Fatty Pancreas-Centered Metabolic Basis of Pancreatic Adenocarcinoma: From Obesity, Diabetes and Pancreatitis to Oncogenesis
Abstract
:1. Introduction
2. Survey of Fatty Pancreas
3. Obesity, Fatty Pancreas and PDAC
4. Factors Associated with Acinar-to-Adipocyte Transdifferentiation
5. Animal Studies of Fatty Pancreas
5.1. Fatty Pancreas in Obese Transgenic Mice
5.2. Fatty Pancreas in Diet-Induced Obese Mice/Rats
5.3. Fatty Pancreas in Non-Obese Cotton Rats
5.4. Fatty Pancreas in Offspring
5.5. Fatty Pancreas and PDAC
6. Human Studies of Fatty Pancreas
6.1. Fatty Pancreas and Pancreas Exocrine Function
6.2. Fatty Pancreas and Metabolic Profiles
6.3. Fatty Pancreas and Pancreatitis
6.4. Fatty Pancreas and Fatty Liver
6.5. Fatty Pancreas and Pancreatic Cancer
7. Reprogrammed Metabolism of PDAC
7.1. Aerobic Glycolysis and Noncanonical Gln Metabolism
7.2. Lipid Metabolism
7.3. Autophagy and Macropinocytosis
8. Conclusions and Outlook
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Korc, M.; Jeon, C.Y.; Edderkaoui, M.; Pandol, S.J.; Petrov, M.S.; Consortium for the Study of Chronic Pancreatitis, Diabetes, and Pancreatic Cancer (CPDPC). Tobacco and alcohol as risk factors for pancreatic cancer. Best Pract. Res. Clin. Gastroenterol. 2017, 31, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Eibl, G.; Cruz-Monserrate, Z.; Korc, M.; Petrov, M.S.; Goodarzi, M.O.; Fisher, W.E.; Habtezion, A.; Lugea, A.; Pandol, S.J.; Consortium for the Study of Chronic Pancreatitis, Diabetes, and Pancreatic Cancer; et al. Diabetes Mellitus and Obesity as Risk Factors for Pancreatic Cancer. J. Acad. Nutr. Diet. 2018, 118, 555–567. [Google Scholar] [CrossRef] [PubMed]
- Henrikson, N.B.; Aiello Bowles, E.J.; Blasi, P.R.; Morrison, C.C.; Nguyen, M.; Pillarisetty, V.G.; Lin, J.S. Screening for Pancreatic Cancer: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 2019, 322, 445–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrov, M.S. Post-pancreatitis diabetes mellitus and excess intra-pancreatic fat deposition as harbingers of pancreatic cancer. World J. Gastroenterol. 2021, 27, 1936–1942. [Google Scholar] [CrossRef] [PubMed]
- Derle, A.; De Santis, M.C.; Gozzelino, L.; Ratto, E.; Martini, M. The role of metabolic adaptation to nutrient stress in pancreatic cancer. Cell Stress 2018, 2, 332–339. [Google Scholar] [CrossRef] [PubMed]
- González-Borja, I.; Viúdez, A.; Goñi, S.; Santamaria, E.; Carrasco-García, E.; Pérez-Sanz, J.; Hernández-García, I.; Sala-Elarre, P.; Arrazubi, V.; Oyaga-Iriarte, E.; et al. Omics Approaches in Pancreatic Adenocarcinoma. Cancers 2019, 11, 1052. [Google Scholar] [CrossRef] [Green Version]
- Chari, S.T.; Kelly, K.; Hollingsworth, M.A.; Thayer, S.P.; Ahlquist, D.A.; Andersen, D.K.; Batra, S.K.; Brentnall, T.A.; Canto, M.; Cleeter, D.F.; et al. Early detection of sporadic pancreatic cancer: Summative review. Pancreas 2015, 44, 693–712. [Google Scholar] [CrossRef] [Green Version]
- Sreedhar, U.L.; DeSouza, S.V.; Park, B.; Petrov, M.S. A Systematic Review of Intra-pancreatic Fat Deposition and Pancreatic Carcinogenesis. J. Gastrointest. Surg. 2020, 24, 2560–2569. [Google Scholar] [CrossRef]
- Rebours, V.; Gaujoux, S.; D’Assignies, G.; Sauvanet, A.; Ruszniewski, P.; Lévy, P.; Paradis, V.; Bedossa, P.; Couvelard, A. Obesity and Fatty Pancreatic Infiltration Are Risk Factors for Pancreatic Precancerous Lesions (PanIN). Clin. Cancer Res. 2015, 21, 3522–3528. [Google Scholar] [CrossRef] [Green Version]
- Chan, T.T.; Tse, Y.K.; Lui, R.N.-S.; Wong, G.L.-H.; Chim, A.M.-L.; Kong, A.P.-S.; Woo, J.; Yeung, D.K.-W.; Abrigo, J.M.; Chu, W.C.-W.; et al. Fatty Pancreas Is Independently Associated with Subsequent Diabetes Mellitus Development: A 10-Year Prospective Cohort Study. Clin. Gastroenterol. Hepatol. 2021, 11, 27. [Google Scholar] [CrossRef]
- Yamazaki, H.; Tauchi, S.; Wang, J.; Dohke, M.; Hanawa, N.; Kodama, Y.; Katanuma, A.; Saisho, Y.; Kamitani, T.; Fukuhara, S.; et al. Longitudinal association of fatty pancreas with the incidence of type-2 diabetes in lean individuals: A 6-year computed tomography-based cohort study. J. Gastroenterol. 2020, 55, 712–721. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.; Rocha, J.P.; Bhutiani, N.; Endashaw, O.; Omer, E. Non-alcoholic Fatty Pancreas Disease. Nutr. Clin. Pract. 2019, 34, S49–S56. [Google Scholar] [CrossRef] [Green Version]
- M van Geenen, E.-J.; Smits, M.M.; Schreuder, T.C.; van der Peet, D.L.; Bloemena, E.; Mulder, C.J. Non-alcoholic fatty liver disease is related to non-alcoholic fatty pancreas disease. Pancreas 2010, 39, 1185–1190. [Google Scholar] [CrossRef] [PubMed]
- Papachristou, G.I.; Papachristou, D.J.; Avula, H.; Slivka, A.; Whitcomb, D.C. Obesity increases the severity of acute pancreatitis: Performance of APACHE-O score and correlation with the inflammatory response. Pancreatology 2006, 6, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Pinte, L.; Balaban, D.V.; Baicus, C.; Jinga, M. Non-alcoholic fatty pancreas disease—Practices for clinicians. Romanian J. Intern. Med. 2019, 57, 209–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majumder, S.; Philip, N.A.; Takahashi, N.; Levy, M.J.; Singh, V.P.; Chari, S.T. Fatty Pancreas: Should We Be Concerned? Pancreas 2017, 46, 1251–1258. [Google Scholar] [CrossRef] [PubMed]
- Olsen, T.S. Lipomatosis of the pancreas in autopsy material and its relation to age and overweight. Acta Pathol. Microbiol. Scand. Sect. A Pathol. 1978, 86A, 367–373. [Google Scholar] [CrossRef]
- Matsumoto, S.; Mori, H.; Miyake, H.; Takaki, H.; Maeda, T.; Yamada, Y.; Oga, M. Uneven fatty replacement of the pancreas: Evaluation with CT. Radiology 1995, 194, 453–458. [Google Scholar] [CrossRef] [Green Version]
