Glioblastoma in the Elderly: Review of Molecular and Therapeutic Aspects
Abstract
:1. Introduction
2. Molecular Characteristics
3. Prognostic Assessment
4. Therapeutic Aspects
4.1. The Role of Surgery
4.2. The Role of Radiotherapy
4.3. The Role of Chemotherapy
4.4. Radiotherapy versus Chemotherapy
4.5. The Role of Post-Operative Radio-Chemotherapy
5. New Molecular Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ostrom, Q.T.; Patil, N.; Cioffi, G.; Waite, K.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2013–2017. Neuro-Oncology 2020, 22, iv1–iv96. [Google Scholar] [CrossRef] [PubMed]
- Weller, M.; Stupp, R.; Reifenberger, G.; Brandes, A.A.; van den Bent, M.J.; Wick, W.; Hegi, M.E. MGMT promoter methylation in malignant gliomas: Ready for personalized medicine? Nat. Rev. Neurol. 2010, 6, 39–51. [Google Scholar] [CrossRef] [Green Version]
- Weller, M.; Tabatabai, G.; Kästner, B.; Felsberg, J.; Steinbach, J.P.; Wick, A.; Schnell, O.; Hau, P.; Herrlinger, U.; Sabel, M.C.; et al. MGMT Promoter Methylation Is a Strong Prognostic Biomarker for Benefit from Dose-Intensified Temozolomide Rechallenge in Progressive Glioblastoma: The DIRECTOR Trial. Clin. Cancer Res. 2015, 21, 2057. [Google Scholar] [CrossRef] [Green Version]
- Malta, T.M.; De Souza, C.F.; Sabedot, T.S.; Silva, T.C.; Mosella, M.S.; Kalkanis, S.N.; Snyder, J.; Castro, A.V.B.; Noushmehr, H. Glioma CpG island methylator phenotype (G-CIMP): Biological and clinical implications. Neuro-Oncology 2018, 20, 608–620. [Google Scholar] [CrossRef]
- Noushmehr, H.; Weisenberger, D.J.; Diefes, K.; Phillips, H.S.; Pujara, K.; Berman, B.P.; Pan, F.; Pelloski, C.E.; Sulman, E.P.; Bhat, K.P.; et al. Identification of a CpG Island Methylator Phenotype that Defines a Distinct Subgroup of Glioma. Cancer Cell 2010, 17, 510–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bozdag, S.; Li, A.; Riddick, G.; Kotliarov, Y.; Baysan, M.; Iwamoto, F.M.; Cam, M.C.; Kotliarova, S.; Fine, H.A. Age-Specific Signatures of Glioblastoma at the Genomic, Genetic, and Epigenetic Levels. PLoS ONE 2013, 8, e62982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laffaire, J.; Everhard, S.; Idbaih, A.; Crinière, E.; Marie, Y.; De Reyniès, A.; Schiappa, R.; Mokhtari, K.; Hoang-Xuan, K.; Sanson, M.; et al. Methylation profiling identifies 2 groups of gliomas according to their tumorigenesis. Neuro-Oncology 2011, 13, 84–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katoh, M. WNT/PCP signaling pathway and human cancer (Review). Oncol. Rep. 2005, 14, 1583–1588. [Google Scholar] [CrossRef]
- Pez, F.; Dayan, F.; Durivault, J.; Kaniewski, B.; Aimond, G.; Le Provost, G.S.; Deux, B.; Clézardin, P.; Sommer, P.; Pouysségur, J.; et al. The HIF-1–Inducible Lysyl Oxidase Activates HIF-1 via the Akt Pathway in a Positive Regulation Loop and Synergizes with HIF-1 in Promoting Tumor Cell Growth. Cancer Res. 2011, 71, 1647. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Scheck, A.C.; Cloughesy, T.F.; Lai, A.; Dong, J.; Farooqi, H.K.; Liau, L.M.; Horvath, S.; Mischel, P.S.; Nelson, S.F. Gene expression analysis of glioblastomas identifies the major molecular basis for the prognostic benefit of younger age. BMC Med. Genom. 2008, 1, 52. [Google Scholar] [CrossRef] [Green Version]
