Next Article in Journal
Impact of Thyroid Function on Pregnancy and Neonatal Outcome in Women with and without PCOS
Next Article in Special Issue
Type 2 Diabetes Mellitus as a Risk Factor for Alzheimer’s Disease: Review and Meta-Analysis
Previous Article in Journal
Is There a Best First Line Biological/Small Molecule in IBD: Are We Ready for Sequencing?
Previous Article in Special Issue
Addressing Blood–Brain Barrier Impairment in Alzheimer’s Disease
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Adeno-Associated Viral Vectors as Versatile Tools for Neurological Disorders: Focus on Delivery Routes and Therapeutic Perspectives

by
Ana Fajardo-Serrano
1,2,3,*,
Alberto J. Rico
1,2,3,
Elvira Roda
1,2,3,
Adriana Honrubia
1,2,3,
Sandra Arrieta
1,2,3,
Goiaz Ariznabarreta
1,2,3,
Julia Chocarro
1,2,3,
Elena Lorenzo-Ramos
1,2,3,
Alvaro Pejenaute
1,2,3,
Alfonso Vázquez
3,4 and
José Luis Lanciego
1,2,3,*
1
Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain
2
Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
3
Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
4
Department of Neurosurgery, Servicio Navarro de Salud, Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
*
Authors to whom correspondence should be addressed.
Biomedicines 2022, 10(4), 746; https://doi.org/10.3390/biomedicines10040746
Submission received: 20 December 2021 / Revised: 10 March 2022 / Accepted: 21 March 2022 / Published: 23 March 2022
(This article belongs to the Special Issue Molecular Mechanisms and Treatments on Neurodegenerative Diseases)

Abstract

:
It is without doubt that the gene therapy field is currently in the spotlight for the development of new therapeutics targeting unmet medical needs. Thus, considering the gene therapy scenario, neurological diseases in general and neurodegenerative disorders in particular are emerging as the most appealing choices for new therapeutic arrivals intended to slow down, stop, or even revert the natural progressive course that characterizes most of these devastating neurodegenerative processes. Since an extensive coverage of all available literature is not feasible in practical terms, here emphasis was made in providing some advice to beginners in the field with a narrow focus on elucidating the best delivery route available for fulfilling any given AAV-based therapeutic approach. Furthermore, it is worth nothing that the number of ongoing clinical trials is increasing at a breath-taking speed. Accordingly, a landscape view of preclinical and clinical initiatives is also provided here in an attempt to best illustrate what is ongoing in this quickly expanding field.

1. Introduction

Adeno-associated viral vectors (AAVs) are members of Dependoparvovirus in the Parvoviridae family. AAVs require co-infection with adenovirus (Ad), baculovirus, or herpes simplex virus to complete the replication cycle, with Ad being the natural helper virus in clinical isolates. An AAV without helper can integrate into the genome, but cannot be propagated by itself, which makes it a safer choice for gene therapy [1]. AAVs were first identified by electron microscopy [2], and they are formed by an icosahedral capsid carrying a single-stranded linear DNA genome that contains two open-reading frames encoding for Rep (40, 52, 68, and 78) involved in replication and integration, the capsid (Cap), three structural proteins (VP1, VP2, and VP3), and a small viral cofactor for assembly-activating protein [3]. Rep-independent recombinant AAVs are used for gene therapy purposes, in order to avoid the preference of integration of Rep proteins into the AAVS1 site inside of Ch19 [1,4].
The origin of AAV-based technologies started when the plasmid clone of wild AAV showed infective behavior when transfected into human cells after Ad helper co-infection [5]. This discovery demonstrated the feasibility of a transient and persistent expression for a marker gene lasting for 6 months or more with AAVs [6,7].
When designing any given AAV-based experiment in the central nervous system (CNS), there are two important prerequisites to be taken into consideration at first glance: (i) choosing the best suited AAV, with a proper balance between the AAV serotype and its expected neurotropism, and (ii) selection of the promoter driving the desired transgene expression (e.g., either ubiquitous or cell-specific). The most commonly used promoters for CNS applications are CAG, CBA, JeT, GusB, and EF1, among others [8]. Different promoters may have different potencies when driving transgene expression. Indeed, for late-stage preclinical developments, ensuring a proper balance between efficacy and safety often represents a critical issue. The use of small-sized promoters is a convenient strategy in order to leave enough cargo space when accommodating large-sized genes [9,10]. Once the choice of best AAV serotype and promoter is made, the most critical decision to be reached before pushing forward any given successful therapeutic approach is to elucidate the most adequate route for AAV delivery, as described below.