- Itai, Y.; Saida, Y.; Kurosaki, Y.; Kurosaki, A.; Fujimoto, T. Focal fatty masses of the pancreas. Acta Radiol. 1995, 36, 178–181. [Google Scholar] [CrossRef]
- Chaudhary, V.; Anand, R.; Narula, M.; Agrawal, R. Total pancreatic lipomatosis with malabsorption syndrome. Indian J. Endocrinol. Metab. 2011, 15, 51–53. [Google Scholar] [CrossRef]
- Catanzaro, R.; Cuffari, B.; Italia, A.; Marotta, F. Exploring the metabolic syndrome: Non-alcoholic fatty pancreas disease. World J. Gastroenterol. 2016, 22, 7660–7675. [Google Scholar] [CrossRef] [PubMed]
- Mortelé, K.J.; Rocha, T.C.; Streeter, J.L.; Taylor, A. Multimodality Imaging of Pancreatic and Biliary Congenital Anomalies. RadioGraphics 2006, 26, 715–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakai, N.S.; Taylor, S.A.; Chouhan, M.D. Obesity, metabolic disease and the pancreas-Quantitative imaging of pancreatic fat. Br. J. Radiol. 2018, 91, 20180267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.; Yoon, H.D.; Wu, L.M.; Lu, J.; Plank, L.D.; Petrov, M.S. Ectopic fat accumulation in the pancreas and its clinical relevance: A systematic review, meta-analysis, and meta-regression. Metabolism 2017, 69, 1–13. [Google Scholar] [CrossRef]
- Bracci, P.M. Obesity and pancreatic cancer: Overview of epidemiologic evidence and biologic mechanisms. Mol. Carcinog. 2011, 51, 53–63. [Google Scholar] [CrossRef] [Green Version]
- Pothuraju, R.; Rachagani, S.; Junker, W.M.; Chaudhary, S.; Saraswathi, V.; Kaur, S.; Batra, S.K. Pancreatic cancer associated with obesity and diabetes: An alternative approach for its targeting. J. Exp. Clin. Cancer Res. 2018, 37, 319. [Google Scholar] [CrossRef] [Green Version]
- Ferrara, D.; Montecucco, F.; Dallegri, F.; Carbone, F. Impact of different ectopic fat depots on cardiovascular and metabolic diseases. J. Cell. Physiol. 2019, 234, 21630–21641. [Google Scholar] [CrossRef]
- Li, S.; Su, L.; Lv, G.; Zhao, W.; Chen, J. Transabdominal ultrasonography of the pancreas is superior to that of the liver for detection of ectopic fat deposits resulting from metabolic syndrome. Medicine 2017, 96, e8060. [Google Scholar] [CrossRef]
- Silva, L.L.S.E.; Fernandes, M.S.S.; Lima, E.A.; Stefano, J.T.; Oliveira, C.P.; Jukemura, J. Fatty Pancreas: Disease or Finding? Clinics 2021, 76, e2439. [Google Scholar] [CrossRef]
- Filippatos, T.D.; Alexakis, K.; Mavrikaki, V.; Mikhailidis, D.P. Non-alcoholic Fatty Pancreas Disease: Role in Metabolic Syndrome, “Prediabetes”, Diabetes and Atherosclerosis. Am. J. Dig. Dis. 2021, 67, 26–41. [Google Scholar] [CrossRef]
- Regnell, S.E.; Peterson, P.; Trinh, L.; Broberg, P.; Leander, P.; Lernmark, Å.; Månsson, S.; Larsson, H.E. Pancreas volume and fat fraction in children with Type 1 diabetes. Diabet. Med. 2016, 33, 1374–1379. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Yamada, S.; Sonohara, F.; Takami, H.; Hayashi, M.; Kanda, M.; Kobayashi, D.; Tanaka, C.; Nakayama, G.; Koike, M.; et al. Pancreatic Fat and Body Composition Measurements by Computed Tomography are Associated with Pancreatic Fistula after Pancreatectomy. Ann. Surg. Oncol. 2020, 28, 530–538. [Google Scholar] [CrossRef] [PubMed]
- Calculli, L.; Festi, D.; Pezzilli, R. Enlarged pancreas: Not always a cancer. Hepatobiliary Pancreat. Dis. Int. 2015, 14, 107–108. [Google Scholar] [CrossRef]
- Saisho, Y. Pancreas Volume and Fat Deposition in Diabetes and Normal Physiology: Consideration of the Interplay between Endocrine and Exocrine Pancreas. Rev. Diabet. Stud. 2016, 13, 132–147. [Google Scholar] [CrossRef] [Green Version]
- Ishibashi, C.; Kozawa, J.; Hosakawa, Y.; Yoneda, S.; Kimura, T.; Fujita, Y.; Fukui, K.; Iwahashi, H.; Shimomura, I. Pancreatic fat is related to the longitudinal decrease in the increment of C-peptide in glucagon stimulation test in type 2 diabetes patients. J. Diabetes Investig. 2019, 11, 80–87. [Google Scholar] [CrossRef] [Green Version]
- Dite, P.; Blaho, M.; Bojkova, M.; Jabandziev, P.; Kunovsky, L. Non-alcoholic Fatty Pancreas Disease: Clinical Consequences. Dig. Dis. 2019, 38, 143–149. [Google Scholar] [CrossRef]
- Petrov, M.S.; Taylor, R. Intra-pancreatic fat deposition: Bringing hidden fat to the fore. Nat. Rev. Gastroenterol. Hepatol. 2021, 19, 153–168. [Google Scholar] [CrossRef]
- Tariq, H.; Nayudu, S.; Akella, S.; Glandt, M.; Chilimuri, S. Non-alcoholic fatty pancreatic disease: A review of literature. Gastroenterol. Res. 2016, 9, 87–91. [Google Scholar] [CrossRef]
- Seeley, E.S.; Carrière, C.; Goetze, T.; Longnecker, D.S.; Korc, M. Pancreatic Cancer and Precursor Pancreatic Intraepithelial Neoplasia Lesions Are Devoid of Primary Cilia. Cancer Res. 2009, 69, 422–430. [Google Scholar] [CrossRef] [Green Version]
- Bonal, C.; Thorel, F.; Ait-Lounis, A.; Reith, W.; Trumpp, A.; Herrera, P.L. Pancreatic Inactivation of c-Myc Decreases Acinar Mass and Transdifferentiates Acinar Cells into Adipocytes in Mice. Gastroenterology 2009, 136, 309–319.e9. [Google Scholar] [CrossRef]
- Martinelli, P.; Cañamero, M.; del Pozo, N.; Madriles, F.; Zapata, A.; Real, F.X. Gata6is required for complete acinar differentiation and maintenance of the exocrine pancreas in adult mice. Gut 2012, 62, 1481–1488. [Google Scholar] [CrossRef] [PubMed]
- Augereau, C.; Collet, L.; Vargiu, P.; Guerra, C.; Ortega, S.; Jacquemin, P.; Lemaigre, F.P. Chronic pancreatitis and lipomatosis are associated with defective function of ciliary genes in pancreatic ductal cells. Hum. Mol. Genet. 2016, 25, 5017–5026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fahr, L.; Sunami, Y.; Maeritz, N.; Steiger, K.; Grünewald, T.G.; Gericke, M.; Kong, B.; Raulefs, S.; Mayerle, J.; Michalski, C.W.; et al. Expression of the EWSR1-FLI1 fusion oncogene in pancreas cells drives pancreatic atrophy and lipomatosis. Pancreatology 2020, 20, 1673–1681. [Google Scholar] [CrossRef] [PubMed]
