. Sci. Transl. Med. 2016, 8, 354re3. [Google Scholar] [CrossRef]
- Kaighn, M.E.; Narayan, K.S.; Ohnuki, Y.; Lechner, J.F.; Jones, L.W. Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Investig. Urol. 1979, 17, 16–23. [Google Scholar]
- Harper, M.E.; Glynne-Jones, E.; Goddard, L.; Thurston, V.J.; Griffiths, K. Vascular endothelial growth factor (VEGF) expression in prostatic tumours and its relationship to neuroendocrine cells. Br. J. Cancer 1996, 74, 910–916. [Google Scholar] [CrossRef] [Green Version]
- Sramkoski, R.M.; Pretlow, T.G., 2nd; Giaconia, J.M.; Pretlow, T.P.; Schwartz, S.; Sy, M.S.; Marengo, S.R.; Rhim, J.S.; Zhang, D.; Jacobberger, J.W. A new human prostate carcinoma cell line, 22Rv1. Vitr. Cell. Dev. Biol.-Anim. 1999, 35, 403–409. [Google Scholar] [CrossRef]
- Kovar, J.L.; Johnson, M.A.; Volcheck, W.M.; Chen, J.; Simpson, M.A. Hyaluronidase expression induces prostate tumor metastasis in an orthotopic mouse model. Am. J. Pathol. 2006, 169, 1415–1426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mo, B.; Vendrov, A.E.; Palomino, W.A.; DuPont, B.R.; Apparao, K.B.; Lessey, B.A. ECC-1 cells: A well-differentiated steroid-responsive endometrial cell line with characteristics of luminal epithelium. Biol. Reprod. 2006, 75, 387–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korch, C.; Spillman, M.A.; Jackson, T.A.; Jacobsen, B.M.; Murphy, S.K.; Lessey, B.A.; Jordan, V.C.; Bradford, A.P. DNA profiling analysis of endometrial and ovarian cell lines reveals misidentification, redundancy and contamination. Gynecol. Oncol. 2012, 127, 241–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faigenbaum, R.; Haklai, R.; Ben-Baruch, G.; Kloog, Y. Growth of poorly differentiated endometrial carcinoma is inhibited by combined action of medroxyprogesterone acetate and the Ras inhibitor Salirasib. Oncotarget 2013, 4, 316–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, J.X.; Yan, B.; Zhao, Z.N.; Xiao, X.; Qin, W.W.; Zhang, R.; Jia, L.T.; Meng, Y.L.; Jin, B.Q.; Fan, D.M.; et al. Tamoxifen represses miR-200 microRNAs and promotes epithelial-to-mesenchymal transition by up-regulating c-Myc in endometrial carcinoma cell lines. Endocrinology 2013, 154, 635–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonaccorsi, L.; Carloni, V.; Muratori, M.; Salvadori, A.; Giannini, A.; Carini, M.; Serio, M.; Forti, G.; Baldi, E. Androgen receptor expression in prostate carcinoma cells suppresses alpha6beta4 integrin-mediated invasive phenotype. Endocrinology 2000, 141, 3172–3182. [Google Scholar] [CrossRef] [PubMed]
- Kawada, M.; Inoue, H.; Usami, I.; Takamoto, K.; Masuda, T.; Yamazaki, Y.; Ikeda, D. Establishment of a highly tumorigenic LNCaP cell line having inflammatory cytokine resistance. Cancer Lett. 2006, 242, 46–52. [Google Scholar] [CrossRef]
- Aonuma, M.; Saeki, Y.; Akimoto, T.; Nakayama, Y.; Hattori, C.; Yoshitake, Y.; Nishikawa, K.; Shibuya, M.; Tanaka, N.G. Vascular endothelial growth factor overproduced by tumour cells acts predominantly as a potent angiogenic factor contributing to malignant progression. Int. J. Exp. Pathol. 1999, 80, 271–281. [Google Scholar] [CrossRef]
- Comsa, S.; Cimpean, A.M.; Raica, M. The Story of MCF-7 Breast Cancer Cell Line: 40 years of Experience in Research. Anticancer Res. 2015, 35, 3147–3154. [Google Scholar]
