Blood M2-like Monocyte Polarization Is Associated with Calcific Plaque Phenotype in Stable Coronary Artery Disease: A Sub-Study of SMARTool Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. CTCA and Quantitative Image Analysis
2.3. Biochemical Analyses
2.4. Flow Cytometry Analysis
2.5. Statistical Analysis
3. Results
3.1. Patients Clinical Characteristics and Plasma Biochemistry
All Patients (n° = 61) | CAD1 (n° = 19) | CAD2 (n° = 21) | CAD3 (n° = 21) | ANOVA P | |
---|---|---|---|---|---|
Age (years) | 68.7 ± 1.0 | 66.37 ± 2.06 | 70.24 ± 1.72 | 69.19 ± 1.41 | Ns |
Gender (M/F, n°) | 44/17 | 14/5 | 12/9 | 18/3 | Ns |
Framingham Risk Score (a.u) (FRS) | 15.36 ± 0.43 | 14.44 ± 1.09 | 16.09 ± 0.56 | 15.33 ± 0.65 | Ns |
Diabetes, n° (%) | 20 (32.79) | 3 (4.92) | 6 (9.84) | 11 (18.03) | 0.0419 * |
Oral antidiabetics, n° (%) | 18 (29.51) | 3 (4.92) | 5 (8.20) | 10 (16.40) | Ns |
Statin therapy (dosage, mg/die) | 13.03 ± 1.37 | 9.47 ± 1.95 | 13.09 ± 2.73 | 16.19 ± 2.20 | Ns |
Creatinine (mg/dL) | 0.85 ± 0.03 | 0.87 ± 0.04 | 0.78 ± 0.04 | 0.90 ± 0.04 | Ns |
ICAM-1 (ng/mL) | 224.85 ± 12.94 | 247.36 ± 22.33 | 222.04 ± 21.22 | 208.38 ± 23.70 | Ns |
VCAM-1 (ng/mL) | 641.10 ± 21.21 | 724.50 ± 53.35 | 547.93 ± 17.11 | 662.79 ± 25.85 | 0.0018 §^ |
Hs-CRP (mg/dL) | 0.44 ± 0.09 | 0.55 ± 0.17 | 0.33 ± 0.07 | 0.45 ± 0.21 | Ns |
IL-6 (pg/mL) | 1.01 ± 0.12 | 1.26 ± 0.25 | 0.66 ± 0.10 | 1.13 ± 0.22 | Ns |
IL-10 (pg/mL) | 27.21 ± 1.67 | 40.02 ± 2.91 | 23.70 ± 2.51 | 20.95 ± 1.44 | <0.0001 §* |
IFN-γ (pg/mL) | 32.29 ± 1.66 | 34.11 ± 4.52 | 30.52 ± 1.97 | 32.67 ± 2.44 | Ns |
TNF-α (pg/mL) | 69.89 ± 2.96 | 73.33 ± 8.71 | 67.46 ± 4.03 | 69.71 ± 2.97 | Ns |
IL-8 (pg/mL) | 2.02 ± 0.24 | 2.10 ± 0.47 | 1.56 ± 0.35 | 2.48 ± 0.41 | Ns |
MCP-1 (pg/mL) | 176.24 ± 8.74 | 191.91 ± 12.28 | 177.59 ± 13.98 | 158.14 ± 18.82 | Ns |
RANTES (pg/mL) | 146.65 ± 14.28 | 157.76 ± 24.90 | 144.77 ± 26.87 | 137.11 ± 22.48 | Ns |
Fractalkine (pg/mL) | 0.96 ± 0.20 | 1.07 ± 0.32 | 1.32 ± 0.40 | 0.42 ± 0.24 | Ns |
DCV (a.u.) | 0.15 ± 0.01 | 0.12 ± 0.02 | 0.15 ± 0.02 | 0.19 ± 0.02 | 0.0204 * |
DCV (a.u.) (n° = 55) | ||
---|---|---|
Regression Coefficient | p-Value | |
Framingham Risk Score (a.u.) | −0.001 | 0.7427 |
Diabetes | 0.099 | 0.1694 |
Oral antidiabetics | −0.109 | 0.1539 |
Statin therapy (mg/die) | −3.169 × 10−4 | 0.7898 |
Creatinine (mg/dL) | −0.015 | 0.8359 |
ICAM-1 (ng/mL) | 9.678 × 10−5 | 0.4985 |
VCAM-1 (ng/mL) | 5.841 × 10−5 | 0.5352 |
Hs-CRP (mg/dL) | −0.047 | 0.0216 * |
IL-6 (pg/mL) | 0.042 | 0.0281 * |
IL-10 (pg/mL) | −0.002 | 0.0633 |
IFN-γ (pg/mL) | −0.002 | 0.1115 |
TNF-α (pg/mL) | 4.030 × 10−4 | 0.4824 |
IL-8 (pg/mL) | −0.001 | 0.8409 |
MCP-1 (pg/mL) | −3.021 × 10−4 | 0.1961 |
RANTES (pg/mL) | −2.785 × 10−5 | 0.8319 |
Fractalkine (pg/mL) | 0.001 | 0.9250 |
3.2. Relationship between Monocyte Cell Count, Phenotypic Features and DCV
All CD14++/+ Monocytes | DCV (a.u.) (n° = 55) | |
---|---|---|
CCR5 | %+ | p = 0.0115 * |
RFI | p = 0.0452 * | |
CX3CR1 | RFI | p = 0.0309 * |
CCR2 | RFI | p = 0.0226 * |
CD163 | RFI | p = 0.0054 * |
DCV (a.u.) (n° = 55) | ||
---|---|---|
Ratio Mon1/Mon3 | Ratio of %+ | CX3CR1 (p = 0.0293) * CCR2 (p = 0.0041) * |
Ratio of RFI | HLA-DR (p = 0.0475) * CD11b (p = 0.0387) * CCR2 (p = 0.0020) * | |