2. AAV Delivery Routes

When coming to design any AAV-based therapeutics, the choice of the delivery route represents the most critical decision for achieving the best balance of safety, efficacy, and target engagement. In other words, evidence supporting that any given therapeutic product enters the brain and reaches the right target in a concentration high enough to be efficient needs to be provided. In addition to delivery routes targeting neurosensory organs such as the eye or the cochlea, the most frequently used approaches for CNS applications can be broadly categorized into (i) intraparenchymal, (ii) intra-CSF (intrathecal or lumbar administration, intracisternal, and intracerebroventricular), (iii) intravenous, (iv) intramuscular, and (v) intranasal [11]. Final choice for delivery also needs to be tailored taking into consideration the CNS disorder to be dealing with. In recent years, the gene therapy field has witnessed an exponential increase in initiatives rising up to unprecedented levels, particularly when dealing with CNS applications, as summarized in Table 1.
The most commonly used routes for AAV delivery in the brain are intraparenchymal and intra-CSF (lumbar, intracisternal, or intracerebroventricular). Although less commonly used, a subpial delivery route has also been reported elsewhere [91,92]. Other ways to cope with CNS disorders bypassing the blood–brain barrier (BBB) are intranasal delivery [93], systemic eye delivery, and ear delivery [68,69,70,73,81,83,84]. In the case of disorders engaging motor neurons of the spinal cord, intramuscular delivery can also be viewed as a feasible approach [53,54,63,65].

3. Intraparenchymal Deliveries

Intraparenchymal AAV delivery requires stereotaxic surgery, a procedure where a needle or cannula is inserted directly into the desired target area, as defined with three coordinates (e.g., rostrocaudal, mediolateral, and dorsoventral coordinates). By delivering the viral vector this focused way, a high transduction efficiency is expected; therefore, the intraparenchymal delivery is the choice most frequently used in the treatment of brain disorders such as Alzheimer disease (AD), Huntington disease (HD) (see Table 1 and Table 2), or Parkinson disease (PD) [11]. When translating preclinical research toward clinical uses, the use of pressurized convection-enhanced delivery (CED) is the procedure most often used [94,95,96]. Compared to any other available delivery route, the intraparenchymal approach holds several advantages, such as (i) high transduction efficacy within the target region, (ii) reduced amounts of AAV needed (both in terms of total delivered volume and titration), (iii) BBB bypassing, (iv) little concern—if any—when dealing with neutralizing antibodies, and (v) off-target effects (e.g., transduction of peripheral organs) very unlikely.
Regarding intraparenchymal deliveries, the recent availability of AAV capsid variants engineered to enhance retrograde spread of the encoded transgene also represents an appealing choice. Among others, AAV2-retro [97], AAV-TT [98], and AAV-MNM008 [99] are well suited for multiple transduction of neurons innervating the injected site.

4. Intra-CSF Deliveries

Intra-CSF AAV deliveries collectively represent another feasible way for viral vector administration. This administration is less invasive than intraparenchymal delivery. Furthermore, compared to intravenous administration, a reduced immune response together with fewer off-target effects in peripheral organs is expected. It can be achieved through lumbar puncture, cisterna magna injection, or administration into the lateral ventricles [100] (Table 1). However, a potential toxic effect at the level of the dorsal root ganglia needs to be taken into consideration [101]. Although this delivery route has its own inherent advantages, vector dilution and the limited penetration/transduction in deep brain structures collectively represent important limiting factors that need to be properly balanced before pushing forward any therapeutic development [11]. In this regard, it is worth noting that the CSF volume is replaced five times per day in humans, and the pattern of CSF circulation indeed needs to be properly understood when tailoring therapeutic uses. In our experience, intra-CSF deliveries of AAV resulted in highly variable patterns of neuronal transduction throughout the cerebral cortex, only affording a desired consistent pattern when dealing with efficient transduction of neurons in the spinal cord.

5. Intravenous Delivery Routes

Intravenous AAV deliveries have been widely used in the past (see Table 1). Although some AAV serotypes—AAV9 in particular—have been reported to be efficient when transducing the CNS upon systemic delivery, some concerns still remain regarding BBB passage. Highest efficacy rates were obtained in newborn animals, whereas there is a limited BBB penetration in adult animals. In an attempt to circumvent this limitation, years ago Viviana Gradinaru and Benjamin Deverman developed the AAV9 variant known as AAV9-PHP.B and AAV9-PHP.eB (making reference to “enhanced B”, introduced later on), a capsid variant specifically designed for enhancing BBB bypass [102]. Although initial results afforded an impressive performance for AAV9-PHP.B in C57BL6 mice, some limitations in terms of BBB penetrance were reported later on when using different strains of mice, as well as in NHPs [103,104]. Regardless of BBB passage, main limitations inherent to systemic deliveries can be broadly summarized as (i) need for high volume of AAV to be injected, with high titration levels, (ii) undesired off-target effects, in particular potential liver toxicity, and (iii) limited CNS transduction, at least when relying on most of the currently available AAV capsid variants.