- Ongenaert, M.; Van Neste, L.; De Meyer, T.; Menschaert, G.; Bekaert, S.; Van Criekinge, W. PubMeth: A cancer methylation database combining text-mining and expert annotation. Nucleic Acids Res. 2008, 36, D842–D846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paugh, B.S.; Qu, C.; Jones, C.; Liu, Z.; Adamowicz-Brice, M.; Zhang, J.; Bax, D.A.; Coyle, B.; Barrow, J.; Hargrave, D.; et al. Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. J. Clin. Oncol. 2010, 28, 3061–3068. [Google Scholar] [CrossRef]
- Ostrom, Q.T.; Kinnersley, B.; Armstrong, G.; Rice, T.; Chen, Y.; Wiencke, J.K.; McCoy, L.S.; Hansen, H.M.; Amos, C.I.; Bernstein, J.L.; et al. Age-specific genome-wide association study in glioblastoma identifies increased proportion of ‘lower grade glioma’-like features associated with younger age. Int. J. Cancer 2018, 143, 2359–2366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanson, M.; Hosking, F.J.; Shete, S.; Zelenika, D.; Dobbins, S.E.; Ma, Y.; Enciso-Mora, V.; Idbaih, A.; Delattre, J.-Y.; Hoang-Xuan, K.; et al. Chromosome 7p11.2 (EGFR) variation influences glioma risk. Hum. Mol. Genet. 2011, 20, 2897–2904. [Google Scholar] [CrossRef] [PubMed]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro-Oncology 2021, 23, 1231–1251. [Google Scholar] [CrossRef]
- Fukai, J.; Arita, H.; Umehara, T.; Yoshioka, E.; Shofuda, T.; Kanematsu, D.; Kodama, Y.; Mano, M.; Kinoshita, M.; Okita, Y.; et al. Molecular characteristics and clinical outcomes of elderly patients with IDH-wildtype glioblastomas: Comparative study of older and younger cases in Kansai Network cohort. Brain Tumor Pathol. 2020, 37, 50–59. [Google Scholar] [CrossRef]
- Scott, J.G.; Bauchet, L.; Fraum, T.J.; Nayak, L.; Cooper, A.R.; Chao, S.T.; Suh, J.H.; Vogelbaum, M.A.; Peereboom, D.M.; Zouaoui, S.; et al. Recursive partitioning analysis of prognostic factors for glioblastoma patients aged 70 years or older. Cancer 2012, 118, 5595–5600. [Google Scholar] [CrossRef] [Green Version]
- Schag, C.C.; Heinrich, R.L.; Ganz, P.A. Karnofsky performance status revisited: Reliability, validity, and guidelines. JCO 1984, 2, 187–193. [Google Scholar] [CrossRef]
- Iwamoto, F.M.; Cooper, A.R.; Reiner, A.S.; Nayak, L.; Abrey, L.E. Glioblastoma in the elderly. Cancer 2009, 115, 3758–3766. [Google Scholar] [CrossRef]
- Chaichana, K.L.; Garzon-Muvdi, T.; Parker, S.; Weingart, J.D.; Olivi, A.; Bennett, R.; Brem, H.; Quiñones-Hinojosa, A. Supratentorial Glioblastoma Multiforme: The Role of Surgical Resection Versus Biopsy Among Older Patients. Ann. Surg. Oncol. 2011, 18, 239–245. [Google Scholar] [CrossRef] [Green Version]
- Lorimer, C.F.; Hanna, C.; Saran, F.; Chalmers, A.; Brock, J. Challenges to Treating Older Glioblastoma Patients: The Influence of Clinical and Tumour Characteristics on Survival Outcomes. Clin. Oncol. 2017, 29, 739–747. [Google Scholar] [CrossRef] [PubMed]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Balducci, M.; Fiorentino, A.; De Bonis, P.; Chiesa, S.; Manfrida, S.; D’Agostino, G.R.; Mantini, G.; Frascino, V.; Mattiucci, G.C.; De Bari, B.; et al. Impact of age and co-morbidities in patients with newly diagnosed glioblastoma: A pooled data analysis of three prospective mono-institutional phase II studies. Med. Oncol. 2012, 29, 3478–3483. [Google Scholar] [CrossRef]
- Fiorentino, A.; Caivano, R.; Chiumento, C.; Cozzolino, M.; Clemente, S.; Pedicini, P.; Fusco, V. Comorbidity assessment and adjuvant radiochemotherapy in elderly affected by glioblastoma. Med. Oncol. 2012, 29, 3467–3471. [Google Scholar] [CrossRef]