- Hausmann, S.; Regel, I.; Steiger, K.; Wagner, N.; Thorwirth, M.; Schlitter, A.M.; Esposito, I.; Michalski, C.W.; Friess, H.; Kleeff, J.; et al. Loss of Periostin Results in Impaired Regeneration and Pancreatic Atrophy after Cerulein-Induced Pancreatitis. Am. J. Pathol. 2015, 186, 24–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zyromski, N.J.; Mathur, A.; Gowda, G.N.; Murphy, C.; Swartz-Basile, D.A.; Wade, T.E.; Pitt, H.A.; Raftery, D. nuclear magnetic resonance spectroscopy-based metabolomics of the fatty pancreas: Implicating fat in pancreatic pathology. Pancreatology 2009, 9, 410–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraulob, J.C.; Ogg-Diamantino, R.; Fernandes-Santos, C.; Aguila, M.B.; Mandarim-De-Lacerda, C.A. A Mouse Model of Metabolic Syndrome: Insulin Resistance, Fatty Liver and Non-Alcoholic Fatty Pancreas Disease (NAFPD) in C57BL/6 Mice Fed a High Fat Diet. J. Clin. Biochem. Nutr. 2010, 46, 212–223. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, A.; Makino, N.; Tozawa, T.; Shirahata, N.; Honda, T.; Ikeda, Y.; Sato, H.; Ito, M.; Kakizaki, Y.; Akamatsu, M.; et al. Pancreatic Fat Accumulation, Fibrosis, and Acinar Cell Injury in the Zucker Diabetic Fatty Rat Fed a Chronic High-Fat Diet. Pancreas 2014, 43, 735–743. [Google Scholar] [CrossRef] [Green Version]
- Pighin, D.; Karabatas, L.; Rossi, A.; Chicco, A.; Basabe, J.C.; Lombardo, Y.B. Fish oil affects pancreatic fat storage, pyruvate dehydrogenase complex activity and insulin secretion in rats fed a sucrose-rich diet. J. Nutr. 2003, 133, 4095–4101. [Google Scholar] [CrossRef] [Green Version]
- Fernandes-Santos, C.; Evangelista Carneiro, R.; de Souza Mendonca, L.; Barbosa Aguila, M.; Mandarim-de-Lacerda, C.A. Rosiglitazone aggravates non-alcoholic Fatty pancreatic disease in C57BL/6 mice fed high-fat and high-sucrose diet. Pancreas 2009, 38, e80–e86. [Google Scholar] [CrossRef]
- Gotoh, K.; Inoue, M.; Shiraishi, K.; Masaki, T.; Chiba, S.; Mitsutomi, K.; Shimasaki, T.; Ando, H.; Fujiwara, K.; Katsuragi, I.; et al. Spleen-derived interleukin-10 downregulates the severity of high-fat diet-induced non-alcoholic fatty pancreas disease. PLoS ONE 2012, 7, e53154. [Google Scholar] [CrossRef]
- Nakamura, T.; Ichii, O.; Irie, T.; Kouguchi, H.; Sotozaki, K.; Chihara, M.; Sunden, Y.; Nagasaki, K.-I.; Tatsumi, O.; Elewa, Y.H.A.; et al. Cotton rat (Sigmodon hispidus) develops metabolic disorders associated with visceral adipose inflammation and fatty pancreas without obesity. Cell Tissue Res. 2018, 375, 483–492. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Huang, T.; Li, J.; Guo, X.; Xiao, H.; Gu, J.; Tang, J.; Cai, W.; Li, D. Beneficial Effects of n-3 Polyunsaturated Fatty Acids on Offspring’s Pancreas of Gestational Diabetes Rats. J. Agric. Food Chem. 2019, 67, 13269–13281. [Google Scholar] [CrossRef] [PubMed]
- Soeda, J.; Mouralidarane, A.; Cordero, P.; Li, J.; Nguyen, V.; Carter, R.; Kapur, S.R.; Pombo, J.; Poston, L.; Taylor, P.D.; et al. Maternal obesity alters endoplasmic reticulum homeostasis in offspring pancreas. J. Physiol. Biochem. 2016, 72, 281–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oben, J.A.; Patel, T.; Mouralidarane, A.; Samuelsson, A.M.; Matthews, P.; Pombo, J.; Morgan, M.; Mckee, C.; Soeda, J.; Novelli, M.; et al. Maternal obesity programmes offspring development of non-alcoholic fatty pancreas disease. Biochem. Biophys. Res. Commun. 2010, 394, 24–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carter, R.; Mouralidarane, A.; Soeda, J.; Ray, S.; Pombo, J.; Saraswati, R.; Novelli, M.; Fusai, G.; Rappa, F.; Saracino, C.; et al. Non-alcoholic fatty pancreas disease pathogenesis: A role for developmental programming and altered circadian rhythms. PLoS ONE 2014, 9, e89505. [Google Scholar] [CrossRef] [PubMed]
- Coe, P.O.; Williams, S.R.; Morris, D.M.; Parkin, E.; Harvie, M.; Renehan, A.G.; O’Reilly, D.A. Development of MR quantified pancreatic fat deposition as a cancer risk biomarker. Pancreatology 2018, 18, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Grippo, P.J.; Fitchev, P.S.; Bentrem, D.J.; Melstrom, L.G.; Dangi-Garimella, S.; Krantz, S.B.; Heiferman, M.J.; Chung, C.; Adrian, K.; Cornwell, M.L.; et al. Concurrent PEDF deficiency and Kras mutation induce invasive pancreatic cancer and adipose-rich stroma in mice. Gut 2012, 61, 1454–1464. [Google Scholar] [CrossRef]
- Kromrey, M.-L.; Friedrich, N.; Hoffmann, R.-T.; Bülow, R.; Völzke, H.; Weiss, F.U.; Lerch, M.M.; Motosugi, U.; Kühn, J.-P. Pancreatic Steatosis Is Associated With Impaired Exocrine Pancreatic Function. Investig. Radiol. 2019, 54, 403–408. [Google Scholar] [CrossRef]
- Miyake, H.; Sakagami, J.; Yasuda, H.; Sogame, Y.; Kato, R.; Suwa, K.; Dainaka, K.; Takata, T.; Yokota, I.; Itoh, Y. Association of fatty pancreas with pancreatic endocrine and exocrine function. PLoS ONE 2018, 13, e0209448. [Google Scholar] [CrossRef]
- Bi, Y.; Wang, J.-L.; Li, M.-L.; Zhou, J.; Sun, X.-L. The association between pancreas steatosis and metabolic syndrome: A systematic review and meta-analysis. Diabetes/Metab. Res. Rev. 2019, 35, e3142. [Google Scholar] [CrossRef]
- Singh, R.G.; Yoon, H.D.; Poppitt, S.D.; Plank, L.D.; Petrov, M.S. Ectopic fat accumulation in the pancreas and its biomarkers: A systematic review and meta-analysis. Diabetes Metab. Res. Rev. 2017, 33, e2918. [Google Scholar] [CrossRef] [PubMed]
