Photodynamic Inactivation of Antibiotic-Resistant and Sensitive Aeromonas hydrophila with Peripheral Pd(II)- vs. Zn(II)-Phthalocyanines
Abstract
:1. Introduction
2. Material and Methods
2.1. Phthalocyanines
2.1.1. Synthesis of 2,(3),9(10),16(17),23(24)-Tetrakis-[(2-pyridyloxy) phthalocyaninato] Palladium (II), (2)
2.1.2. Synthesis of 2,(3),9(10),16(17),13(24)-Tetrakis-{[(2-(N-methyl)pyridyloxy]phthalocyaninato} Palladium (II) Sulphate, (3)
2.2. Bacterial Strains
2.3. Photodynamic Inactivation Study
2.4. Uptake Study
2.5. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berendonk, T.U.; Manaia, C.M.; Merlin, C.; Fatta-Kassinos, D.; Cytryn, E.; Walsh, F.; Buergmann, H.; Sørum, H.; Norström, M.; Pons, M.-N.; et al. Tackling antibiotic resistance: The environmental framework. Nat. Rev. Microbiol. 2015, 13, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Conte, D.; Palmeiro, J.K.; Bavaroski, A.A.; Rodrigues, L.S.; Cardozo, D.; Tomaz, A.P.; Camargo, J.O.; Dalla-Costa, L.M. Antimicrobial resistance in Aeromonas species isolated from aquatic environments in Brazil. J. Appl. Microbiol. 2021, 131, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Varela, A.R.; Nunes, O.; Manaia, C.M. Quinolone resistant Aeromonas spp. as carriers and potential tracers of acquired antibiotic resistance in hospital and municipal wastewater. Sci. Total Environ. 2016, 542, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Skwor, T.; Shinko, J.; Augustyniak, A.; Gee, C.; Andraso, G. Aeromonas hydrophila and Aeromonas veronii Predominate among Potentially Pathogenic Ciprofloxacin- and Tetracycline-Resistant Aeromonas Isolates from Lake Erie. Appl. Environ. Microbiol. 2013, 80, 841–848. [Google Scholar] [CrossRef] [Green Version]
- Navarro, A.; Martinez-Murcia, A. Phylogenetic analyses of the genus Aeromonas based on housekeeping gene sequencing and its influence on systematics. J. Appl. Microbiol. 2018, 125, 622–631. [Google Scholar] [CrossRef] [Green Version]
- Scarafile, G. Antibiotic resistance: Current issues and future strategies. Rev. Heal. Care 2016, 7, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Baron, S.; Granier, S.A.; Larvor, E.; Jouy, E.; Cineux, M.; Wilhelm, A.; Gassilloud, B.; Le Bouquin, S.; Kempf, I.; Chauvin, C. Aeromonas Diversity and Antimicrobial Susceptibility in Freshwater—An Attempt to Set Generic Epidemiological Cut-Off Values. Front. Microbiol. 2017, 8, 503–509. [Google Scholar] [CrossRef] [Green Version]
- Moura, Q.; Fernandes, M.R.; Cerdeira, L.; Santos, A.C.M.; de Souza, T.A.; Ienne, S.; Pignatari, A.C.C.; Gales, A.C.; Silva, R.M.; Lincopan, N. Draft genome sequence of a multidrug-resistant Aeromonas hydrophila ST508 strain carrying rmtD and blaCTX-M-131isolated from a bloodstream infection. J. Glob. Antimicrob. Resist. 2017, 10, 289–290. [Google Scholar] [CrossRef] [PubMed]
- Sobotta, L.; Skupin-Mrugalska, P.; Piskorz, J.; Mielcarek, J. Porphyrinoid photosensitizers mediated photodynamic inactivation against bacteria. Eur. J. Med. Chem. 2019, 175, 72–106. [Google Scholar] [CrossRef]
