Gene Profile of Adipose Tissue of Patients with Pheochromocytoma/Paraganglioma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Recruitment and Background
2.2. Anthropometric, Biochemical Measurements and Adipose Tissue Sampling
2.3. Indirect Calorimetry
2.4. Determination of mRNA Expression by Quantitative Real-Time PCR (RT-PCR)
2.5. Statistical Analysis
3. Results
3.1. Gene Profile of VAT and SAT of Patients with PPGL and Controls
3.2. Analysis of Gene Expression in Patients with PPGL
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lenders, J.W.; Eisenhofer, G.; Mannelli, M.; Pacak, K. Phaeochromocytoma. Lancet 2005, 366, 665–675. [Google Scholar] [CrossRef]
- Erlic, Z.; Beuschlein, F. Metabolic Alterations in Patients with Pheochromocytoma. Exp. Clin. Endocrinol. Diabetes 2019, 127, 129–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spyroglou, A.; Adolf, C.; Hahner, S.; Quinkler, M.; Ladurner, R.; Reincke, M.; Beuschlein, F. Changes in Body Mass Index in Pheochromocytoma Patients Following Adrenalectomy. Horm. Metab. Res. 2017, 49, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Okamura, T.; Nakajima, Y.; Satoh, T.; Hashimoto, K.; Sapkota, S.; Yamada, E.; Okada, S.; Fukuda, J.; Higuchi, T.; Tsushima, Y.; et al. Changes in visceral and subcutaneous fat mass in patients with pheochromocytoma. Metabolism 2015, 64, 706–712. [Google Scholar] [CrossRef]
- Petrak, O.; Haluzikova, D.; Kavalkova, P.; Strauch, B.; Rosa, J.; Holaj, R.; Brabcova Vrankova, A.; Michalsky, D.; Haluzik, M.; Zelinka, T.; et al. Changes in energy metabolism in pheochromocytoma. J. Clin. Endocrinol. Metab. 2013, 98, 1651–1658. [Google Scholar] [CrossRef] [Green Version]
- Engelman, K.; Mueller, P.S.; Sjoerdsma, A. Elevated Plasma Free Fatty Acid Concentrations in Patients with Pheochromocytoma. Changes with Therapy and Correlations with the Basal Metabolic Rate. N. Engl. J. Med. 1964, 270, 865–870. [Google Scholar] [CrossRef]
- Hany, T.F.; Gharehpapagh, E.; Kamel, E.M.; Buck, A.; Himms-Hagen, J.; von Schulthess, G.K. Brown adipose tissue: A factor to consider in symmetrical tracer uptake in the neck and upper chest region. Eur. J. Nucl. Med. Mol. Imaging 2002, 29, 1393–1398. [Google Scholar] [CrossRef]
- Cohade, C.; Osman, M.; Pannu, H.K.; Wahl, R.L. Uptake in supraclavicular area fat (“USA-Fat”): Description on 18F-FDG PET/CT. J. Nucl. Med. 2003, 44, 170–176. [Google Scholar]
- Cohade, C.; Mourtzikos, K.A.; Wahl, R.L. “USA-Fat”: Prevalence is related to ambient outdoor temperature-evaluation with 18F-FDG PET/CT. J. Nucl. Med. 2003, 44, 1267–1270. [Google Scholar] [PubMed]
- Yeung, H.W.; Grewal, R.K.; Gonen, M.; Schoder, H.; Larson, S.M. Patterns of (18)F-FDG uptake in adipose tissue and muscle: A potential source of false-positives for PET. J. Nucl. Med. 2003, 44, 1789–1796. [Google Scholar]
- Heeren, J.; Scheja, L. Brown adipose tissue and lipid metabolism. Curr. Opin. Lipidol. 2018, 29, 180–185. [Google Scholar] [CrossRef]
- Ravussin, E.; Galgani, J.E. The implication of brown adipose tissue for humans. Annu. Rev. Nutr. 2011, 31, 33–47. [Google Scholar] [CrossRef] [Green Version]