- Weng, S.; Zhou, J.; Chen, X.; Sun, Y.; Mao, Z.; Chai, K. Prevalence and factors associated with non-alcoholic fatty pancreas disease and its severity in China. Medicine 2018, 97, e11293. [Google Scholar] [CrossRef] [PubMed]
- Della Corte, C.; Mosca, A.; Majo, F.; Lucidi, V.; Panera, N.; Giglioni, E.; Monti, L.; Stronati, L.; Alisi, A.; Nobili, V. Non-alcoholic fatty pancreas disease and Non-alcoholic fatty liver disease: More than ectopic fat. Clin. Endocrinol. 2015, 83, 656–662. [Google Scholar] [CrossRef] [PubMed]
- Maggio, A.B.; Mueller, P.; Wacker, J.; Viallon, M.; Belli, D.C.; Beghetti, M.; Farpour-Lambert, N.J.; McLin, V.A. Increased pancreatic fat fraction is present in obese adolescents with metabolic syndrome. J. Pediatr. Gastroenterol. Nutr. 2012, 54, 720–726. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, H.; Tauchi, S.; Kimachi, M.; Dohke, M.; Hanawa, N.; Kodama, Y.; Katanuma, A.; Yamamoto, Y.; Fukuhara, S.; Fukuma, S. Independent association between prediabetes and future pancreatic fat accumulation: A 5-year Japanese cohort study. J. Gastroenterol. 2017, 53, 873–882. [Google Scholar] [CrossRef]
- Lu, T.; Wang, Y.; Dou, T.; Xue, B.; Tan, Y.; Yang, J. Pancreatic fat content is associated with β-cell function and insulin resistance in Chinese type 2 diabetes subjects. Endocr. J. 2019, 66, 265–270. [Google Scholar] [CrossRef] [Green Version]
- Elhady, M.; Elazab, A.A.A.M.; Bahagat, K.A.; Abdallah, N.A.; Ibrahim, G.E. Fatty pancreas in relation to insulin resistance and metabolic syndrome in children with obesity. J. Pediatr. Endocrinol. Metab. 2019, 32, 19–26. [Google Scholar] [CrossRef]
- Heiskanen, M.A.; Motiani, K.K.; Mari, A.; Saunavaara, V.; Eskelinen, J.-J.; Virtanen, K.A.; Koivumäki, M.; Löyttyniemi, E.; Nuutila, P.; Kalliokoski, K.K.; et al. Exercise training decreases pancreatic fat content and improves beta cell function regardless of baseline glucose tolerance: A randomised controlled trial. Diabetologia 2018, 61, 1817–1828. [Google Scholar] [CrossRef] [Green Version]
- Jaghutriz, B.A.; Wagner, R.; Heni, M.; Lehmann, R.; Machann, J.; Stefan, N.; Häring, H.-U.; Fritsche, A. Metabolomic Characteristics of Fatty Pancreas. Exp. Clin. Endocrinol. Diabetes 2019, 128, 804–810. [Google Scholar]
- Shur, J.; Kannengiesser, S.A.R.; Menezes, R.; Ward, R.; Kuo, K.; Jhaveri, K. Glucose dysregulation in patients with iron overload: Is there a relationship with quantitative pancreas and liver iron and fat content measured by MRI? Eur. Radiol. 2020, 30, 1616–1623. [Google Scholar] [CrossRef]
- Nadarajah, C.; Fananapazir, G.; Cui, E.; Gichoya, J.; Thayalan, N.; Asare-Sawiri, M.; Menias, C.; Sandrasegaran, K. Association of pancreatic fat content with type II diabetes mellitus. Clin. Radiol. 2020, 75, 51–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, E.H.; Kim, J.Y.; Yang, H.R. Association between ectopic pancreatic and hepatic fat and metabolic risk factors in children with non-alcoholic fatty liver disease. Pediatr. Obes. 2021, 16, e12793. [Google Scholar] [CrossRef] [PubMed]
- Chin, S.O.; Hwang, Y.; Cho, I.; Jeong, I.; Ahn, K.J.; Chung, H.Y. Pancreatic fat accumulation is associated with decreased β-cell function and deterioration in glucose tolerance in Korean adults. Diabetes Metab. Res. Rev. 2020, 37, e3425. [Google Scholar] [CrossRef] [PubMed]
- Lind, L.; Salihovic, S.; Risérus, U.; Kullberg, J.; Johansson, L.; Ahlström, H.; Eriksson, J.W.; Oscarsson, J. The Plasma Metabolomic Profile is Differently Associated with Liver Fat, Visceral Adipose Tissue, and Pancreatic Fat. J. Clin. Endocrinol. Metab. 2020, 106, e118–e129. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Sang, Y.; Sun, Y.; Liu, X.; Geng, H.; Zha, M.; Wang, B.; Teng, F.; Sun, H.; Wang, Y.; et al. Pancreatic Fat is not significantly correlated with β-cell Dysfunction in Patients with new-onset Type 2 Diabetes Mellitus using quantitative Computed Tomography. Int. J. Med Sci. 2020, 17, 1673–1682. [Google Scholar] [CrossRef]
- Sarma, M.K.; Saucedo, A.; Darwin, C.H.; Felker, E.R.; Umachandran, K.; Kohanghadosh, D.; Xu, E.; Raman, S.; Thomas, M.A. Noninvasive assessment of abdominal adipose tissues and quantification of hepatic and pancreatic fat fractions in type 2 diabetes mellitus. Magn. Reason. Imaging 2020, 72, 95–102. [Google Scholar] [CrossRef]
- Fukase, A.; Fukui, T.; Sasamori, H.; Hiromura, M.; Terasaki, M.; Mori, Y.; Hayashi, T.; Yamamoto, T.; Ohara, M.; Goto, S.; et al. Pancreatic fat accumulation evaluated by multidetector computed tomography in patients with type 2 diabetes. J. Diabetes Investig. 2020, 11, 1188–1196. [Google Scholar] [CrossRef] [Green Version]
- Milovanovic, T.; Dragasevic, S.; Lalosevic, M.S.; Zgradic, S.; Milicic, B.; Dumic, I.; Kmezic, S.; Saponjski, D.; Antic, A.; Markovic, V.; et al. Ultrasonographic Evaluation of Fatty Pancreas in Serbian Patients with Non Alcoholic Fatty Liver Disease—A Cross Sectional Study. Medicina 2019, 55, 697. [Google Scholar] [CrossRef] [Green Version]
- Kizilgul, M.; Wilhelm, J.J.; Beilman, G.J.; Chinnakotla, S.; Dunn, T.B.; Pruett, T.L.; Abdulla, M.; Heller, D.; Freeman, M.L.; Schwarzenberg, S.J.; et al. Effect of intrapancreatic fat on diabetes outcomes after total pancreatectomy with islet autotransplantation. J. Diabetes 2018, 10, 286–295. [Google Scholar] [CrossRef]