- Ening, G.; Osterheld, F.; Capper, D.; Schmieder, K.; Brenke, C. Charlson comorbidity index: An additional prognostic parameter for preoperative glioblastoma patient stratification. J. Cancer Res. Clin. Oncol. 2015, 141, 1131–1137. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Qdaisat, A.; Yeung, J.; Lopez, G.; Weinberg, J.; Zhou, S.; Cohen, L.; Bruera, E.; Yeung, S.J. The Association Between Common Clinical Characteristics and Postoperative Morbidity and Overall Survival in Patients with Glioblastoma. Oncologist 2019, 24, 529–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flanigan, P.M.; Jahangiri, A.; Kuang, R.; Truong, A.; Choi, S.; Chou, A.; Molinaro, A.M.; McDermott, M.W.; Berger, M.S.; Aghi, M.K. Developing an Algorithm for Optimizing Care of Elderly Patients With Glioblastoma. Neurosurgery 2018, 82, 64–75. [Google Scholar] [CrossRef]
- Schneider, M.; Potthoff, A.-L.; Scharnböck, E.; Heimann, M.; Schäfer, N.; Weller, J.; Schaub, C.; Jacobs, A.H.; Güresir, E.; Herrlinger, U.; et al. Newly diagnosed glioblastoma in geriatric (65 +) patients: Impact of patients frailty, comorbidity burden and obesity on overall survival. J. Neuro-Oncol. 2020, 149, 421–427. [Google Scholar] [CrossRef]
- Repetto, L.; Fratino, L.; Audisio, R.A.; Venturino, A.; Gianni, W.; Vercelli, M.; Parodi, S.; Dal Lago, D.; Gioia, F.; Monfardini, S.; et al. Comprehensive Geriatric Assessment Adds Information to Eastern Cooperative Oncology Group Performance Status in Elderly Cancer Patients: An Italian Group for Geriatric Oncology Study. JCO 2002, 20, 494–502. [Google Scholar] [CrossRef]
- Lombardi, G.; Bergo, E.; Caccese, M.; Padovan, M.; Bellu, L.; Brunello, A.; Zagonel, V. Validation of the Comprehensive Geriatric Assessment as a Predictor of Mortality in Elderly Glioblastoma Patients. Cancers 2019, 11, 1509. [Google Scholar] [CrossRef] [Green Version]
- Vuorinen, V.; Hinkka, S.; Färkkilä, M.; Jääskeläinen, J. Debulking or biopsy of malignant glioma in elderly people—A randomised study. Acta Neurochir. 2003, 145, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Oszvald, Á.; Güresir, E.; Setzer, M.; Vatter, H.; Senft, C.; Seifert, V.; Franz, K. Glioblastoma therapy in the elderly and the importance of the extent of resection regardless of age: Clinical article. J. Neurosurg. JNS 2012, 116, 357–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wick, W.; Platten, M.; Meisner, C.; Felsberg, J.; Tabatabai, G.; Simon, M.; Nikkhah, G.; Papsdorf, K.; Steinbach, J.P.; Sabel, M.; et al. Temozolomide chemotherapy alone versus radiotherapy alone for malignant astrocytoma in the elderly: The NOA-08 randomised, phase 3 trial. Lancet Oncol. 2012, 13, 707–715. [Google Scholar] [CrossRef] [Green Version]
- Malmström, A.; Grønberg, B.H.; Marosi, C.; Stupp, R.; Frappaz, D.; Schultz, H.; Abacioglu, U.; Tavelin, B.; Lhermitte, B.; Hegi, M.E.; et al. Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: The Nordic randomised, phase 3 trial. Lancet Oncol. 2012, 13, 916–926. [Google Scholar] [CrossRef]
- Keime-Guibert, F.; Chinot, O.; Taillandier, L.; Cartalat-Carel, S.; Frenay, M.; Kantor, G.; Guillamo, J.S.; Jadaud, E.; Colin, P.; Bondiau, P.Y.; et al. Radiotherapy for Glioblastoma in the Elderly. N. Engl. J. Med. 2007, 356, 1527–1535. [Google Scholar] [CrossRef]
- Roa, W.; Brasher, P.M.A.; Bauman, G.; Anthes, M.; Bruera, E.; Chan, A.; Fisher, B.; Fulton, D.; Gulavita, S.; Hao, C.; et al. Abbreviated Course of Radiation Therapy in Older Patients With Glioblastoma Multiforme: A Prospective Randomized Clinical Trial. JCO 2004, 22, 1583–1588. [Google Scholar] [CrossRef]