- Almeida-Marrero, V.; González-Delgado, J.A.; Torres, T. Emerging Perspectives on Applications of Porphyrinoids for Photodynamic Therapy and Photoinactivation of Microorganisms. Macroheterocycles 2019, 12, 8–16. [Google Scholar] [CrossRef]
- Wainwrigh, M.; Maisch, T.; Nonell, S.; Plaetzer, K.; Almeida, A.; Tegos, G.P.; Hamblin, M.R. Photoantimicrobials—are we afraid of the light? Lancet Infect. Dis. 2017, 17, 49. [Google Scholar] [CrossRef]
- Nasrin, S.; Hegerle, N.; Sen, S.; Nkeze, J.; Sen, S.; Permala-Booth, J.; Choi, M.; Sinclair, J.; Tapia, M.D.; Johnson, J.K.; et al. Distribution of serotypes and antibiotic resistance of invasive Pseudomonas aeruginosa in a multi-country collection. BMC Microbiol. 2022, 22, 1–12. [Google Scholar] [CrossRef]
- Prochnow, E.P.; Martins, M.R.; Campagnolo, C.B.; Santos, R.C.; Villetti, M.A.; Kantorski, K.Z. Antimicrobial photodynamic effect of phenothiazinic photosensitizers in formulations with ethanol on Pseudomonas aeruginosa biofilms. Photodiagnosis Photodyn. Ther. 2015, 13, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Paronyan, M.H.; Koloyan, H.O.; Avetisyan, S.V.; Aganyants, H.A.; Hovsepyan, A. Study of the possible development of bacterial resistance to photodynamic in- activation. Biol. J. Armen. 2019, 71, 17–22. [Google Scholar]
- Pedigo, L.A.; Gibbs, A.J.; Scott, R.J.; Street, C.N. Absence of bacterial resistance following repeat exposure to photodynamic therapy. In: Photodynamic Therapy: Back to the Future. Int. Soc. Opt. Photonics 2009, 7380, 73803. [Google Scholar]
- Galstyan, A. Turning Photons into Drugs: Phthalocyanine-Based Photosensitizers as Efficient Photoantimicrobials. Chem. Eur. J. 2020, 27, 1903–1920. [Google Scholar] [CrossRef]
- Spesia, M.B.; Durantini, E.N. Evolution of Phthalocyanine Structures as Photodynamic Agents for Bacteria Inactivation. Chem. Rec. 2022, e202100292. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zheng, B.-D.; Peng, X.-H.; Li, S.-Z.; Ying, J.-W.; Zhao, Y.; Huang, J.-D.; Yoon, J. Phthalocyanines as medicinal photosensitizers: Developments in the last five years. Coord. Chem. Rev. 2019, 379, 147–160. [Google Scholar] [CrossRef]
- Sen, P.; Mack, J.; Nyokong, T. Indium phthalocyanines: Comparative photophysicochemical properties and photodynamic antimicrobial activities against Staphylococcus aureus and Escherichia coli. J. Mol. Struct. 2021, 1250, 131850. [Google Scholar] [CrossRef]
- Ogunsipe, A.; Nyokong, T. Photophysical and photochemical studies of sulphonated non-transition metal phthalocyanines in aqueous and non-aqueous media. J. Photochem. Photobiol. A Chem. 2005, 173, 211–220. [Google Scholar] [CrossRef]
- Karanlık, C.C.; Atmaca, G.Y.; Erdoğmuş, A. Improved Singlet Oxygen Yields of New Palladium Phthalocyanines Using Sonochemistry and Comparisons with Photochemistry. Polyhedron 2021, 206, 115351. [Google Scholar] [CrossRef]