- Honka, H.; Koffert, J.; Hannukainen, J.; Tuulari, J.J.; Karlsson, H.K.; Immonen, H.; Oikonen, V.; Tolvanen, T.; Soinio, M.; Salminen, P.; et al. The effects of bariatric surgery on pancreatic lipid metabolism and blood flow. J. Clin. Endocrinol. Metab. 2015, 100, 2015–2023. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.; Bae, J.H.; Chun, E.J.; Kim, H.; Kim, S.Y.; Kim, K.M.; Choi, S.H.; Park, K.S.; Florez, J.C.; Jang, H.C. Differences in pancreatic volume, fat content, and fat density measured by multidetector-row computed tomography according to the duration of diabetes. Geol. Rundsch. 2014, 51, 739–748. [Google Scholar] [CrossRef] [PubMed]
- Wong, V.W.; Wong, G.L.; Yeung, D.K.; Abrigo, J.M.; Kong, A.P.; Chan, R.S.; Chim, A.M.; Shen, J.; Ho, C.S.; Woo, J.; et al. Fatty pancreas, insulin resistance, and β-cell function: A population study using fat-water magnetic resonance imaging. Am. J. Gastroenterol. 2014, 109, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Sepe, P.S.; Ohri, A.; Sanaka, S.; Berzin, T.M.; Sekhon, S.; Bennett, G.; Mehta, G.; Chuttani, R.; Kane, R.; Pleskow, D.; et al. A prospective evaluation of fatty pancreas by using EUS. Gastrointest Endosc. 2011, 73, 987–993. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, H.; Tauchi, S.; Kimachi, M.; Dohke, M.; Hanawa, N.; Kodama, Y.; Katanuma, A.; Yamamoto, Y.; Fukuma, S.; Fukuhara, S. Association between pancreatic fat and incidence of metabolic syndrome: A 5-year Japanese cohort study. J. Gastroenterol. Hepatol. 2018, 33, 2048–2054. [Google Scholar] [CrossRef] [PubMed]
- Lingvay, I.; Esser, V.; Legendre, J.L.; Price, A.L.; Wertz, K.M.; Adams-Huet, B.; Zhang, S.; Unger, R.H.; Szczepaniak, L.S. noninvasive quantification of pancreatic fat in humans. J. Clin. Endocrinol. Metab. 2009, 94, 4070–4076. [Google Scholar] [CrossRef] [Green Version]
- van der Zijl, N.J.; Goossens, G.H.; Moors, C.C.; van Raalte, D.H.; Muskiet, M.H.; Pouwels, P.J.; Blaak, E.E.; Diamant, M. Ectopic fat storage in the pancreas, liver, and abdominal fat depots: Impact on β-cell function in individuals with impaired glucose metabolism. J. Clin. Endocrinol. Metab. 2011, 96, 459–467. [Google Scholar] [CrossRef] [Green Version]
- Heni, M.; Machann, J.; Staiger, H.; Schwenzer, N.F.; Peter, A.; Schick, F.; Claussen, C.D.; Stefan, N.; Häring, H.-U.; Fritsche, A. Pancreatic fat is negatively associated with insulin secretion in individuals with impaired fasting glucose and/or impaired glucose tolerance: A nuclear magnetic resonance study. Diabetes/Metab. Res. Rev. 2010, 26, 200–205. [Google Scholar] [CrossRef]
- Gaborit, B.; Abdesselam, I.; Kober, F.; Jacquier, A.; Ronsin, O.; Emungania, O.; Lesavre, N.; Alessi, M.C.; Martin, J.C.; Bernard, M.; et al. Ectopic fat storage in the pancreas using 1H-MRS: Importance of diabetic status and modulation with bariatric surgery-induced weight loss. Int. J. Obes. 2015, 39, 480–487. [Google Scholar] [CrossRef]
- Ko, J.; Skudder-Hill, L.; Cho, J.; Bharmal, S.H.; Petrov, M.S. The Relationship between Abdominal Fat Phenotypes and Insulin Resistance in Non-Obese Individuals after Acute Pancreatitis. Nutrients 2020, 12, 2883. [Google Scholar] [CrossRef]
- Jiang, Y.; Spurny, M.; Schübel, R.; Nonnenmacher, T.; Schlett, C.L.; von Stackelberg, O.; Ulrich, C.M.; Kaaks, R.; Kauczor, H.U.; Kühn, T.; et al. Changes in Pancreatic Fat Content Following Diet-Induced Weight Loss. Nutrients 2019, 11, 912. [Google Scholar] [CrossRef] [Green Version]
- Tene, L.; Shelef, I.; Schwarzfuchs, D.; Gepner, Y.; Meir, A.Y.; Tsaban, G.; Zelicha, H.; Bilitzky, A.; Komy, O.; Cohen, N.; et al. The effect of long-term weight-loss intervention strategies on the dynamics of pancreatic-fat and morphology: An MRI RCT study. Clin. Nutr. ESPEN 2018, 24, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Nowotny, B.; Kahl, S.; Klüppelholz, B.; Hoffmann, B.; Giani, G.; Livingstone, R.; Nowotny, P.J.; Stamm, V.; Herder, C.; Tura, A.; et al. Circulating triacylglycerols but not pancreatic fat associate with insulin secretion in healthy humans. Metabolism 2018, 81, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Pacifico, L.; Di Martino, M.; Anania, C.; Andreoli, G.M.; Bezzi, M.; Catalano, C.; Chiesa, C. Pancreatic fat and β-cell function in overweight/obese children with non-alcoholic fatty liver disease. World J. Gastroenterol. 2015, 21, 4688–4695. [Google Scholar] [CrossRef] [PubMed]
- Hannukainen, J.C.; Borra, R.; Linderborg, K.; Kallio, H.; Kiss, J.; Lepomäki, V.; Kalliokoski, K.K.; Kujala, U.M.; Kaprio, J.; Heinonen, O.J.; et al. Liver and pancreatic fat content and metabolism in healthy monozygotic twins with discordant physical activity. J. Hepatol. 2010, 54, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Trout, A.T.; Hunte, D.E.; Mouzaki, M.; Xanthakos, S.A.; Su, W.; Zhang, B.; Dillman, J.R. Relationship between abdominal fat stores and liver fat, pancreatic fat, and metabolic comorbidities in a pediatric population with non-alcoholic fatty liver disease. Abdom. Radiol. 2019, 44, 3107–3114. [Google Scholar] [CrossRef] [PubMed]
- Murakami, R.; Saisho, Y.; Watanabe, Y.; Inaishi, J.; Tsuchiya, T.; Kou, K.; Sato, S.; Kitago, M.; Kitagawa, Y.; Yamada, T.; et al. Pancreas Fat and β Cell Mass in Humans With and Without Diabetes: An Analysis in the Japanese Population. J. Clin. Endocrinol. Metab. 2017, 102, 3251–3260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kühn, J.P.; Berthold, F.; Mayerle, J.; Völzke, H.; Reeder, S.B.; Rathmann, W.; Lerch, M.M.; Hosten, N.; Hegenscheid, K.; Meffert, P.J. Pancreatic Steatosis Demonstrated at MR Imaging in the General Population: Clinical Relevance. Radiology 2015, 276, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Begovatz, P.; Koliaki, C.; Weber, K.; Strassburger, K.; Nowotny, B.; Nowotny, P.; Müssig, K.; Bunke, J.; Pacini, G.; Szendrödi, J.; et al. Pancreatic adipose tissue infiltration, parenchymal steatosis and beta cell function in humans. Diabetologia 2015, 58, 1646–1655. [Google Scholar] [CrossRef]