- Gelmann, E.P.; Thompson, E.W.; Sommers, C.L. Invasive and metastatic properties of MCF-7 cells and rasH-transfected MCF-7 cell lines. Int. J. Cancer 1992, 50, 665–669. [Google Scholar] [CrossRef]
- Shi, Y.; Fu, X.; Hua, Y.; Han, Y.; Lu, Y.; Wang, J. The side population in human lung cancer cell line NCI-H460 is enriched in stem-like cancer cells. PLoS ONE 2012, 7, e33358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levina, V.; Marrangoni, A.M.; DeMarco, R.; Gorelik, E.; Lokshin, A.E. Drug-selected human lung cancer stem cells: Cytokine network, tumorigenic and metastatic properties. PLoS ONE 2008, 3, e3077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahkonen, S.; Koskinen, E.; Polonen, I.; Heinonen, T.; Ylikomi, T.; Ayramo, S.; Eskelinen, M.A. Multilabel segmentation of cancer cell culture on vascular structures with deep neural networks. J. Med. Imaging 2020, 7, 024001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sundquist, E.; Renko, O.; Salo, S.; Magga, J.; Cervigne, N.K.; Nyberg, P.; Risteli, J.; Sormunen, R.; Vuolteenaho, O.; Zandonadi, F.; et al. Neoplastic extracellular matrix environment promotes cancer invasion in vitro. Exp. Cell Res. 2016, 344, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Majumder, B.; Baraneedharan, U.; Thiyagarajan, S.; Radhakrishnan, P.; Narasimhan, H.; Dhandapani, M.; Brijwani, N.; Pinto, D.D.; Prasath, A.; Shanthappa, B.U.; et al. Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity. Nat. Commun. 2015, 6, 6169. [Google Scholar] [CrossRef] [Green Version]
- Pashneh-Tala, S.; MacNeil, S.; Claeyssens, F. The Tissue-Engineered Vascular Graft-Past, Present, and Future. Tissue Eng. Part B Rev. 2016, 22, 68–100. [Google Scholar] [CrossRef]
- Xu, S.; Lu, F.; Cheng, L.; Li, C.; Zhou, X.; Wu, Y.; Chen, H.; Zhang, K.; Wang, L.; Xia, J.; et al. Preparation and characterization of small-diameter decellularized scaffolds for vascular tissue engineering in an animal model. BioMed. Eng. OnLine 2017, 16, 55. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.H.; Hsia, K.; Ma, H.; Lee, H.; Lu, J.H. In Vivo Performance of Decellularized Vascular Grafts: A Review Article. Int. J. Mol. Sci. 2018, 19, 2101. [Google Scholar] [CrossRef] [Green Version]
- Robb, K.P.; Juignet, L.; Morissette Martin, P.; Walker, J.T.; Brooks, C.R.; Barreira, C.; Dekaban, G.A.; Flynn, L.E. Adipose Stromal Cells Enhance Decellularized Adipose Tissue Remodeling Through Multimodal Mechanisms. Tissue Eng. Part A 2021, 27, 618–630. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, X.Y.; Zhou, P.J.; He, Z.; Yan, H.Z.; Xu, D.D.; Wang, Y.; Fu, W.Y.; Ruan, B.B.; Wang, S.; et al. Use of immune modulation by human adipose-derived mesenchymal stem cells to treat experimental arthritis in mice. Am. J. Transl. Res. 2017, 9, 2595–2607. [Google Scholar]
