Chronic Obstructive Pulmonary Disease: The Present and Future
1. The Present of COPD
2. Phenotype-Guided Therapies
2.1. Genetic and Epigenetic Mechanisms
2.2. Lung Microbiome
3. Comorbidities
3.1. Functional State
3.2. Iron Balance and Metabolism
4. Epidemiological Findings
4.1. Reporting COPD Outcomes
4.2. Large Dataset Analysis
5. The Future of COPD
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Quaderi, S.A.; Hurst, J.R. The unmet global burden of COPD. Glob. Health Epidemiol. Genom. 2018, 3, e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Celli, B.R.; Locantore, N.; Tal-Singer, R.; Riley, J.; Miller, B.; Vestbo, J.; Yates, J.C.; Silverman, E.K.; Owen, C.A.; Divo, M.; et al. Emphysema and extrapulmonary tissue loss in COPD: A multi-organ loss of tissue phenotype. Eur. Respir. J. 2018, 51, 1702146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuang, J.C.; Jones, P.A. Epigenetics and MicroRNAs. Pediatric Res. 2021, 61, 24–29. [Google Scholar] [CrossRef]
- Keir, H.R.; Contoli, M.; Chalmers, J.D. Inhaled Corticosteroids and the Lung Microbiome in COPD. Biomedicines 2021, 9, 1312. [Google Scholar] [CrossRef]
- Turner, A.M.; Tamasi, L.; Schleich, F.; Hoxha, M.; Horvath, I.; Louis, R.; Barnes, N. Clinically relevant subgroups in COPD and asthma. Eur. Respir. Rev. 2015, 24, 283–298. [Google Scholar] [CrossRef] [Green Version]
- Singh, D. Pharmacological treatment of stable chronic obstructive pulmonary disease–Singh–2021–Respirology–Wiley Online Library. Respirology 2021, 26, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Brenner, D.R.; McLaughlin, J.R.; Hung, R.J. Previous lung diseases and lung cancer risk: A systematic review and meta-analysis. PLoS ONE 2011, 6, e17479. [Google Scholar] [CrossRef]
- Green, C.E.; Clarke, J.; Bicknell, R.; Turner, A.M. Pulmonary MicroRNA Changes Alter Angiogenesis in Chronic Obstructive Pulmonary Disease and Lung Cancer. Biomedicines 2021, 9, 830. [Google Scholar] [CrossRef]
- Kaza, A.K.; Kron, I.L.; Kern, J.A.; Long, S.M.; Fiser, S.M.; Nguyen, R.P.; Tribble, C.G.; Laubach, V.E. Retinoic acid enhances lung growth after pneumonectomy. Ann. Thorac. Surg. 2001, 71, 1645–1650. [Google Scholar] [CrossRef]
- Qin, L.; Guitart, M.; Curull, V.; Sánchez-Font, A.; Duran, X.; Tang, J.; Admetlló, M.; Barreiro, E. Systemic Profiles of microRNAs, Redox Balance, and Inflammation in Lung Cancer Patients: Influence of COPD. Biomedicines 2021, 9, 1347. [Google Scholar] [CrossRef]
- Mateu-Jimenez, M.; Curull, V.; Rodríguez-Fuster, A.; Aguiló, R.; Sánchez-Font, A.; Pijuan, L.; Gea, J.; Barreiro, E. Profile of epigenetic mechanisms in lung tumors of patients with underlying chronic respiratory conditions. Clin. Epigenetics 2018, 10, 7. [Google Scholar] [CrossRef] [Green Version]
- Sotgia, S.; Paliogiannis, P.; Sotgiu, E.; Mellino, S.; Zinellu, E.; Fois, A.G.; Pirina, P.; Carru, C.; Mangoni, A.A.; Zinellu, A. Systematic Review and Meta-Analysis of the Blood Glutathione Redox State in Chronic Obstructive Pulmonary Disease. Antioxidants 2020, 9, 1146. [Google Scholar] [CrossRef] [PubMed]
- Carrasco-Hernández, L.; Quintana-Gallego, E.; Calero, C.; Reinoso-Arija, R.; Ruiz-Duque, B.; López-Campos, J.L. Dysfunction in the Cystic Fibrosis Transmembrane Regulator in Chronic Obstructive Pulmonary Disease as a Potential Target for Personalised Medicine. Biomedicines 2021, 9, 1437. [Google Scholar] [CrossRef] [PubMed]
- Armitage, M.N.; Spittle, D.A.; Turner, A.M. A Systematic Review and Meta-Analysis of the Prevalence and Impact of Pulmonary Bacterial Colonisation in Stable State Chronic Obstructive Pulmonary Disease (COPD). Biomedicines 2021, 10, 81. [Google Scholar] [CrossRef] [PubMed]
- Beech, A.; Lea, S.; Li, J.; Jackson, N.; Mulvanny, A.; Singh, D. Airway Bacteria Quantification Using Polymerase Chain Reaction Combined with Neutrophil and Eosinophil Counts Identifies Distinct COPD Endotypes. Biomedicines 2021, 9, 1337. [Google Scholar] [CrossRef] [PubMed]