- Popp, D.; Aertsen, S.; Luetke-Daldrup, C.; Coppenrath, E.; Hetterich, H.; Saam, T.; Rottenkolber, M.; Seissler, J.; Lechner, A.; Sommer, N.N. No Correlation of Pancreatic Fat and β-Cell Function in Young Women with and without a History of Gestational Diabetes. J. Clin. Endocrinol. Metab. 2018, 103, 3260–3266. [Google Scholar] [CrossRef]
- Cohen, M.; Syme, C.; Deforest, M.; Wells, G.; Detzler, G.; Cheng, H.-L.; McCrindle, B.; Hanley, A.; Hamilton, J. Ectopic fat in youth: The contribution of hepatic and pancreatic fat to metabolic disturbances. Obesity 2013, 22, 1280–1286. [Google Scholar] [CrossRef]
- Romana, B.S.; Chela, H.; Dailey, F.E.; Nassir, F.; Tahan, V. Non-Alcoholic Fatty Pancreas Disease (NAFPD): A Silent Spectator or the Fifth Component of Metabolic Syndrome? A Literature Review. Endocrine Metab. Immune Disord. Drug Targets 2018, 18, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Rattarasarn, C. Dysregulated lipid storage and its relationship with insulin resistance and cardiovascular risk factors in non-obese Asian patients with type 2 diabetes. Adipocyte 2018, 7, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Toledo-Corral, C.M.; Alderete, T.L.; Hu, H.H.; Nayak, K.; Esplana, S.; Liu, T.; Goran, M.I.; Weigensberg, M.J. Ectopic fat deposition in prediabetic overweight and obese minority adolescents. J. Clin. Endocrinol. Metab. 2013, 98, 1115–1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lê, K.-A.; Ventura, E.E.; Fisher, J.Q.; Davis, J.N.; Weigensberg, M.J.; Punyanitya, M.; Hu, H.H.; Nayak, K.S.; Goran, M.I. Ethnic differences in pancreatic fat accumulation and its relationship with other fat depots and inflammatory markers. Diabetes Care 2011, 34, 485–490. [Google Scholar] [CrossRef] [Green Version]
- Ræder, H.; Haldorsen, I.S.; Ersland, L.; Gruner, R.; Taxt, T.; Søvik, O.; Molven, A.; Njølstad, P.R. Pancreatic lipomatosis is a structural marker in nondiabetic children with mutations in carboxyl-ester lipase. Diabetes 2007, 56, 444–449. [Google Scholar] [CrossRef] [Green Version]
- Horii, T.; Fujita, Y.; Ishibashi, C.; Fukui, K.; Eguchi, H.; Kozawa, J.; Shimomura, I. Islet inflammation is associated with pancreatic fatty infiltration and hyperglycemia in type 2 diabetes. BMJ Open Diabetes Res. Care 2020, 8, e001508. [Google Scholar] [CrossRef]
- Martin, S.; Cule, M.; Basty, N.; Tyrrell, J.; Beaumont, R.N.; Wood, A.R.; Frayling, T.M.; Sorokin, E.; Whitcher, B.; Liu, Y.; et al. Genetic Evidence for Different Adiposity Phenotypes and Their Opposing Influences on Ectopic Fat and Risk of Cardiometabolic Disease. Diabetes 2021, 70, 1843–1856. [Google Scholar] [CrossRef]
- Wagner, R.; Jaghutriz, B.A.; Gerst, F.; Oquendo, M.B.; Machann, J.; Schick, F.; Löffler, M.W.; Nadalin, S.; Fend, F.; Königsrainer, A.; et al. Pancreatic steatosis associates with impaired insulin secretion in genetically predisposed individuals. J. Clin. Endocrinol. Metab. 2020, 105, 3518–3525. [Google Scholar] [CrossRef]
- Barroso Oquendo, M.; Siegel-Axel, D.; Gerst, F.; Lorza-Gil, E.; Moller, A.; Wagner, R.; Machann, J.; Fend, F.; Königsrainer, A.; Heni, M.; et al. Pancreatic fat cells of humans with type 2 diabetes display reduced adipogenic and lipolytic activity. Am. J. Physiol. Cell Physiol. 2021, 320, C1000–C1012. [Google Scholar] [CrossRef]
- Singh, R.G.; Nguyen, N.N.; Cervantes, A.; Kim, J.U.; Stuart, C.E.; Petrov, M.S. Circulating levels of lipocalin-2 are associated with fatty pancreas but not fatty liver. Peptides 2019, 119, 170117. [Google Scholar] [CrossRef]
- Yang, W.; Xie, Y.; Song, B.; Xia, C.; Tang, C.; Li, J. Effects of aging and menopause on pancreatic fat fraction in healthy women population: A strobe-compliant article. Medicine 2019, 98, e14451. [Google Scholar] [CrossRef]
- Singh, R.G.; Nguyen, N.N.; Cervantes, A.; Cho, J.; Petrov, M.S. Serum lipid profile as a biomarker of intra-pancreatic fat deposition: A nested cross-sectional study. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 956–964. [Google Scholar] [CrossRef]
- Singh, R.G.; Nguyen, N.N.; Cervantes, A.; Alarcon Ramos, G.C.; Cho, J.; Petrov, M.S. Associations between intra-pancreatic fat deposition and circulating levels of cytokines. Cytokine 2019, 120, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.G.; Nguyen, N.N.; DeSouza, S.V.; Pendharkar, S.A.; Petrov, M.S. Comprehensive analysis of body composition and insulin traits associated with intra-pancreatic fat deposition in healthy individuals and people with new-onset prediabetes/diabetes after acute pancreatitis. Diabetes Obes. Metab. 2019, 21, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Bedossa, P. Pathology of non-alcoholic fatty liver disease. Liver Int. 2017, 37 (Suppl. 1), 85–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dongiovanni, P.; Meroni, M.; Longo, M.; Fargion, S.; Fracanzani, A.L. Genetics, immunity and nutrition boost the switching from NASH to HCC. Biomedicines 2021, 9, 1524. [Google Scholar] [CrossRef] [PubMed]
- Pitt, H.A. Hepato-pancreato-biliary fat: The good, the bad and the ugly. HPB 2007, 9, 92–97. [Google Scholar] [CrossRef] [Green Version]
- Lammert, E.; Cleaver, O.; Melton, D. Role of endothelial cells in early pancreas and liver development. Mech. Dev. 2003, 120, 59–64. [Google Scholar] [CrossRef]
- Kreier, F.; Kap, Y.S.; Mettenleiter, T.C.; Van Heijningen, C.; Van Der Vliet, J.; Kalsbeek, A.; Sauerwein, H.P.; Fliers, E.; Romijn, J.A.; Buijs, R.M. Tracing from fat tissue, liver, and pancreas: A neuroanatomical framework for the role of the brain in type 2 diabetes. Endocrinology 2006, 147, 1140–1147. [Google Scholar] [CrossRef] [Green Version]