- Maheswaran, S.; Haber, D.A. Ex Vivo Culture of CTCs: An Emerging Resource to Guide Cancer Therapy. Cancer Res. 2015, 75, 2411–2415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitra, A.; Mishra, L.; Li, S. Technologies for deriving primary tumor cells for use in personalized cancer therapy. Trends Biotechnol. 2013, 31, 347–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centenera, M.M.; Raj, G.V.; Knudsen, K.E.; Tilley, W.D.; Butler, L.M. Ex vivo culture of human prostate tissue and drug development. Nat. Rev. Urol. 2013, 10, 483–487. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Zhou, W.; Liu, C.; Zhang, H.; Cheng, Z.; Wu, W.; Liu, K.; Hu, H.; Zhong, C.; Zhang, Y.; et al. Establishment and Characterization of a CTC Cell Line from Peripheral Blood of Breast Cancer Patient. J. Cancer 2019, 10, 6095–6104. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Zhuang, R.; Long, M.; Pavlovic, M.; Kang, Y.; Ilyas, A.; Asghar, W. Circulating tumor cell isolation, culture, and downstream molecular analysis. Biotechnol. Adv. 2018, 36, 1063–1078. [Google Scholar] [CrossRef]
- Koch, C.; Kuske, A.; Joosse, S.A.; Yigit, G.; Sflomos, G.; Thaler, S.; Smit, D.J.; Werner, S.; Borgmann, K.; Gartner, S.; et al. Characterization of circulating breast cancer cells with tumorigenic and metastatic capacity. EMBO Mol. Med. 2020, 12, e11908. [Google Scholar] [CrossRef]
- Hwang, C.I.; Boj, S.F.; Clevers, H.; Tuveson, D.A. Preclinical models of pancreatic ductal adenocarcinoma. J. Pathol. 2016, 238, 197–204. [Google Scholar] [CrossRef] [Green Version]
- Caspar, A.; Mostertz, J.; Leymann, M.; Ziegler, P.; Evert, K.; Evert, M.; Zimmermann, U.; Brandenburg, L.O.; Burchardt, M.; Stope, M.B. In Vitro Cultivation of Primary Prostate Cancer Cells Alters the Molecular Biomarker Pattern. In Vivo 2016, 30, 573–579. [Google Scholar]
- Niranjan, B.; Lawrence, M.G.; Papargiris, M.M.; Richards, M.G.; Hussain, S.; Frydenberg, M.; Pedersen, J.; Taylor, R.A.; Risbridger, G.P. Primary culture and propagation of human prostate epithelial cells. Methods Mol. Biol. 2013, 945, 365–382. [Google Scholar]
- Zhao, C.; Yang, H.; Shi, H.; Wang, X.; Chen, X.; Yuan, Y.; Lin, S.; Wei, Y. Distinct contributions of angiogenesis and vascular co-option during the initiation of primary microtumors and micrometastases. Carcinogenesis 2011, 32, 1143–1150. [Google Scholar] [CrossRef] [Green Version]
- Ziyad, S.; Iruela-Arispe, M.L. Molecular mechanisms of tumor angiogenesis. Genes Cancer 2011, 2, 1085–1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardee, M.E.; Zagzag, D. Mechanisms of glioma-associated neovascularization. Am. J. Pathol. 2012, 181, 1126–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harma, V.; Virtanen, J.; Makela, R.; Happonen, A.; Mpindi, J.P.; Knuuttila, M.; Kohonen, P.; Lotjonen, J.; Kallioniemi, O.; Nees, M. A comprehensive panel of three-dimensional models for studies of prostate cancer growth, invasion and drug responses. PLoS ONE 2010, 5, e10431. [Google Scholar] [CrossRef] [PubMed]
Medium | Composition | Manufacturer |
---|---|---|
Stimulation medium | DMEM/F12 2.56 mM L-glutamine 0,1 nM 3,3’,5-Triiodo-L-thyronine sodium salt (T3) ITSTM Premix: 6.65 µg/mL insulin 6.65 µg/mL Transferrin 6.65 ng/mL seleniuous acid 1% Bovine serum albumin (BSA) 2.8 mM Sodium puryvate 100 µg/mL Ascorbic acid (AA) 0.25 µg/mL Heparin (HE) 1 µg/mL Hydrocortisone/cortisol (HY) 5 ng/mL Vascular endothelial growth factor (VEGF) 0.5 ng/mL fibroblast growth factor (FGF-β) | Gibco, Carlsbad, CA, USA Gibco Sigma (Saint Louis, MO, USA) BD (Franklin Lakes, NJ, USA) PAA (Pasching, Austria) Gibco Sigma Sigma Sigma R&D Systems (Minneapolis, MN, USA) R&DSystems |