- Roa, W.; Kepka, L.; Kumar, N.; Sinaika, V.; Matiello, J.; Lomidze, D.; Hentati, D.; Guedes De Castro, D.; Dyttus-Cebulok, K.; Drodge, S.; et al. International Atomic Energy Agency Randomized Phase III Study of Radiation Therapy in Elderly and/or Frail Patients With Newly Diagnosed Glioblastoma Multiforme. JCO 2015, 33, 4145–4150. [Google Scholar] [CrossRef]
- Perry, J.R.; Laperriere, N.; O’Callaghan, C.J.; Brandes, A.A.; Menten, J.; Phillips, C.; Fay, M.; Nishikawa, R.; Cairncross, J.G.; Roa, W.; et al. Short-Course Radiation plus Temozolomide in Elderly Patients with Glioblastoma. N. Engl. J. Med. 2017, 376, 1027–1037. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Larraya, J.G.; Ducray, F.; Chinot, O.; Catry-Thomas, I.; Taillandier, L.; Guillamo, J.-S.; Campello, C.; Monjour, A.; Cartalat-Carel, S.; Barrie, M.; et al. Temozolomide in Elderly Patients With Newly Diagnosed Glioblastoma and Poor Performance Status: An ANOCEF Phase II Trial. JCO 2011, 29, 3050–3055. [Google Scholar] [CrossRef]
- Stupp, R.; Hegi, M.E.; Mason, W.P.; van den Bent, M.J.; Taphoorn, M.J.; Janzer, R.C.; Ludwin, S.K.; Allgeier, A.; Fisher, B.; Belanger, K.; et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009, 10, 459–466. [Google Scholar] [CrossRef]
- Stupp, R.; Mason, W.P.; Van Den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef] [PubMed]
- van den Bent, M.J.; Brandes, A.A.; Rampling, R.; Kouwenhoven, M.C.; Kros, J.M.; Carpentier, A.F.; Clement, P.M.; Frenay, M.; Campone, M.; Baurain, J.-F.; et al. Randomized phase II trial of erlotinib versus temozolomide or carmustine in recurrent glioblastoma: EORTC brain tumor group study 26034. J. Clin. Oncol. 2009, 27, 1268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weller, M.; Butowski, N.; Tran, D.D.; Recht, L.D.; Lim, M.; Hirte, H.; Ashby, L.; Mechtler, L.; Goldlust, S.A.; Iwamoto, F.; et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): A randomised, double-blind, international phase 3 trial. Lancet Oncol. 2017, 18, 1373–1385. [Google Scholar] [CrossRef] [Green Version]
- Van Den Bent, M.; Gan, H.K.; Lassman, A.B.; Kumthekar, P.; Merrell, R.; Butowski, N.; Lwin, Z.; Mikkelsen, T.; Nabors, L.; Papadopoulos, K.P.; et al. Efficacy of depatuxizumab mafodotin (ABT-414) monotherapy in patients with EGFR-amplified, recurrent glioblastoma: Results from a multi-center, international study. Cancer Chemother. Pharmacol. 2017, 80, 1209–1217. [Google Scholar] [CrossRef]
- Lassman, A.; Pugh, S.; Wang, T.; Aldape, K.; Gan, H.; Preusser, M.; Vogelbaum, M.; Sulman, E.; Won, M.; Zhang, P.; et al. ACTR-21. A randomized, double-blind, placebo-controlled phase 3 trial of depatuxizumab mafodotin (ABT-414) in epidermal growth factor receptor (EGFR) amplified (AMP) newly diagnosed glioblastoma (nGBM). Neuro-Oncology 2019, 21, vi17. [Google Scholar] [CrossRef]
- Van Den Bent, M.; Eoli, M.; Sepulveda, J.M.; Smits, M.; Walenkamp, A.; Frenel, J.-S.; Franceschi, E.; Clement, P.M.; Chinot, O.; De Vos, F.; et al. INTELLANCE 2/EORTC 1410 randomized phase II study of Depatux-M alone and with temozolomide vs temozolomide or lomustine in recurrent EGFR amplified glioblastoma. Neuro-Oncology 2020, 22, 684–693. [Google Scholar] [CrossRef]
- Reardon, D.A.; Wen, P.Y.; Mellinghoff, I.K. Targeted molecular therapies against epidermal growth factor receptor: Past experiences and challenges. Neuro-Oncology 2014, 16, viii7–viii13. [Google Scholar] [CrossRef] [Green Version]