- Mathur, A.; Pitt, H.A.; Marine, M.; Saxena, R.; Schmidt, C.M.; Howard, T.J.; Nakeeb, A.; Zyromski, N.J.; Lillemoe, K.D. Fatty pancreas: A factor in postoperative pancreatic fistula. Ann. Surg. 2007, 246, 1058–1064. [Google Scholar] [CrossRef]
- Nanashima, A.; Abo, T.; Hamasaki, K.; Wakata, K.; Kunizaki, M.; Nakao, K.; Tanaka, K.; Fukuda, D.; Nagasaki, T.; Tou, K.; et al. Predictive parameters of intraoperative blood loss in patients who underwent pancreatectomy. Hepatogastroenterology 2013, 60, 1217–1221. [Google Scholar] [PubMed] [Green Version]
- Pinnick, K.E.; Collins, S.C.; Londos, C.; Gauguier, D.; Clark, A.; Fielding, B.A. Pancreatic ectopic fat is characterized by adipocyte infiltration and altered lipid composition. Obesity 2008, 16, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Mirrakhimov, A.E. Non-alcoholic fatty pancreatic disease and cardio-metabolic risk: Is there is a place for obstructive sleep apnea? Cardiovasc. Diabetol. 2014, 13, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smits, M.M.; van Geenen, E.J. The clinical significance of pancreatic steatosis. Nat. Rev. Gastroenterol. Hepatol. 2011, 8, 169–177. [Google Scholar] [CrossRef]
- Le, M.; Devaki, P.; Ha, N.B.; Jun, D.W.; Te, H.S.; Cheung, R.C.; Nguyen, M.H. Prevalence of non-alcoholic fatty liver disease and risk factors for advanced fibrosis and mortality in the United States. PLoS ONE 2017, 12, e0173499. [Google Scholar] [CrossRef] [Green Version]
- Rosenblatt, R.; Mehta, A.; Snell, D.; Hissong, E.; Kierans, A.S.; Kumar, S. Ultrasonographic non-alcoholic fatty pancreas is associated with advanced fibrosis in NAFLD: A retrospective analysis. Am. J. Dig. Dis. 2018, 64, 262–268. [Google Scholar]
- Dong, Z.; Luo, Y.; Cai, H.; Zhang, Z.; Peng, Z.; Jiang, M.; Li, Y.; Li, C.; Li, Z.-P.; Feng, S.-T. Noninvasive fat quantification of the liver and pancreas may provide potential biomarkers of impaired glucose tolerance and type 2 diabetes. Medicine 2016, 95, e3858. [Google Scholar] [CrossRef]
- Patel, N.S.; Peterson, M.R.; Brenner, D.; Heba, E.; Sirlin, C.; Loomba, R. Association between novel MRI-estimated pancreatic fat and liver histology-determined steatosis and fibrosis in non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther. 2013, 37, 630–639. [Google Scholar] [CrossRef]
- Gerst, F.; Wagner, R.; Kaiser, G.; Panse, M.; Heni, M.; Machann, J.; Bongers, M.N.; Sartorius, T.; Sipos, B.; Fend, F.; et al. Metabolic crosstalk between fatty pancreas and fatty liver: Effects on local inflammation and insulin secretion. Diabetologia 2017, 60, 2240–2251. [Google Scholar] [CrossRef]
- Häring, H.U. Novel phenotypes of prediabetes? Diabetologia 2016, 59, 1806–1818. [Google Scholar] [CrossRef] [Green Version]
- Kashiwagi, K.; Seino, T.; Fukuhara, S.; Minami, K.; Horibe, M.; Iwasaki, E.; Takaishi, H.; Itoh, K.; Sugino, Y.; Inoue, N.; et al. Pancreatic Fat Content Detected by Computed Tomography and Its Significant Relationship with Intraductal Papillary Mucinous Neoplasm. Pancreas 2018, 47, 1087–1092. [Google Scholar] [CrossRef]
- Kanno, A.; Masamune, A.; Hanada, K.; Maguchi, H.; Shimizu, Y.; Ueki, T.; Hasebe, O.; Ohtsuka, T.; Nakamura, M.; Japan Study Group on the Early Detection of Pancreatic Cancer (JEDPAC); et al. Multicenter study of early pancreatic cancer in Japan. Pancreatology 2018, 18, 61–67. [Google Scholar] [CrossRef]
- Fukuda, Y.; Yamada, D.; Eguchi, H.; Hata, T.; Iwagami, Y.; Noda, T.; Asaoka, T.; Kawamoto, K.; Gotoh, K.; Kobayashi, S.; et al. CT Density in the Pancreas is a Promising Imaging Predictor for Pancreatic Ductal Adenocarcinoma. Ann. Surg. Oncol. 2017, 24, 2762–2769. [Google Scholar] [CrossRef] [PubMed]
- Mathur, A.; Zyromski, N.J.; Pitt, H.A.; Al-Azzawi, H.; Walker, J.J.; Saxena, R.; Lillemoe, K.D. Pancreatic Steatosis Promotes Dissemination and Lethality of Pancreatic Cancer. J. Am. Coll. Surg. 2009, 208, 989–994. [Google Scholar] [CrossRef] [PubMed]
- Mathur, A.; Hernandez, J.; Shaheen, F.; Shroff, M.; Dahal, S.; Morton, C.; Farrior, T.; Kedar, R.; Rosemurgy, A. Preoperative computed tomography measurements of pancreatic steatosis and visceral fat: Prognostic markers for dissemination and lethality of pancreatic adenocarcinoma. HPB 2011, 13, 404–410. [Google Scholar] [CrossRef] [Green Version]
- Chang, M.-L.; Yang, Z.; Yang, S.-S. Roles of Adipokines in Digestive Diseases: Markers of Inflammation, Metabolic Alteration and Disease Progression. Int. J. Mol. Sci. 2020, 21, 8308. [Google Scholar] [CrossRef] [PubMed]
- Tomita, Y.; Azuma, K.; Nonaka, Y.; Kamada, Y.; Tomoeda, M.; Kishida, M.; Tanemura, M.; Miyoshi, E. Pancreatic fatty degeneration and fibrosis as predisposing factors for the development of pancreatic ductal adenocarcinoma. Pancreas 2014, 43, 1032–1041. [Google Scholar] [CrossRef] [PubMed]
- Uygun, A.; Kadayifci, A.; Demirci, H.; Saglam, M.; Sakin, Y.S.; Ozturk, K.; Polat, Z.; Karslioglu, Y.; Bolue, E. The effect of fatty pancreas on serum glucose parameters in patients with non-alcoholic steatohepatitis. Eur. J. Int. Med. 2015, 26, 37–41. [Google Scholar] [CrossRef]
- Sun, J.; Ni, Q.; Xie, J.; Xu, M.; Zhang, J.; Kuang, J.; Wang, Y.; Ning, G.; Wang, Q. Beta cell dedifferentiation in T2D patients with adequate glucose control and non-diabetic chronic pancreatitis. J. Clin. Endocrinol. Metab. 2019, 104, 83–94. [Google Scholar] [CrossRef] [Green Version]
- Chuvin, N.; Vincent, D.F.; Pommier, R.M.; Alcaraz, L.B.; Gout, J.; Caligaris, C.; Yacoub, K.; Cardot, V.; Roger, E.; Kaniewski, B.; et al. Acinar-to-ductal metaplasia induced by transforming growth factor beta facilitates KRasG12D-driven pancreatic tumorigenesis. Cell Mol. Gastroenterol. Hepatol. 2017, 4, 263–282. [Google Scholar] [CrossRef] [Green Version]