- Sharara-Chami, R.I.; Joachim, M.; Mulcahey, M.; Ebert, S.; Majzoub, J.A. Effect of epinephrine deficiency on cold tolerance and on brown adipose tissue. Mol. Cell Endocrinol. 2010, 328, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Villarroya, F.; Peyrou, M.; Giralt, M. Transcriptional regulation of the uncoupling protein-1 gene. Biochimie 2017, 134, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Bonet, M.L.; Oliver, P.; Palou, A. Pharmacological and nutritional agents promoting browning of white adipose tissue. Biochim. Biophys. Acta 2013, 1831, 969–985. [Google Scholar] [CrossRef] [PubMed]
- Kaisanlahti, A.; Glumoff, T. Browning of white fat: Agents and implications for beige adipose tissue to type 2 diabetes. J. Physiol. Biochem. 2019, 75, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Rui, L. Brown and Beige Adipose Tissues in Health and Disease. Compr. Physiol. 2017, 7, 1281–1306. [Google Scholar] [CrossRef]
- Abdul Sater, Z.; Jha, A.; Hamimi, A.; Mandl, A.; Hartley, I.R.; Gubbi, S.; Patel, M.; Gonzales, M.; Taieb, D.; Civelek, A.C.; et al. Pheochromocytoma and Paraganglioma Patients With Poor Survival Often Show Brown Adipose Tissue Activation. J. Clin. Endocrinol. Metab. 2020, 105, 1176–1185. [Google Scholar] [CrossRef]
- Kir, S.; Spiegelman, B.M. Cachexia & Brown Fat: A Burning Issue in Cancer. Trends Cancer 2016, 2, 461–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iacobellis, G.; Di Gioia, C.; Petramala, L.; Chiappetta, C.; Serra, V.; Zinnamosca, L.; Marinelli, C.; Ciardi, A.; De Toma, G.; Letizia, C. Brown fat expresses adiponectin in humans. Int. J. Endocrinol. 2013, 2013, 126751. [Google Scholar] [CrossRef]
- Petrovic, N.; Walden, T.B.; Shabalina, I.G.; Timmons, J.A.; Cannon, B.; Nedergaard, J. Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J. Biol. Chem. 2010, 285, 7153–7164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jespersen, N.Z.; Larsen, T.J.; Peijs, L.; Daugaard, S.; Homoe, P.; Loft, A.; de Jong, J.; Mathur, N.; Cannon, B.; Nedergaard, J.; et al. A classical brown adipose tissue mRNA signature partly overlaps with brite in the supraclavicular region of adult humans. Cell Metab. 2013, 17, 798–805. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Bostrom, P.; Sparks, L.M.; Ye, L.; Choi, J.H.; Giang, A.H.; Khandekar, M.; Virtanen, K.A.; Nuutila, P.; Schaart, G.; et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 2012, 150, 366–376. [Google Scholar] [CrossRef] [Green Version]
- Harms, M.; Seale, P. Brown and beige fat: Development, function and therapeutic potential. Nat. Med. 2013, 19, 1252–1263. [Google Scholar] [CrossRef] [Green Version]
- Sharp, L.Z.; Shinoda, K.; Ohno, H.; Scheel, D.W.; Tomoda, E.; Ruiz, L.; Hu, H.; Wang, L.; Pavlova, Z.; Gilsanz, V.; et al. Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS ONE 2012, 7, e49452. [Google Scholar] [CrossRef]
- Fischer, A.W.; Shabalina, I.G.; Mattsson, C.L.; Abreu-Vieira, G.; Cannon, B.; Nedergaard, J.; Petrovic, N. UCP1 inhibition in Cidea-overexpressing mice is physiologically counteracted by brown adipose tissue hyperrecruitment. Am. J. Physiol. Endocrinol. Metab. 2017, 312, E72–E87. [Google Scholar] [CrossRef] [Green Version]