Ratio Mon2/Mon3 | Ratio of %+ | CX3CR1 (p = 0.0269) * CCR2 (p = 0.0034) * |
Ratio of RFI | CCR2 (p = 0.0291) * HLA-DR (p = 0.0235) * |
3.3. Associations of Monocyte Phenotypic Ratios with DCV
DCV (a.u.) (n° = 55) | |||
---|---|---|---|
Regression Coefficient | Capacity-Value | ||
Ratio CD11b/CD163 | Ratio of RFI | -------------- | |
Ratio CD163/CD11b | Ratio of RFI | 0.454 | 0.0074 * |
Ratio CD11b/CX3CR1 | Ratio of RFI | -------------- | |
Ratio CX3CR1/CD11b | Ratio of RFI | 0.816 | 0.0111 * |
Ratio CD11b/CCR5 | Ratio of RFI | -------------- | |
Ratio CCR5/CD11b | Ratio of RFI | 0.999 | 0.0136 * |
Ratio CD11b/CCR2 | Ratio of RFI | -------------- | |
Ratio CCR2/CD11b | Ratio of RFI | 0.490 | 0.0232 * |
4. Discussion
4.1. Study Results
4.2. Comparison with Similar Studies
4.3. Limits of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hansson, G.K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 2005, 352, 1685–1695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erdoğan, M.; Erdöl, M.A.; Öztürk, S.; Durmaz, T. Systemic immune-inflammation index is a novel marker to predict functionally significant coronary artery stenosis. Biomark. Med. 2020, 14, 1553–1561. [Google Scholar] [CrossRef] [PubMed]
- Shioi, A.; Ikari, Y. Plaque calcification during atherosclerosis progression and regression. J. Atheroscler. Thromb. 2018, 25, 294–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, D.; Kim, H.J.; Lee, S.P.; Lim, S.; Koo, B.K.; Kim, Y.J.; Kook, W.; Andreini, D.; Al-Mallah, M.H.; Bud, M.J.; et al. Topological data analysis of coronary plaques demonstrates the natural history of coronary atherosclerosis. JACC Cardiovasc. Imaging 2021, 14, 1410–1421. [Google Scholar] [CrossRef]
- Smit, J.M.; van Rosendael, A.R.; El Mahdiui, M.; Neglia, D.; Knuuti, J.; Saraste, A.; Buechel, R.R.; Teresinska, A.; Pizzi, M.N.; Roque, A.; et al. Impact of clinical characteristics and statins on coronary plaque progression by serial computed tomography angiography. Circ. Cardiovasc. Imaging 2020, 13, e009750. [Google Scholar] [CrossRef]
- van Rosendael, A.R.; van den Hoogen, I.J.; Gianni, U.; Ma, X.; Tantawy, S.W.; Bax, A.M.; Lu, Y.; Andreini, D.; Al-Mallah, M.H.; Budoff, M.J.; et al. Association of statin treatment with progression of coronary atherosclerotic plaque composition. JAMA Cardiol. 2021, 6, 1257–1266. [Google Scholar] [CrossRef]
- Fenyo, I.M.; Gafencu, A.V. The involvement of the monocyte/macrophages in chronic inflammation associated with atherosclerosis. Immunobiology 2013, 218, 1376–1384. [Google Scholar] [CrossRef]
- Arnold, K.A.; Blair, J.E.; Paul, J.D.; Shah, A.P.; Nathan, S.; Alenghat, F.J. Monocyte and macrophage subtypes as paired cell biomarkers for coronary artery disease. Exp. Physiol. 2019, 104, 1343–1352. [Google Scholar] [CrossRef]
- Yang, S.; Yuan, H.Q.; Hao, Y.M.; Ren, Z.; Qu, S.L.; Liu, L.S.; Wei, D.H.; Tang, Z.H.; Zhang, J.F.; Jiang, Z.S. Macrophage polarization in atherosclerosis. Clin. Chim. Acta 2020, 501, 142–146. [Google Scholar] [CrossRef]
- Orozco, S.L.; Canny, S.P.; Hamerman, J.A. Signals governing monocyte differentiation during inflammation. Curr. Opin. Immunol. 2021, 73, 16–24. [Google Scholar] [CrossRef]