- Tang, S.-C.; Baeyens, L.; Shen, C.-N.; Peng, S.-J.; Chien, H.-J.; Scheel, D.W.; Chamberlain, C.E.; German, M.S. Human pancreatic neuro-insular network in health and fatty infiltration. Diabetologia 2017, 61, 168–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, C.; Yang, G.; Yang, J.; Ren, B.; Wang, H.; Chen, G.; Zhao, F.; You, L.; Wang, W.; Zhao, Y. Metabolism of pancreatic cancer: Paving the way to better anticancer strategies. Mol. Cancer 2020, 19, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koppenol, W.H.; Bounds, P.L.; Dang, C.V. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat. Rev. Cancer 2011, 11, 325–337. [Google Scholar] [CrossRef] [PubMed]
- Guillaumond, F.; Leca, J.; Olivares, O.; Lavaut, M.-N.; Vidal, N.; Berthezène, P.; Dusetti, N.J.; Loncle, C.; Calvo, E.; Turrini, O.; et al. Strengthened glycolysis under hypoxia supports tumor symbiosis and hexosamine biosynthesis in pancreatic adenocarcinoma. Proc. Natl. Acad. Sci. USA 2013, 110, 3919–3924. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Jiang, Y.; Meisenhelder, J.; Yang, W.; Hawke, D.H.; Zheng, Y.; Xia, Y.; Aldape, K.; He, J.; Hunter, T.; et al. Mitochondria-translocated PGK1 functions as a protein kinase to coordinate glycolysis and the TCA cycle in tumorigenesis. Mol. Cell 2016, 61, 705–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Son, J.; Lyssiotis, C.A.; Ying, H.; Wang, X.; Hua, S.; Ligorio, M.; Perera, R.M.; Ferrone, C.R.; Mullarky, E.; Shyh-Chang, N.; et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 2013, 496, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Menendez, J.; Lupu, R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Cancer 2007, 7, 763–777. [Google Scholar] [CrossRef]
- Guillaumond, F.; Bidaut, G.; Ouaissi, M.; Servais, S.; Gouirand, V.; Olivares, O.; Lac, S.; Borge, L.; Roques, J.; Gayet, O.; et al. Cholesterol uptake disruption, in association with chemotherapy, is a promising combined metabolic therapy for pancreatic adenocarcinoma. Proc. Natl. Acad. Sci. USA 2015, 112, 2473–2478. [Google Scholar] [CrossRef] [Green Version]
- Kamphorst, J.J.; Cross, J.R.; Fan, J.; de Stanchina, E.; Mathew, R.; White, E.P.; Thompson, B.; Rabinowitz, J.D. Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proc. Natl. Acad. Sci. USA 2013, 110, 8882–8887. [Google Scholar] [CrossRef] [Green Version]
- Meyer, K.A.; Neeley, C.K.; Baker, N.A.; Washabaugh, A.R.; Flesher, C.G.; Nelson, B.S.; Frankel, T.L.; Lumeng, C.N.; Lyssiotis, C.A.; Wynn, M.L.; et al. Adipocytes promote pancreatic cancer cell proliferation via glutamine transfer. Biochem. Biophys. Rep. 2016, 7, 144–149. [Google Scholar] [CrossRef] [Green Version]
- Incio, J.; Liu, H.; Suboj, P.; Chin, S.M.; Chen, I.X.; Pinter, M.; Ng, M.R.; Nia, H.; Grahovac, J.; Kao, S.; et al. Obesity-induced inflammation and desmoplasia promote pancreatic cancer progression and resistance to chemotherapy. Cancer Discov. 2016, 6, 852–869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bryant, K.L.; Mancias, J.D.; Kimmelman, A.C.; Der, C.J. KRAS: Feeding pancreatic cancer proliferation. Trends Biochem. Sci. 2014, 39, 91–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Nomenclature | Definition |
---|---|
IPFD Pancreatic lipomatosis Pancreatic steatosis Fatty pancreas | General terms that can be used for all forms of pancreatic fat accumulation. |
Fatty replacement | Damage of pancreatic acinar cells leading to their death, which then results in their replacement in the pancreas by adipocytes. |
Fatty infiltration | Pancreatic infiltration of adipocytes caused by obesity. |
NAFPD | Pancreatic fat accumulation in association with obesity and metabolic syndrome. |
NASP | Pancreatitis owing to pancreatic fat accumulation. |
Similarities | Differences | Characteristics | |
---|---|---|---|
Embryology | Endoderm [118] | ||
Vagal motor neuron origin | Amygdala [119] | ||
Post-transplant/post-operation complications. | Increase [120,121] | ||
Fat deposition |
| ||
Histology |
| ||
Fibrosis |
| ||
Metabolism | Liver is an organ that takes up, oxidizes, synthesizes and exports fatty acids. The pancreas does not have those functions [35]. | Liver fat volume fractions > pancreatic fat volume to correlate with insulin resistance and β-cell function [127]. | |
Proposed progression |
| ||
s/p corrected for BMI | Association between fatty liver and fatty pancreas vanished [21]. | ||
s/p bariatric surgery | Fat loss in the liver and the pancreas seem to be independent [21,87]. | ||
Weight loss |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, M.-L. Fatty Pancreas-Centered Metabolic Basis of Pancreatic Adenocarcinoma: From Obesity, Diabetes and Pancreatitis to Oncogenesis. Biomedicines 2022, 10, 692. https://doi.org/10.3390/biomedicines10030692
Chang M-L. Fatty Pancreas-Centered Metabolic Basis of Pancreatic Adenocarcinoma: From Obesity, Diabetes and Pancreatitis to Oncogenesis. Biomedicines. 2022; 10(3):692. https://doi.org/10.3390/biomedicines10030692
Chicago/Turabian StyleChang, Ming-Ling. 2022. "Fatty Pancreas-Centered Metabolic Basis of Pancreatic Adenocarcinoma: From Obesity, Diabetes and Pancreatitis to Oncogenesis" Biomedicines 10, no. 3: 692. https://doi.org/10.3390/biomedicines10030692
APA StyleChang, M. -L. (2022). Fatty Pancreas-Centered Metabolic Basis of Pancreatic Adenocarcinoma: From Obesity, Diabetes and Pancreatitis to Oncogenesis. Biomedicines, 10(3), 692. https://doi.org/10.3390/biomedicines10030692