- Divo, M.; Cote, C.; Torres, J.P.d.; Casanova, C.; Marin, J.M.; Pinto-Plata, V.; Zulueta, J.; Cabrera, C.; Zagaceta, J.; Hunninghake, G.; et al. Comorbidities and Risk of Mortality in Patients with Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2012, 186, 155–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burgel, P.-R.; Paillasseur, J.-L.; Janssens, W.; Piquet, J.; Riet, G.t.; Garcia-Aymerich, J.; Cosio, B.; Bakke, P.; Puhan, M.A.; Langhammer, A.; et al. A simple algorithm for the identification of clinical COPD phenotypes. Eur. Respir. J. 2017, 50, 1701034. [Google Scholar] [CrossRef] [Green Version]
- Bafadhel, M.; Greening, N.J.; Harvey-Dunstan, T.C.; Williams, J.E.; Morgan, M.D.; Brightling, C.E.; Hussain, S.F.; Pavord, I.D.; Singh, S.J.; Steiner, M.C. Blood eosinophils and outcomes in severe hospitalized exacerbations of COPD. Chest 2016, 150, 320–328. [Google Scholar] [CrossRef]
- National Institute for Health and Care Excellence. Overview|Chronic Obstructive Pulmonary Disease in over 16s: Diagnosis and Management|Guidance|NICE. Available online: https://www.nice.org.uk/guidance/ng115 (accessed on 24 December 2021).
- Marengoni, A.; Vetrano, D.L.; Manes-Gravina, E.; Bernabei, R.; Onder, G.; Palmer, K. The relationship between COPD and frailty: A systematic review and meta-analysis of observational studies. Chest 2018, 154, 21–40. [Google Scholar] [CrossRef]
- Takahashi, S.; Hirano, T.; Yasuda, K.; Donishi, T.; Suga, K.; Doi, K.; Oishi, K.; Ohata, S.; Murata, Y.; Yamaji, Y.; et al. Impact of Frailty on Hippocampal Volume in Patients with Chronic Obstructive Pulmonary Disease. Biomedicines 2021, 9, 1103. [Google Scholar] [CrossRef]
- Ponikowski, P.; Van Veldhuisen, D.J.; Comin-Colet, J.; Ertl, G.; Komajda, M.; Mareev, V.; McDonagh, T.; Parkhomenko, A.; Tavazzi, L.; Levesque, V.; et al. Beneficial effects of long-term intravenous iron therapy with ferric carboxymaltose in patients with symptomatic heart failure and iron deficiency. Eur. Heart J. 2021, 36, 657–668. [Google Scholar] [CrossRef]
- Pérez-Peiró, M.; Martín-Ontiyuelo, C.; Rodó-Pi, A.; Piccari, L.; Admetlló, M.; Durán, X.; Rodríguez-Chiaradía, D.A.; Barreiro, E. Iron Replacement and Redox Balance in Non-Anemic and Mildly Anemic Iron Deficiency COPD Patients: Insights from a Clinical Trial. Biomedicines 2021, 9, 1191. [Google Scholar] [CrossRef]
- Baker, J.M.; Hammond, M.; Dungwa, J.; Shah, R.; Montero-Fernandez, A.; Higham, A.; Lea, S.; Singh, D. Red Blood Cell-Derived Iron Alters Macrophage Function in COPD. Biomedicines 2021, 9, 1939. [Google Scholar] [CrossRef] [PubMed]
- Mathioudakis, A.G.; Abroug, F.; Agusti, A.; Ananth, S.; Bakke, P.; Bartziokas, K.; Beghe, B.; Bikov, A.; Bradbury, T.; Brusselle, G.; et al. ERS Statement: A core outcome set for clinical trials evaluating the management of chronic obstructive pulmonary disease (COPD) exacerbations. Eur. Respir. J. 2021, 2102006. [Google Scholar] [CrossRef]
- Mathioudakis, A.G.; Ananth, S.; Bradbury, T.; Csoma, B.; Sivapalan, P.; Stovold, E.; Fernandez-Romero, G.; Lazar, Z.; Criner, G.J.; Jenkins, C.; et al. Assessing Treatment Success or Failure as an Outcome in Randomised Clinical Trials of COPD Exacerbations. A Meta-Epidemiological Study. Biomedicines 2021, 9, 1837. [Google Scholar] [CrossRef]
- Jordan, A.; Sivapalan, P.; Eklöf, J.; Vestergaard, J.B.; Meteran, H.; Saeed, M.I.; Biering-Sørensen, T.; Løkke, A.; Seersholm, N.; Jensen, J.U.S. The Association between Use of ICS and Psychiatric Symptoms in Patients with COPD—A Nationwide Cohort Study of 49,500 Patients. Biomedicines 2021, 9, 1492. [Google Scholar] [CrossRef] [PubMed]