- Kulu, I.; Mantareva, V.; Kussovski, V.; Angelov, I.; Durmuş, M. Effects of metal ion in cationic Pd(II) and Ni(II) phthalocyanines on physicochemical and photodynamic inactivation properties. J. Mol. Struct. 2021, 1247, 131288. [Google Scholar] [CrossRef]
- Wöhrle, D.; Iskander, N.; Graschew, G.; Sinn, H.; Friedrich, E.A.; Maierborst, W.; Stern, M. Synthesis of positively charged phthalocyanines and their activity in the photodynamic therapy of cancer cells. Photochem. Photobiol. 1990, 51, 351–356. [Google Scholar] [CrossRef]
- Remichkova, M.; Mukova, L.; Nikolaeva-Glomb, L.; Nikolova, N.; Doumanova, L.; Mantareva, V.; Angelov, I.; Kussovski, V.; Galabov, A.S. Virus inactivation under the photodynamic effect of phthalocyanine zinc(II) complexes. 2016, 72, 123–128. Zeitschrift für Naturforschung C 2016, 72, 123–128. [Google Scholar] [CrossRef]
- Nikolaeva-Glomb, L.; Mukova, L.; Nikolova, N.; Kussovski, V.; Doumanova, L.; Mantareva, V.; Angelov, I.; Wöhrle, D.; Galabov, A.S. Photodynamic Effect of some Phthalocyanines on Enveloped and Naked Viruses. Acta Virol. 2017, 61, 341–346. [Google Scholar] [CrossRef] [Green Version]
- Mantareva, V.; Angelov, I.; Syuleyman, M.; Kussovski, V.; Eneva, I.; Avramov, L.; Borisova, E. Phthalocyanines Structure Versus Photodynamic Effectiveness towards Pathogenic Microorganisms: Our Recent Experience. J. Biomed. Photonics Eng. 2021, 7, 040202. [Google Scholar] [CrossRef]
- Goni-Urriza, M.; Pineau, L.; Capdepuy, M.; Roques, C.; Caumette, P.; Quentin, C. Antimicrobial resistance of mesophilic Aeromonas spp. isolated from two European rivers. J. Antimicrob. Chemoth. 2000, 46, 297–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kussovski, V.; Mantareva, V.; Angelov, I.; Orozova, P.; Wöhrle, D.; Schnurpfeil, G.; Borisova, E.; Avramov, L. Photodynamic inactivation of Aeromonas hydrophila by cationic phthalocyanines with different hydrophobicity. FEMS Microbiol. Lett. 2009, 294, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, P.S.C.; Lourenço, M.O.L. Overview of cationic phthalocyanines for effective photoinactivation of pathogenic microorganisms. J. Photochem. Photobiol. C Photochem. Rev. 2021, 48, 100422. [Google Scholar] [CrossRef]
- Le Guern, F.; Ouk, T.S.; Yerzhan, I.; Nurlykyz, Y.; Arnoux, P.; Frochot, C.; Leroy-Lhez, S.; Sol, V. Photophysical and Bactericidal Properties of Pyridinium and Imidazolium Porphyrins for Photodynamic Antimicrobial Chemotherapy. Molecules 2021, 26, 1122. [Google Scholar] [CrossRef]
- Kwiatkowski, S.; Knap, B.; Przystupski, D.; Saczko, J.; Kędzierska, E.; Knap-Czop, K.; Kotlińska, J.; Michel, O.; Kotowski, K.; Kulbacka, J. Photodynamic therapy–Mechanisms, photosensitizers and combinations. Biomed. Pharmacother. 2018, 106, 1098–1107. [Google Scholar] [CrossRef]
- Mantareva, V.; Kussovski, V.; Angelov, I. Cationic Metal Phthalocyanines as Effective Photosensitizers Towards Pathogenic Microorganisms. In Photosensitizers: Types, Uses and Selected Research; Withmire, C., Ed.; Nova Science Publishing Inc.: New York, NY, USA, 2016; p. 115. [Google Scholar]