- Bartelt, A.; Bruns, O.T.; Reimer, R.; Hohenberg, H.; Ittrich, H.; Peldschus, K.; Kaul, M.G.; Tromsdorf, U.I.; Weller, H.; Waurisch, C.; et al. Brown adipose tissue activity controls triglyceride clearance. Nat. Med. 2011, 17, 200–205. [Google Scholar] [CrossRef]
- Spergel, G.; Bleicher, S.J.; Ertel, N.H. Carbohydrate and fat metabolism in patients with pheochromocytoma. N. Engl. J. Med. 1968, 278, 803–809. [Google Scholar] [CrossRef]
- Calandra, R.S.; Antar, M.A.; Plautz, M.; Little, J.A.; Martin, J.M.; Johnson, G.E. Hormonal and metabolic studies in pheochromocytoma. Can. Med. Assoc. J. 1970, 102, 1369–1372. [Google Scholar]
- Turnbull, D.M.; Johnston, D.G.; Alberti, K.G.; Hall, R. Hormonal and metabolic studies in a patient with a pheochromocytoma. J. Clin. Endocrinol. Metab. 1980, 51, 930–933. [Google Scholar] [CrossRef]
- Krentz, A.J.; Hale, P.J.; Horrocks, P.M.; Heslop, K.E.; Johnston, D.G.; Wright, A.D.; Nattrass, M. Metabolic effects of pharmacological adrenergic blockade in phaeochromocytoma. Clin. Endocrinol. 1991, 34, 139–145. [Google Scholar] [CrossRef]
- Komada, H.; Hirota, Y.; So, A.; Nakamura, T.; Okuno, Y.; Fukuoka, H.; Iguchi, G.; Takahashi, Y.; Sakaguchi, K.; Ogawa, W. Insulin Secretion and Insulin Sensitivity before and after Surgical Treatment of Pheochromocytoma or Paraganglioma. J. Clin. Endocrinol. Metab. 2017, 102, 3400–3405. [Google Scholar] [CrossRef]
- Chechi, K.; Blanchard, P.G.; Mathieu, P.; Deshaies, Y.; Richard, D. Brown fat like gene expression in the epicardial fat depot correlates with circulating HDL-cholesterol and triglycerides in patients with coronary artery disease. Int. J. Cardiol 2013, 167, 2264–2270. [Google Scholar] [CrossRef]
- Cypess, A.M.; Kahn, C.R. Brown fat as a therapy for obesity and diabetes. Curr. Opin. Endocrinol. Diabetes Obes. 2010, 17, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Zhang, M.; Ning, G.; Gu, W.; Su, T.; Xu, M.; Li, B.; Wang, W. Brown adipose tissue in humans is activated by elevated plasma catecholamines levels and is inversely related to central obesity. PLoS ONE 2011, 6, e21006. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Zhang, M.; Xu, M.; Gu, W.; Xi, Y.; Qi, L.; Li, B.; Wang, W. Brown adipose tissue activation is inversely related to central obesity and metabolic parameters in adult human. PLoS ONE 2015, 10, e0123795. [Google Scholar] [CrossRef]
- Zoico, E.; Rubele, S.; De Caro, A.; Nori, N.; Mazzali, G.; Fantin, F.; Rossi, A.; Zamboni, M. Brown and Beige Adipose Tissue and Aging. Front. Endocrinol. 2019, 10, 368. [Google Scholar] [CrossRef] [Green Version]
- Persichetti, A.; Sciuto, R.; Rea, S.; Basciani, S.; Lubrano, C.; Mariani, S.; Ulisse, S.; Nofroni, I.; Maini, C.L.; Gnessi, L. Prevalence, mass, and glucose-uptake activity of (1)(8)F-FDG-detected brown adipose tissue in humans living in a temperate zone of Italy. PLoS ONE 2013, 8, e63391. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Cuenca, S.; Pujol, E.; Justo, R.; Frontera, M.; Oliver, J.; Gianotti, M.; Roca, P. Sex-dependent thermogenesis, differences in mitochondrial morphology and function, and adrenergic response in brown adipose tissue. J. Biol. Chem. 2002, 277, 42958–42963. [Google Scholar] [CrossRef] [Green Version]