- Pooler, A.; Beech, R. Examining the relationship between anxiety and depression and exacerbations of COPD which result in hospital admission: A systematic review. Int. J. Chronic Obstr. Pulm. Dis. 2014, 9, 315–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rastoder, E.; Sivapalan, P.; Eklöf, J.; Saeed, M.I.; Jordan, A.S.; Meteran, H.; Tønnesen, L.; Biering-Sørensen, T.; Løkke, A.; Seersholm, N.; et al. Systemic Corticosteroids and the Risk of Venous Thromboembolism in Patients with Severe COPD: A Nationwide Study of 30,473 Outpatients. Biomedicines 2021, 9, 874. [Google Scholar] [CrossRef]
- Bergsøe, C.M.; Sivapalan, P.; Saeed, M.I.; Eklöf, J.; Saghir, Z.; Sørensen, R.; Biering-Sørensen, T.; Jensen, J.-U.S. Risk of Chronic Obstructive Pulmonary Disease Exacerbation in Patients Who Use Methotrexate—A Nationwide Study of 58,580 Outpatients. Biomedicines 2021, 9, 604. [Google Scholar] [CrossRef]
- Wu, S.-M.; Sun, W.-L.; Lee, K.-Y.; Lin, C.-W.; Feng, P.-H.; Chuang, H.-C.; Ho, S.-C.; Chen, K.-Y.; Chen, T.-T.; Liu, W.-T.; et al. Determinants of Pulmonary Emphysema Severity in Taiwanese Patients with Chronic Obstructive Pulmonary Disease: An Integrated Epigenomic and Air Pollutant Analysis. Biomedicines 2021, 9, 1833. [Google Scholar] [CrossRef]
- Ruvuna, L.; Sood, A. Epidemiology of Chronic Obstructive Pulmonary Disease. Clin. Chest Med. 2020, 41, 315–327. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Villa, C.; Dobarganes, Y.; Olveira, C.; Girón, R.; García-Clemente, M.; Máiz, L.; Sibila, O.; Golpe, R.; Menéndez, R.; et al. Systemic Inflammatory Biomarkers Define Specific Clusters in Patients with Bronchiectasis: A Large-Cohort Study. Biomedicines 2022, 10, 225. [Google Scholar] [CrossRef]
Subgroup | Established Treatment | Future Management Considerations |
---|---|---|
Frequent exacerbator | LABA, LAMA, ICS, roflumilast, macrolides | Optimisation of comorbid physical and mental health conditions [27] |
Chronic bronchitis | Roflumilast, mucolytics | Use of CFTR modulators [13] |
Emphysema | Lung volume reduction surgery | Correction of miR overexpression [8] |
Type 1 respiratory failure | Long-term oxygen therapy | Increased vigilance for VTE in acute illness [29] |
Type 2 respiratory failure | Domiciliary NIV | Consideration of comorbidities such as OSA/ORRF [21] |
Eosinophilic COPD | Steroids | Identification of distinct microbiome in eosinophil-predominant COPD [15] Investigation of immunomodulatory alternatives to steroids [30] |
Bronchiectasis | Targeted antibiotics, chest physiotherapy | Identify severity clusters using biomarkers, to stratify follow-up and hospitalisation [33] |
α-1 antitrypsin deficiency | LABA, LAMA, ICS | α-1 antitrypsin augmentation therapy [17] |
Subgroups requiring further study | ||
Biomass and pollutant COPD | Removal of pollutant exposure | Use of predictive machine-learning to target individuals at greatest risk of pollutant-induced emphysema [31] |
Premalignant COPD | Smoking cessation | Monitoring markers of oxidative stress and miR genotyping for precision-based chemotherapy [10] |
Iron-deficient COPD | IV iron replacement | Monitoring hepcidin as a marker for non-anaemic iron deficiency [23] |
Antimicrobial-resistant COPD | Targeted antibiotics based on culture sensitivities | Use of colour charts to determine commencement of antibiotics [14] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krishnan, A.; Turner, A.M. Chronic Obstructive Pulmonary Disease: The Present and Future. Biomedicines 2022, 10, 499. https://doi.org/10.3390/biomedicines10020499
Krishnan A, Turner AM. Chronic Obstructive Pulmonary Disease: The Present and Future. Biomedicines. 2022; 10(2):499. https://doi.org/10.3390/biomedicines10020499
Chicago/Turabian StyleKrishnan, Aditya, and Alice M. Turner. 2022. "Chronic Obstructive Pulmonary Disease: The Present and Future" Biomedicines 10, no. 2: 499. https://doi.org/10.3390/biomedicines10020499