- Hoogeveen, R.M.; Nahrendorf, M.; Riksen, N.P.; Netea, M.G.; de Winther, M.P.J.; Lutgens, E.; Nordestgaard, B.G.; Neidhart, M.; Stroes, E.S.G.; Catapano, A.L.; et al. Monocyte and haematopoietic progenitor reprogramming as common mechanism underlying chronic inflammatory and cardiovascular diseases. Eur. Heart J. 2018, 39, 3521–3527. [Google Scholar] [CrossRef] [PubMed]
- Parisi, L.; Gini, E.; Baci, D.; Tremolati, M.; Fanuli, M.; Bassani, B.; Farronato, G.; Bruno, A.; Mortara, L. Macrophage polarization in chronic inflammatory diseases: Killers or builders? J. Immunol. Res. 2018, 2018, 8917804. [Google Scholar] [CrossRef] [PubMed]
- Sbrana, S.; Campolo, J.; Clemente, A.; Bastiani, L.; Cecchettini, A.; Ceccherini, E.; Caselli, C.; Neglia, D.; Parodi, O.; Chiappino, D.; et al. Blood monocyte phenotype fingerprint of stable coronary artery disease: A cross-sectional substudy of SMARTool clinical trial. Biomed. Res. Int. 2020, 2020, 8748934. [Google Scholar] [CrossRef] [PubMed]
- Kapellos, T.S.; Bonaguro, L.; Gemünd, I.; Reusch, N.; Saglam, A.; Hinkley, E.R.; Schultze, J.L. Human Monocyte subsets and phenotypes in major chronic inflammatory diseases. Front. Immunol. 2019, 10, 2035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sica, A.; Mantovani, A. Macrophage plasticity and polarization: In vivo veritas. J. Clin. Investig. 2012, 122, 787–795. [Google Scholar] [CrossRef]
- Al-Rashed, F.; Ahmad, Z.; Iskandar, M.A.; Tuomilehto, J.; Al-Mulla, F.; Ahmad, R. TNF-α induces a pro-inflammatory phenotypic shift in monocytes through ACSL1: Relevance to metabolic inflammation. Cell. Physiol. Biochem. 2019, 52, 397–407. [Google Scholar] [CrossRef]
- Murray, P.J.; Allen, J.E.; Biswas, S.K.; Fisher, E.A.; Gilroy, D.W.; Goerdt, S.; Gordon, S.; Hamilton, J.A.; Ivashkiv, L.B.; Lawrence, T.; et al. Macrophage activation and polarization: Nomenclature and experimental guidelines. Immunity 2014, 41, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Mantovani, A.; Sica, A.; Sozzani, S.; Allavena, P.; Vecchi, A.; Locati, M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004, 25, 677–686. [Google Scholar] [CrossRef]
- Kao, J.K.; Wang, S.C.; Ho, L.W.; Huang, S.W.; Lee, C.H.; Lee, M.S.; Yang, R.C.; Shieh, J.J. M2-like polarization of THP-1 monocyte-derived macrophages under chronic iron overload. Ann. Hematol. 2020, 99, 431–441. [Google Scholar] [CrossRef]
- de Knegt, M.C.; Haugen, M.; Jensen, A.K.; Linde, J.J.; Kühl, J.T.; Hove, J.D.; Kofoed, K.F. Coronary plaque composition assessed by cardiac computed tomography using adaptive Hounsfield unit thresholds. Clin. Imaging 2019, 57, 7–14. [Google Scholar] [CrossRef]
- Van Rosendael, A.R.; Shaw, L.J.; Xie, J.X.; Dimitriu-Leen, A.C.; Smit, J.M.; Scholte, A.J.; van Werkhoven, J.M.; Callister, T.Q.; De Lago, A.; Berman, D.S.; et al. Superior risk stratification with coronary computed tomography angiography using a comprehensive atherosclerotic risk score. JACC Cardiovasc. Imaging 2019, 12, 1987–1997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenland, P.; Blaha, M.J.; Budoff, M.J.; Erbel, R.; Watson, K.E. Coronary calcium score and cardiovascular risk. J. Am. Coll. Cardiol. 2018, 72, 434–447. [Google Scholar] [CrossRef] [PubMed]
- Fadini, G.P.; Cappellari, R.; Mazzucato, M.; Agostini, C.; de Kreutzenberg, S.V.; Avogaro, A. Monocyte-macrophage polarization balance in pre-diabetic individuals. Acta Diabetol. 2013, 50, 977–982. [Google Scholar] [CrossRef] [PubMed]