- Stenstrom, G.; Sjostrom, L.; Smith, U. Diabetes mellitus in phaeochromocytoma. Fasting blood glucose levels before and after surgery in 60 patients with phaeochromocytoma. Acta Endocrinol. 1984, 106, 511–515. [Google Scholar] [CrossRef]
- Ilias, I.; Pacak, K. Diagnosis, localization and treatment of pheochromocytoma in MEN 2 syndrome. Endocr. Regul. 2009, 43, 89–93. [Google Scholar]
- Petrak, O.; Klimova, J.; Mraz, M.; Haluzikova, D.; Dolezalova, R.P.; Kratochvilova, H.; Lacinova, Z.; Novak, K.; Michalsky, D.; Waldauf, P.; et al. Pheochromocytoma With Adrenergic Biochemical Phenotype Shows Decreased GLP-1 Secretion and Impaired Glucose Tolerance. J. Clin. Endocrinol. Metab. 2020, 105, dgaa154. [Google Scholar] [CrossRef]
- Mesmar, B.; Poola-Kella, S.; Malek, R. The Physiology Behind Diabetes Mellitus in Patients with Pheochromocytoma: A Review of the Literature. Endocr. Pract. 2017, 23, 999–1005. [Google Scholar] [CrossRef]
- Iwen, K.A.; Backhaus, J.; Cassens, M.; Waltl, M.; Hedesan, O.C.; Merkel, M.; Heeren, J.; Sina, C.; Rademacher, L.; Windjager, A.; et al. Cold-Induced Brown Adipose Tissue Activity Alters Plasma Fatty Acids and Improves Glucose Metabolism in Men. J. Clin. Endocrinol. Metab. 2017, 102, 4226–4234. [Google Scholar] [CrossRef] [Green Version]
- Haman, F.; Peronnet, F.; Kenny, G.P.; Massicotte, D.; Lavoie, C.; Scott, C.; Weber, J.M. Effect of cold exposure on fuel utilization in humans: Plasma glucose, muscle glycogen, and lipids. J. Appl. Physiol. (1985) 2002, 93, 77–84. [Google Scholar] [CrossRef]
- Di Franco, A.; Guasti, D.; Mazzanti, B.; Ercolino, T.; Francalanci, M.; Nesi, G.; Bani, D.; Forti, G.; Mannelli, M.; Valeri, A.; et al. Dissecting the origin of inducible brown fat in adult humans through a novel adipose stem cell model from adipose tissue surrounding pheochromocytoma. J. Clin. Endocrinol. Metab. 2014, 99, E1903–E1912. [Google Scholar] [CrossRef] [Green Version]
- Nagano, G.; Ohno, H.; Oki, K.; Kobuke, K.; Shiwa, T.; Yoneda, M.; Kohno, N. Activation of classical brown adipocytes in the adult human perirenal depot is highly correlated with PRDM16-EHMT1 complex expression. PLoS ONE 2015, 10, e0122584. [Google Scholar] [CrossRef]
- Betz, M.J.; Slawik, M.; Lidell, M.E.; Osswald, A.; Heglind, M.; Nilsson, D.; Lichtenauer, U.D.; Mauracher, B.; Mussack, T.; Beuschlein, F.; et al. Presence of brown adipocytes in retroperitoneal fat from patients with benign adrenal tumors: Relationship with outdoor temperature. J. Clin. Endocrinol. Metab. 2013, 98, 4097–4104. [Google Scholar] [CrossRef] [Green Version]
- Giralt, M.; Villarroya, F. White, brown, beige/brite: Different adipose cells for different functions? Endocrinology 2013, 154, 2992–3000. [Google Scholar] [CrossRef] [Green Version]
- Sondergaard, E.; Gormsen, L.C.; Christensen, M.H.; Pedersen, S.B.; Christiansen, P.; Nielsen, S.; Poulsen, P.L.; Jessen, N. Chronic adrenergic stimulation induces brown adipose tissue differentiation in visceral adipose tissue. Diabet. Med. 2015, 32, e4–e8. [Google Scholar] [CrossRef]