Decellularization A solution | 0.5% Triton X-100 in 0.02 M NH4OH with 0.5 × Complete Protease inhibitor without EDTA | MP Biochemicals, (Solon, OH, USA) Honeywell Fluka (Regen, Germany) Roche (Basel, Switzerland) |
Decellularization B solution | 30 U/mL DNase and 0.5 × Complete Protease inhibitor without EDTA in 1 × DNAse Buffer | New England Biolabs (Ipswich, MA, USA) Roche New England Biolabs |
General cancer cell medium (GCM) | DMEM/F12 2 mM L-glutamine 5% Human serum | Gibco Gibco Lonza |
Liquid cancer sample medium (LCM) | DMEM/F12 2 mM L-glutamine 10% Supernatant from the isolation of the cells | Gibco Gibco |
MCF7 medium | DMEM/F12 2 mM L-glutamine 10% Fetal bovine serum (FBS) 10 ng/mL insulin | Gibco Gibco Gibco Sigma |
SH-SY5Y, KGN | DMEM/F12 2 mM L-glutamine 10% FBS 100 U/mL penicillin, 100 µg/mL streptomycin | Gibco Gibco Gibco Gibco |
U87-MG | EMEM 2 mM L-glutamine 10% FBS 1% NEAA 1 mM Sodium puryvate | ATCC (Manassas, VA, USA) Gibco Gibco Gibco Gibco |
PC3, LNCAP, and PC3M, 22RV1, ALVA-31, ECC1 medium | RPMI1640 (containing 1 mM L-glutamine) 10% FBS 100 U/mL penicillin, 100 µg/mL streptomycin | Gibco Gibco Gibco |
A549 medium | DMEM 2 mM L-glutamine 10% Fetal calf serum (FCS) 100 U/mL penicillin, 100 µg/mL streptomycin | Gibco Gibco Gibco Gibco |
H460 medium | RPMI1640 2 mM L-glutamine 10% FCS 100 U/mL penicillin, 100 µg/mL streptomycin | Gibco Gibco Gibco Gibco |
Antibody, Product Number | Target | Manufacturer |
---|---|---|
Anti-human von Willebrand factor IgG (anti-VWF), F3520 | Endothelial cells | Sigma |
Anti-collagen IV (anti-COLIV), clone COL-94, C1926 | basement membrane | Sigma |
anti-ALDH1A1, ab52492 | cancer cells | Abcam |
anti-α-actin, A7811 | cancer cells | Sigma |
anti-fibronectin, ab194395 | ECM | Abcam |
anti-collagen I, SAB4500362 | ECM | Sigma |
anti-rabbit IgG A568, A11011 | secondary antibody | Invitrogen |
anti-mouse IgG fluorescein isothiocyanate (FITC), F4143 | secondary antibody | Sigma |
Sample | Cancer Type | Sex | Race | Sample | Progressive Disease | Grade/Stage |
---|---|---|---|---|---|---|
Sample 1 | Hepatocellular carcinoma | Male | Caucasian | Ascites fluid | Yes | Metastasized |
Sample 2 | Lung adenocarcinoma | Male | Caucasian | Pleural effusion | N/A | Metastasized |
Sample 3 | Lung adenocarcinoma | Male | Caucasian | Pleural effusion | Yes | Metastasized |
Sample 4 | Carcinoma ventriculi | Male | Caucasian | Pleural effusion | N/A | Metastasized |
Sample 5 | Mammary carcinoma | Female | Caucasian | Pleural effusion | N/A | Metastasized |
Sample 6 | Gastrointestinal adenocarsinoma | Male | Caucasian | Ascites fluid | N/A | Metastasized |
Sample 7 | Ovarian cancer | Female | Caucasian | Solid tumor | N/A | High grade, localized |
Sample 8 | Originating from colon, adenocarcinoma | Male | Caucasian | Ascites fluid | Yes | Metastasized |
Sample 9 | High-grade serous epithelial ovarian cancer | Female | Caucasian | Ascites fluid | Yes | High grade |
Sample 10 | Thyroid cancer | Male | Caucasian | Pleural effusion | Yes | Metastasized |
Sample 11 | Ovarian cancer | Female | Caucasian | Solid tumor | N/A | Localized |
Sample 12 | Breast cancer | Female | Caucasian | Pleural effusion | Yes | Metastasized |