- Kaley, T.; Touat, M.; Subbiah, V.; Hollebecque, A.; Rodon, J.; Lockhart, A.C.; Keedy, V.; Bielle, F.; Hofheinz, R.D.; Joly, F.; et al. BRAF Inhibition in BRAF(V600)-Mutant Gliomas: Results From the VE-BASKET Study. J. Clin. Oncol. 2018, 36, 3477–3484. [Google Scholar] [CrossRef]
- Gambella, A.; Senetta, R.; Collemi, G.; Vallero, S.G.; Monticelli, M.; Cofano, F.; Zeppa, P.; Garbossa, D.; Pellerino, A.; Rudà, R.; et al. NTRK Fusions in Central Nervous System Tumors: A Rare, but Worthy Target. Int. J. Mol. Sci. 2020, 21, 753. [Google Scholar] [CrossRef] [Green Version]
- Chi, A.S.; Tarapore, R.S.; Hall, M.D.; Shonka, N.; Gardner, S.; Umemura, Y.; Sumrall, A.; Khatib, Z.; Mueller, S.; Kline, C.; et al. Pediatric and adult H3 K27M-mutant diffuse midline glioma treated with the selective DRD2 antagonist ONC201. J. Neuro-Oncol. 2019, 145, 97–105. [Google Scholar] [CrossRef]
- Lasorella, A.; Sanson, M.; Iavarone, A. FGFR-TACC gene fusions in human glioma. Neuro-Oncology 2017, 19, 475–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reyes-Botero, G.; Cartalat-Carel, S.; Chinot, O.L.; Barrie, M.; Taillandier, L.; Beauchesne, P.; Catry-Thomas, I.; Barrière, J.; Guillamo, J.-S.; Fabbro, M.; et al. Temozolomide Plus Bevacizumab in Elderly Patients with Newly Diagnosed Glioblastoma and Poor Performance Status: An ANOCEF Phase II Trial (ATAG). Oncologist 2018, 23, 524-e44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wick, W.; Dettmer, S.; Berberich, A.; Kessler, T.; Karapanagiotou-Schenkel, I.; Wick, A.; Winkler, F.; Pfaff, E.; Brors, B.; Debus, J.; et al. N2M2 (NOA-20) phase I/II trial of molecularly matched targeted therapies plus radiotherapy in patients with newly diagnosed non-MGMT hypermethylated glioblastoma. Neuro-Oncology 2019, 21, 95–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexander, B.M.; Trippa, L.; Gaffey, S.; Arrillaga-Romany, I.C.; Lee, E.Q.; Rinne, M.L.; Ahluwalia, M.S.; Colman, H.; Fell, G.; Galanis, E.; et al. Individualized screening trial of innovative glioblastoma therapy (INSIGhT): A Bayesian adaptive platform trial to develop precision medicines for patients with glioblastoma. JCO Precis. Oncol. 2019, 3, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Alexander, B.M.; Ba, S.; Berger, M.S.; Berry, D.A.; Cavenee, W.K.; Chang, S.M.; Cloughesy, T.F.; Jiang, T.; Khasraw, M.; Liau, L.; et al. Adaptive global innovative learning environment for glioblastoma: GBM AGILE. Clin. Cancer Res. 2018, 24, 737–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Author | Type of Study | No. of Patients | Age (years) | Factors Associated with Outcome | Median Overall Survival and Analysis of Survival |
---|---|---|---|---|---|
Scott et al., 2012 [17] | Multicentric study (MSKCC + CC; French consortium) | 506 | ≥70 | Age KPS Extent of resection | MSKCC + CC GTR/STR; Age < 75.5: 9.3 GTR/STR; Age ≥ 75.5 y: 6.4 Biopsy; KPS 70–100: 4.6 Biopsy; KPS < 70: 2.3 French consortium GTR/STR; Age < 75.5: 8.5 GTR/STR; Age ≥ 75.5 y: 7.7 Biopsy; KPS 70–100: 4.3 Biopsy; KPS < 70: 3.1 |
Iwamoto et al., 2009 [19] | Monoinstitutional series | 394 | ≥65 | Age KPS Multifocal tumour Extent of resection Comorbidity: no correlation | 8.6 (for the whole cohort) Multivariable analysis (HR, p value) 70–74 yrs vs. 65–69: 1.3, p < 0.001 75–79 yrs vs. 65–69: 2.0, p < 0.001 ≥80 yrs vs. 65–69: 1.8, p < 0.001 KPS ≥ 70 vs. <70: 0.6, p < 0.001 Multifocal vs. single: 1.7, p < 0.001 STR vs. biopsy: 0.7, p = p < 0.001 GTR vs. biopsy: 0.5, p < 0.001 |