- Fadini, G.P.; Simoni, F.; Cappellari, R.; Vitturi, N.; Galasso, S.; de Kreutzenberg, S.V.; Previato, L.; Avogaro, A. Pro-inflammatory monocyte-macrophage polarization imbalance in human hypercholesterolemia and atherosclerosis. Atherosclerosis 2014, 237, 805–808. [Google Scholar] [CrossRef] [PubMed]
- Gautier, E.L.; Jakubzick, C.; Randolph, G.J. Regulation of the migration and survival of monocyte subsets by chemokine receptors and its relevance to atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 1412–1418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linton, M.R.F.; Babaev, V.R.; Huang, J.; Linton, E.F.; Tao, H.; Yancey, P.G. Macrophage apoptosis and efferocytosis in the pathogenesis of atherosclerosis. Circ. J. 2016, 80, 2259–2268. [Google Scholar] [CrossRef] [Green Version]
- Di Napoli, A.; Greco, D.; Scafetta, G.; Ascenzi, F.; Gulino, A.; Aurisicchio, L.; Santanelli Di Pompeo, F.; Bonifacino, A.; Giarnieri, E.; Morgan, J.; et al. IL-10, IL-13, Eotaxin and IL-10/IL-6 ratio distinguish breast implant-associated anaplastic large-cell lymphoma from all types of benign late seromas. Cancer Immunol. Immunother. 2021, 70, 1379–1392. [Google Scholar] [CrossRef]
- Silva Aguiar, S.; Victor Sousa, C.; Alves Deus, L.; Santos Rosa, T.; Magalhães Sales, M.; Vanerson Passos Neves, R.; Pinheiro Barbosa, L.; Anderson Santos, P.; Silva Campbell, C.; Gustavo Simões, H. Oxidative stress, inflammatory cytokines and body composition of master athletes: The interplay. Exp. Gerontol. 2020, 130, 110806. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sbrana, S.; Cecchettini, A.; Bastiani, L.; Di Giorgi, N.; Mazzone, A.; Ceccherini, E.; Vozzi, F.; Caselli, C.; Neglia, D.; Clemente, A.; et al. Blood M2-like Monocyte Polarization Is Associated with Calcific Plaque Phenotype in Stable Coronary Artery Disease: A Sub-Study of SMARTool Clinical Trial. Biomedicines 2022, 10, 565. https://doi.org/10.3390/biomedicines10030565
Sbrana S, Cecchettini A, Bastiani L, Di Giorgi N, Mazzone A, Ceccherini E, Vozzi F, Caselli C, Neglia D, Clemente A, et al. Blood M2-like Monocyte Polarization Is Associated with Calcific Plaque Phenotype in Stable Coronary Artery Disease: A Sub-Study of SMARTool Clinical Trial. Biomedicines. 2022; 10(3):565. https://doi.org/10.3390/biomedicines10030565
Chicago/Turabian StyleSbrana, Silverio, Antonella Cecchettini, Luca Bastiani, Nicoletta Di Giorgi, Annamaria Mazzone, Elisa Ceccherini, Federico Vozzi, Chiara Caselli, Danilo Neglia, Alberto Clemente, and et al. 2022. "Blood M2-like Monocyte Polarization Is Associated with Calcific Plaque Phenotype in Stable Coronary Artery Disease: A Sub-Study of SMARTool Clinical Trial" Biomedicines 10, no. 3: 565. https://doi.org/10.3390/biomedicines10030565
APA StyleSbrana, S., Cecchettini, A., Bastiani, L., Di Giorgi, N., Mazzone, A., Ceccherini, E., Vozzi, F., Caselli, C., Neglia, D., Clemente, A., Scholte, A. J. H. A., Parodi, O., Pelosi, G., & Rocchiccioli, S. (2022). Blood M2-like Monocyte Polarization Is Associated with Calcific Plaque Phenotype in Stable Coronary Artery Disease: A Sub-Study of SMARTool Clinical Trial. Biomedicines, 10(3), 565. https://doi.org/10.3390/biomedicines10030565