Sample 13 | Sigmoidal adenocarcinoma | Female | Caucasian | Ascites fluid | Yes | Metastasized |
Sample 14 | Ovarian cancer | Female | Caucasian | Solid tumor | N/A | Localized |
Cancer Drug | Concentrations Used in The Study |
---|---|
Doxorubicin | 6 µM, 3 µM or 0.3 µM |
Docetaxel | 3 µM, 1 µM or 0.1 µM; |
5-fluorouracil | 6 µM, 3 µM or 1 µM |
Lapatinib | 6 µM, 3 µM or 1 µM |
4-hydroperoxycyclophosamide (active metabolite of cyclophosphamide) | 100 µM, 10 µM or 1 µM |
Paclitaxel | 6 µM, 3 µM or 1 µM |
Cell Line | Origin/Description | Tumorigenicity of the Cells | 3D Culture Pattern from Literature | Reference | Growth Pattern on DC | Proliferation on DC vs. Plastic | |
---|---|---|---|---|---|---|---|
Metastatic/invasive cell lines | A549 | Non-small cell lung cancer | Tumorigenic | N/A | [27] | Network | N/A |
ALVA-31 | Prostate adenocarcinoma, metastasis from bone | Tumorigenic | Invasive in 3D culture | [28,29,30,31] | Both clusters and network | Lower on DC, non-significant | |
KGN | Invasive ovarian granulosa cell carcinoma, stage III | Tumorigenic, slow tumor growth | N/A | [32,33] | Not forming specific pattern | No difference | |
PC3M | Prostate carcinoma, derived from PC3 | High | Invasive in 3D | [29,34] | Network, some clusters | Faster on DC | |
SH-SY5Y | Neuroblastoma, metastatic bone tumor | Tumors in nude mice in 3–4 weeks | N/A | [35,36] | Loose cluster | No difference | |
U87-MG | Glioblastoma | High tumorigenic | N/A | [37] | Network | No difference | |
PC3 | Prostate adenocarcinoma, bone metastasis grade IV | High tumorigenic | Invasive in 3D | [29,38,39] | Network | Lower on DC, non-significant | |
Non- metastatic cell lines | 22RV1 | Prostatic carcinoma xenograft line, derived from CWR22R | Tumorigenic | N/A | [40,41] | Unevenly shaped large clusters | Lower on DC, non-significant |
ECC-1 | Endometrial adenocarsinoma, grade 2 | Well-differentiated, low proliferation | N/A | [42,43,44,45] | Cluster | Lower on DC, non-significant | |
LNCAP | Human prostate adenocarcinoma, lymph node metastasis | Low tumorigenic | Non-invasive in 3D | [29,46,47] | Cluster | Lower on DC, non-significant | |
MCF7 | Breast ductal carcinoma, pleural effusion | Low tumorigenicity without estrogen | N/A | [48,49,50] | Cluster (no estrogen supplementation used) | No difference | |
H460 | Large cell cancer of the lung | Low tumorigenic potential | N/A | [51,52] | Cluster | N/A |
Sample/Type | Growth on DC | Metastatic Cancer? | Drug Sensitivity on DC | Drug Sensitivity on Plastic | Clinical Drug Sensitivity | Responses on DC Correlate with Clinical Observations? |
---|---|---|---|---|---|---|
1/A | No clear pattern | Metastasized, PD | None | None | No effective drugs known | Yes: no effective drugs known |
2/PE | No clear pattern | Metastasized | Doxorubicin ***, Docetaxel * | None | EGFR negative (no response for lapatinib), doxorubicin and docetaxel, commonly used for this cancer type | Yes: Doxorubicin and docetaxel commonly used, lapatinib not effective |
11/S | No clear pattern | Localized | D3: Doxorubicin ***, D6: doxorubicin ***, docetaxel ***, paclitaxel *** | D3: Doxorubicin ***, D6: Doxorubicin ***, docetaxel **, paclitaxel *** | No treatment received | Unknown |