- Ikeda, K.; Maretich, P.; Kajimura, S. The Common and Distinct Features of Brown and Beige Adipocytes. Trends Endocrinol. Metab. 2018, 29, 191–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Factor | PPGL | Controls | |
---|---|---|---|
n = 25 | n = 14 | p Value | |
Female (n, %) | 13 (52) | 9 (64) | 0.872 |
Age (years) | 54.3 ± 14 | 55.7 ± 15 | 0.775 |
Body mass index (kg·m2) | 26.3 ± 4.7 | 27.0 ± 3.3 | 0.628 |
P-metanephrine (nmol/L) | 3.1 [7.4] | 0.2 [0.1] | 0.001 |
P-normetanephrine (nmol/L) | 5.5 [18.6] | 0.3 [0.2] | <0.001 |
P-norepinephrine (nmol/L) | 6.9 [12.1] | - | |
P-epinephrine (nmol/L) | 1.2 [2.7] | - | |
FBG (mmol/L) | 5.8 [1.7] | 4.9 [0.3] | 0.005 |
HbA1C (mmol/mol) | 44.0 [18] | 35.0 [4] | <0.001 |
Total cholesterol (mmol/L) | 4.8 ± 1.1 | 5.2 ± 0.9 | 0.363 |
HDLc (mmol/L) | 1.5 ± 0.5 | 1.4 ± 0.5 | 0.055 |
LDLc (mmol/L) | 2.8 ± 0.9 | 2.9 ± 0.7 | 0.983 |
Triglycerides (mmol/L) | 1.3 ± 1.0 | 2.1 ± 1.6 | 0.618 |
Systolic BP (mmHg) | 132 ± 18 | 125 ± 16 | 0.273 |
Diastolic BP (mmHg) | 82 ± 12 | 79 ± 13 | 0.392 |
REE (Kcal/day) | 1690 ± 313 | 1462 ± 313 | 0.087 |
BEE (Kcal/day) | 1508 ± 234 | 1511 ± 192 | 0.974 |
REE/BEE (%) | 111.8 ± 14 | 96.1 ± 11 | 0.008 |
Diabetes mellitus (n, %) | 9 (36) | 0 (0) | - |
Obesity (n, %) | 3 (12) | 3 (21) | - |
Alpha blockers (n, %) | 25 (100) | 0 (0) | - |
Beta blockers (n, %) | 18 (72) | 1 (8) | - |
Statins (n, %) | 10 (40) | 2 (15) | - |
Peroral antidiabetics (n, %) | 7 (28) | 0 (0) | - |
Insulin (n, %) | 3 (12) | 0 (0) | - |
Gene Symbol | Gene Name | SAT | VAT | ||||
---|---|---|---|---|---|---|---|
PPGL | Controls | PPGL | Controls | ||||
n = 25 | n = 14 | p Value | n = 25 | n = 14 | p Value | ||
ADRB3 | Adrenoceptor Beta 3 | 1.5 [2.3] | 0.4 [0.4] | 0.046 | 2.4 [4.4] | 1.2 [1.9] | 0.156 |
CEBPB | CCAAT Enhancer Binding Protein Beta | 0.9 [0.7] | 0.9 [0.6] | 0.255 | 1.3 [0.8] | 0.7 [0.5] | <0.001 |
CIDEA | Cell death-inducing DFFA-like effector | 1.4 [1.3] | 0.8 [0.7] | 0.048 | 1.2 [1.4] | 0.9 [0.9] | 0.532 |
DIO 2 | Iodothyronine Deiodinase 2 | 1.1 [0.8] | 0.76 [1.3] | 0.554 | 1.09 [2.3] | 0.47 [0.4] | 0.005 |
FBXO 31 | F-Box Protein 31 | 0.91 [0.4] | 1.2 [0.3] | 0.035 | 1.0 [0.3] | 0.89 [0.3] | 0.378 |
LHX8 | LIM Homeobox 8 | Undet. | Undet. | - | Undet. | Undet. | - |
PPARD | Peroxisome Proliferator Activated Receptor Delta | 0.7 [0.6] | 0.9 [0.4] | 0.971 | 1.0 [0.5] | 1.0 [0.6] | 0.320 |
PPARG | Peroxisome Proliferator-Activated Receptor Gamma | 1.0 [0.4] | 0.9 [0.5] | 0.144 | 1.3 [0.6] | 0.9 [0.7] | 0.248 |
PPARGC1A | PPARG Coactivator 1α | 1.5 [1.0] | 0.6 [0.7] | 0.001 | 1.7 [2.0] | 0.5 [0.3] | <0.001 |
PRDM16 | PR/SET domain 16 | 1.1 [0.6] | 0.9 [0.4] | 0.224 | 1.0 [0.8] | 0.7 [0.5] | 0.069 |
SHOX2 | Short Stature Homeobox 2 | 0.9 [1.0] | 0.9 [0.6] | 0.624 | 1.1 [1.2] | 0.8 [0.8] | 0.609 |
TMEM26 | Transmembrane Protein 26 | 1.1 [1.5] | 1.1 [1.5] | 0.892 | 0.8 [0.6] | 1.1 [1.7] | 0.007 |
TNFRSF9 | TNF Receptor Superfamily Member 9 | 0.8 [1.4] | 1.5 [1.2] | 0.126 | 0.8 [0.8] | 1.2 [0.9] | 0.075 |
UCP1 | Uncoupling Protein 1 | Undet. | Undet. | - | 3.5 [25.0] | 0.1 [0.7] | <0.001 |
ZIC1 | Zic Family Member 1 | Undet. | Undet. | - | Undet. | Undet. | - |
VAT | SAT | ||||||