Chaichana et al., 2011 [20] | Monoinstitutional series | 129 | ≥65 | KPS Motor deficits Language deficits Cognitive deficits COPD Tumour size Other comorbidities (coronary artery disease; diabetes; hypertension; atrial fibrillation): no correlation | 7.9 (for the whole cohort) Multivariable analysis (HR, p value) KPS < 80: 1.756, p = 0.001 Motor deficits: 3.480, p = 0.01 Language deficits: 2.311, p = 0.005 Cognitive deficits: 1.792, p = 0.02 COPD: 3.762, p = 0.01 Tumour size > 4 cm: 1.982, p = 0.002 |
Lorimer et al., 2017 [21] | Multicentric study | 339 | ≥70 | ECOG Seizures Multifocal tumour Extent of resection RT and/or TMZ vs. BSC CCI: no correlation | 3.8 (for the whole cohort) Multivariable analysis (HR, p value) ECOG 1 vs. 0: 1.664, p = 0.042 ECOG 2 vs. 0: 1.780, p = 0.031 ECOG 3 vs. 0: 2.198, p = 0.008 ECOG 4 vs. 0: 2.409, p = 0.021 Multifocal vs. single: 3.419, p = 0.013 STR vs. nothing: 0.625, p = 0.019 GTR vs. nothing: 0.560, p = 0.019 RT vs. BSC: 0.588, p = 0.005 TMZ alone vs. BSC: 0.395, p = 0.004 RT/TMZ vs. BSC: 0.189, p < 0.001 |
Balducci et al., 2012 [23] | Pooled analysis from 3 phase II trials | 146 | ≥70 | Age Extent of resection RT dose CCI: no correlation | 14 months (for the whole cohort) Multivariable analysis (HR, p value) STR vs. GTR: 1.7, p = 0.01 60 Gy vs. 70 Gy: 1.89, p = 0.01 Recursive partitioning analysis: 2.37, p = 0.013 |
Fiorentino et al., 2012 [24] | Monoinstitutional series | 35 | ≥65 | CCI | CCI < 3: 22 months CCI ≥ 3: 10 months No multivariable analysis is provided |
Flanigan et al., 2018 [27] | Monoinstitutional series | 161 | ≥65 | Female sex Extent of resection Post-resection comorbidities Adjuvant TMZ vs. no TMZ | 9.3 (for the whole cohort) Multivariable analysis (HR, 95% CI) Female vs. male: 0.56 (0.38–0.83) GTR vs. STR: 0.67 (0.46–0.97) No post-resection comorbidities: 0.60 (0.38–0.97) TMZ vs. no TMZ: 0.36 (0.21–0.62) |
Lombardi et al., 2019 [30] | Monoinstitutional series | 113 | ≥65 | CGA KPS MGMT promoter methylation Extent of surgery: no correlation RT + TMZ: no correlation | 13.2 months (for the whole cohort) Multivariable analysis (HR, p value) CGA (‘unfit’ vs. ‘fit’): 1.8, p = 0.050 MGMTp methylation: 0.4, p = 0.001 KPS ≥ 70: 0.8, p = 0.050 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruno, F.; Pellerino, A.; Palmiero, R.; Bertero, L.; Mantovani, C.; Garbossa, D.; Soffietti, R.; Rudà, R. Glioblastoma in the Elderly: Review of Molecular and Therapeutic Aspects. Biomedicines 2022, 10, 644. https://doi.org/10.3390/biomedicines10030644
Bruno F, Pellerino A, Palmiero R, Bertero L, Mantovani C, Garbossa D, Soffietti R, Rudà R. Glioblastoma in the Elderly: Review of Molecular and Therapeutic Aspects. Biomedicines. 2022; 10(3):644. https://doi.org/10.3390/biomedicines10030644
Chicago/Turabian StyleBruno, Francesco, Alessia Pellerino, Rosa Palmiero, Luca Bertero, Cristina Mantovani, Diego Garbossa, Riccardo Soffietti, and Roberta Rudà. 2022. "Glioblastoma in the Elderly: Review of Molecular and Therapeutic Aspects" Biomedicines 10, no. 3: 644. https://doi.org/10.3390/biomedicines10030644
APA StyleBruno, F., Pellerino, A., Palmiero, R., Bertero, L., Mantovani, C., Garbossa, D., Soffietti, R., & Rudà, R. (2022). Glioblastoma in the Elderly: Review of Molecular and Therapeutic Aspects. Biomedicines, 10(3), 644. https://doi.org/10.3390/biomedicines10030644