3/PE | Cluster | Metastasized, PD | Doxorubicin ** | None | EGFR neg (not responsive to lapatinib) treated with cisplatin | Yes: lapatinib not effective |
8/A | Cluster | Metastasized, PD | D3: Doxorubicin *** D6: Doxorubicin ***, docetaxel ***, lapatinib ***, paclitaxel ***, 5-FU *** | D3: None D6: Doxorubicin ***, docetaxel ***, paclitaxel **, 5-FU *** | Not responsive to oxaliplatin or anti-angiogenic regorafenib | Unkown |
9/A | Cluster | High grade, PD | D3 and D6: Doxorubicin ***, Docetaxel ***, paclitaxel *** | D3 and D6: Doxorubicin ***, Docetaxel **, paclitaxel *** | Not responsive to paclitaxel | No |
10/PE | Cluster | Metastasized, PD | D3 and D6: Doxorubicin*** | D3 and D6: none | Not responsive to anti-angiogenic sorafenib | Yes: anti-angiogenic lapatinib not effective |
12/PE | Cluster | Metastasized, PD | D3: Doxorubicin ***, docetaxel ***, lapatinib *** D6: doxorubicin ***, paclitaxel *** | D3: None, D6: Doxorubicin ***, paclitaxel *, docetaxel ** | ER+, PR+, HER2−, Not responsive to Cabecitabine (5-FU) | Yes: Capecitabine not effective |
4/P | Cluster and network | Metastasized | Doxorubicin ** | Doxorubicin ** | No response for 5-FU or capecitabine. Doxorubicin could be effective for this cancer | Unknown: Doxorubicin could be effective by clinicians estimate |
13/A | Cluster and network | Metastasized, PD | None | None | Not responsive to Cabecitabine | Yes: Capecitabine not effective |
7/S | Cluster and network | High grade, localized | Doxorubicin ***, Docetaxel * | None | Naive sample, responsive to paclitaxel, docetaxel | Yes: docetaxel effective on DC |
14/S | Cluster and network | Localized | D3: Doxorubicin *** D6: Doxorubicin ***, Docetaxel **, paclitaxel *** | D3: Doxorubicin D6: Doxorubicin ***, paclitaxel *** | Paclitaxel should be effective | Yes: Paclitaxel effective |
5/PE | Network | Metastasized | Doxorubicin ***, Docetaxel ** | Doxorubicin *** | ER+ PR+, HER2−, Not responsive to Docetaxel | No |
6/A | Network | Metastasized | Doxorubicin ***, Docetaxel *** | Doxorubicin ***, Docetaxel ***, 5-FU ***, Capecitabine *, Lapatinib ** | Resistant to capesitabine (5-FU pro-drug) | Yes: Capesitabine not effective on DC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huttala, O.; Loreth, D.; Staff, S.; Tanner, M.; Wikman, H.; Ylikomi, T. Decellularized In Vitro Capillaries for Studies of Metastatic Tendency and Selection of Treatment. Biomedicines 2022, 10, 271. https://doi.org/10.3390/biomedicines10020271
Huttala O, Loreth D, Staff S, Tanner M, Wikman H, Ylikomi T. Decellularized In Vitro Capillaries for Studies of Metastatic Tendency and Selection of Treatment. Biomedicines. 2022; 10(2):271. https://doi.org/10.3390/biomedicines10020271
Chicago/Turabian StyleHuttala, Outi, Desiree Loreth, Synnöve Staff, Minna Tanner, Harriet Wikman, and Timo Ylikomi. 2022. "Decellularized In Vitro Capillaries for Studies of Metastatic Tendency and Selection of Treatment" Biomedicines 10, no. 2: 271. https://doi.org/10.3390/biomedicines10020271
APA StyleHuttala, O., Loreth, D., Staff, S., Tanner, M., Wikman, H., & Ylikomi, T. (2022). Decellularized In Vitro Capillaries for Studies of Metastatic Tendency and Selection of Treatment. Biomedicines, 10(2), 271. https://doi.org/10.3390/biomedicines10020271