- Heredia, D.A.; Durantini, J.E.; Ferreyra, D.D.; Reynoso, E.; Gonzalez Lopez, E.J.; Durantini, A.M.; Milanesio, E.M.; Durantini, E.N. Charge density distribution effect in pyrrolidine-fused chlorins on microbial uptake and antimicrobial photoinactivation of microbial pathogens. J. Photochem. Photobiol. B Biol. 2021, 225, 11232. [Google Scholar] [CrossRef] [PubMed]
- Rapacka-Zdończyk, A.; Woźniak, A.; Michalska, K.; Pierański, M.; Ogonowska, P.; Grinholc, M.; Nakonieczna, J. Factors Determining the Susceptibility of Bacteria to Antibacterial Photodynamic Inactivation. Front. Med. 2021, 8. [Google Scholar] [CrossRef] [PubMed]
- Dogandzhiyska, V.; Dimitrov, S.L.; Angelov, I.; Mantareva, V.; Gueorgieva, T. Investigation of biocompatibility of Zn- and Ga-based Metal phthalocyanine and FotoSan ™ Photosensitizers, activated by laser light. SYLWAN 2021, 165, 151–163. [Google Scholar]
- Gueorgieva, T.; Dimitrov, S.L.; Angelov, I.; Mantareva, V.; Dogandzhiyska, V. In Vivo study of the inflammatory reaction against three different laser light activated photosensitizers. SYLWAN 2021, 165, 126–136. [Google Scholar]
Aeromonas hydrophila (R) | Aeromonas hydrophila (S) | ||||
---|---|---|---|---|---|
Antimicrobial Agent | Disk Content (µg) | Sensitivity | Antimicrobial Agent | Disk Content (µg) | Sensitivity |
Ampicillin | 10 | R | Ampicillin | 10 | R |
Ceftiofur | 30 | R | Ceftiofur | 30 | S |
Florfenicol | 30 | R | Florfenicol | 30 | S |
Enrofloxacin | 5 | R | Enrofloxacin | 5 | S |
Cotrimo-xazol | 25 | R | Cotrimo-xazol | 25 | S |
Doxycyclin | 30 | R | Doxycyclin | 30 | S |
Sparfloxacin | 5 | R | Sparfloxacin | 5 | S |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mantareva, V.N.; Kussovski, V.; Orozova, P.; Dimitrova, L.; Kulu, I.; Angelov, I.; Durmus, M.; Najdenski, H. Photodynamic Inactivation of Antibiotic-Resistant and Sensitive Aeromonas hydrophila with Peripheral Pd(II)- vs. Zn(II)-Phthalocyanines. Biomedicines 2022, 10, 384. https://doi.org/10.3390/biomedicines10020384
Mantareva VN, Kussovski V, Orozova P, Dimitrova L, Kulu I, Angelov I, Durmus M, Najdenski H. Photodynamic Inactivation of Antibiotic-Resistant and Sensitive Aeromonas hydrophila with Peripheral Pd(II)- vs. Zn(II)-Phthalocyanines. Biomedicines. 2022; 10(2):384. https://doi.org/10.3390/biomedicines10020384
Chicago/Turabian StyleMantareva, Vanya N., Vesselin Kussovski, Petya Orozova, Lyudmila Dimitrova, Irem Kulu, Ivan Angelov, Mahmut Durmus, and Hristo Najdenski. 2022. "Photodynamic Inactivation of Antibiotic-Resistant and Sensitive Aeromonas hydrophila with Peripheral Pd(II)- vs. Zn(II)-Phthalocyanines" Biomedicines 10, no. 2: 384. https://doi.org/10.3390/biomedicines10020384
APA StyleMantareva, V. N., Kussovski, V., Orozova, P., Dimitrova, L., Kulu, I., Angelov, I., Durmus, M., & Najdenski, H. (2022). Photodynamic Inactivation of Antibiotic-Resistant and Sensitive Aeromonas hydrophila with Peripheral Pd(II)- vs. Zn(II)-Phthalocyanines. Biomedicines, 10(2), 384. https://doi.org/10.3390/biomedicines10020384