---|---|---|---|---|---|---|---|
Gene Symbol | Factor | R | p Value | Gene Symbol | Factor | R | p Value |
ADRB3 | Age | −0.398 | 0.049 | ADRB3 | Age | −0.507 | 0.016 |
CIDEA | Age | −0.354 | 0.082 | CIDEA | BMI | −0.624 | <0.001 |
PPARG | Age | −0.418 | 0.037 | PPARGC1A | BMI | −0.596 | 0.002 |
UCP1 | Age | −0.347 | 0.096 | PPARG | BMI | −0.477 | 0.016 |
ADRB3 | BMI | −0.427 | 0.033 | PRDM16 | BMI | −0.568 | 0.003 |
CIDEA | BMI | −0.349 | 0.087 | CIDEA | P-Nore | 0.488 | 0.024 |
PPARGC1A | BMI | −0.457 | 0.021 | CIDEA | P-Epi | 0.375 | 0.093 |
UCP1 | BMI | −0.365 | 0.079 | PRDM16 | P-Epi | 0.452 | 0.051 |
ADRB3 | HDLc | 0.512 | 0.008 | TMEM26 | P-Epi | −0.411 | 0.060 |
CIDEA | HDLc | 0.436 | 0.029 | CIDEA | TAG | −0.565 | 0.003 |
PPARGC1A | HDLc | 0.487 | 0.013 | PPARGC1A | TAG | −0.534 | 0.005 |
PPARG | HDLc | 0.337 | 0.098 | PPARG | TAG | −0.535 | 0.005 |
PRDM16 | HDLc | 0.414 | 0.039 | CIDEA | HDLc | 0.395 | 0.054 |
UCP1 | HDLc | 0.418 | 0.041 | PPARGC1A | HDLc | 0.396 | 0.049 |
ADRB3 | TAG | −0.481 | 0.014 | ADRB3 | HbA1C | −0.474 | 0.029 |
PPARGC1A | TAG | −0.560 | 0.003 | ||||
UCP1 | TAG | −0.380 | 0.066 | ||||
UCP1 | P-Norm | 0.474 | 0.019 | ||||
DIO 2 | P-Norm | 0.530 | 0.006 | ||||
TMEM26 | P-Nora | 0.531 | 0.013 | ||||
PPARGC1A | P-Nore | 0.480 | 0.027 | ||||
UCP1 | P-Nore | 0.553 | 0.011 | ||||
DIO 2 | P-Nore | 0.541 | 0.011 | ||||
SHOX2 | BEE/REE | −0.561 | 0.005 |
Gene Symbol | R | p Value |
---|---|---|
ADRB3 | 0.711 | <0.001 |
CEBPB | 0.466 | 0.003 |
CIDEA | 0.741 | <0.001 |
DIO 2 | 0.782 | <0.001 |
FBXO 31 | −0.410 | 0.047 |
PPARD | 0.329 | 0.044 |
PPARGC1A | 0.832 | <0.001 |
PPARG | 0.667 | <0.001 |
PRDM16 | 0.688 | <0.001 |
SHOX2 | 0.011 | 0.949 |
TMEM26 | 0.434 | 0.033 |
TNFRSF9 | −0.176 | 0.290 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klímová, J.; Mráz, M.; Kratochvílová, H.; Lacinová, Z.; Novák, K.; Michalský, D.; Kvasnička, J.; Holaj, R.; Haluzíková, D.; Doležalová, R.P.; et al. Gene Profile of Adipose Tissue of Patients with Pheochromocytoma/Paraganglioma. Biomedicines 2022, 10, 586. https://doi.org/10.3390/biomedicines10030586
Klímová J, Mráz M, Kratochvílová H, Lacinová Z, Novák K, Michalský D, Kvasnička J, Holaj R, Haluzíková D, Doležalová RP, et al. Gene Profile of Adipose Tissue of Patients with Pheochromocytoma/Paraganglioma. Biomedicines. 2022; 10(3):586. https://doi.org/10.3390/biomedicines10030586
Chicago/Turabian StyleKlímová, Judita, Miloš Mráz, Helena Kratochvílová, Zdeňka Lacinová, Květoslav Novák, David Michalský, Jan Kvasnička, Robert Holaj, Denisa Haluzíková, Radka Petráková Doležalová, and et al. 2022. "Gene Profile of Adipose Tissue of Patients with Pheochromocytoma/Paraganglioma" Biomedicines 10, no. 3: 586. https://doi.org/10.3390/biomedicines10030586
APA StyleKlímová, J., Mráz, M., Kratochvílová, H., Lacinová, Z., Novák, K., Michalský, D., Kvasnička, J., Holaj, R., Haluzíková, D., Doležalová, R. P., Zítek, M., Krátká, Z., Todorovová, V., Widimský, J., Jr., Haluzík, M., Zelinka, T., & Petrák, O. (2022). Gene Profile of Adipose Tissue of Patients with Pheochromocytoma/Paraganglioma. Biomedicines, 10(3), 586. https://doi.org/10.3390/biomedicines10030586