6. AAV Delivery in Sensory Organs

Direct AAV delivery into the eye currently represents a good example of preclinical experiments translated to several ongoing clinical trials. There are several different delivery options, such as (i) subretinal, (ii) intravitreal, (iii) intracameral, (iv) subchroidal, or (v) topical (Figure 1). Both the subretinal and the intravitreal choices are those most commonly used [70,75], somewhat predictable considering the isolation and compartmentalization of the eye and the specificity of an injection in these areas. When considering targeting the inner ear, AAV delivery can be achieved through cochlear injection, transcanal administration, oval window, or the row window membrane (RWM) (Table 1 and Figure 1). Unlike AAV eye delivery, the ear delivery of AAVs has still not yet entered into clinical practice, although a number of promising preclinical studies are currently ongoing (Table 1).

7. AAV-Mediated Therapeutic Uses: The Path to the Clinical Scenario

The use of AAVs for the treatment of CNS disorders exemplifies translation of preclinical evidence toward clinical trials, beginning with pioneer experiences [105,106], up to a quickly growing list of clinical trials. Indeed, a broad majority of the ongoing AAV clinical trials are targeting several neurological diseases. Among the different AAV serotypes available, AAV2 and AAV9 rank as the most commonly used within the context of PD [11]. AAV2 undergoes anterograde axonal transport in rat and non-human primate brain [107,108], while AAV9 shows both anterograde and retrograde transport [109]. The use of AAV2 often is the main option in the case of AD, eye delivery-related diseases, and other neurological disease as Batten disease. On the other hand, AAV9 is the most popular choice for neuromuscular dystrophies or atrophies such as ALS or SMA.
When considering PD under a simplistic view as a basal ganglia-related disorder primarily affecting the nigrostriatal pathway, the most rationale scenario implies an intraparenchymal delivery route administering a given therapeutic AAV either into the substantia nigra pars compacta (SNc) or into the striatum [11,110,111]. Considering AD as a whole-brain disorder, intraparenchymal, intracisternal, or intrathecal administrations are the options most commonly used. Lastly, diseases such as SMA are usually approached through either intravenous or intramuscular injections (Table 1).
Ongoing gene therapy clinical trials for PD can be broadly categorized on the basis of the chosen target: (i) dopamine-related, (ii) neurotrophic factors, (iii) neuromodulators, and (iv) specific genetic mutations. Dopamine-related approaches take advantage of AAVs coding for l-aromatic acid decarboxylase (AADC), the enzyme converting levodopa into dopamine [112,113,114]. Neurotrophic factors such as GDNF or NRTN have also been introduced into the clinical path [115,116,117,118,119], with GDNF AAV-based therapies currently witnessing a revival. Regarding, neuromodulation, some clinical trials have been carried out using the enzyme glutamic acid decarboxylase (GAD) [120,121,122,123,124], with the purpose of switching the functional activity of the STN from excitation to inhibition. Lastly, targeting particular genetic mutations in disease-related genes has recently opened a completely new scenario. This is the case of glucocerebrosidase (GCase), a lysosomal enzyme encoded by the GBA1 gene [125]. When going this way, promising results were obtained in several different preclinical studies carried out in mice and in NHP [126,127,128].
Similarly to PD, gene therapy ongoing clinical trials in the AD field can also be categorized on the basis of the selected target: (i) neurotrophic factors from the GDNF family, brain-derived neurotrophic factor (BDNF), and beta-nerve growth factor (NGF), (ii) neuromodulators such as GAD, and (iii) specific mutations, particularly in apolipoprotein E (APOE).
Within the field of motor-related neurological disorders, SMA is a good example of ongoing clinical trials with AAVs. When considering SMA, the survival of motor neuron (SMN) is the preferred choice (Table 2). Treatments intended to overexpress cytotoxic T cell GalNAc transferase (GALGT2) in skeletal muscles for the purpose of inhibiting the development of muscular dystrophy have been explored in mice [129]. Moreover, the use of human alpha-sarcoglycan (hαSG) has shown efficacy for treatment of muscular dystrophies. Despite several preclinical attempts made for testing AAV-related therapies for the treatment of ALS, ongoing clinical trials challenging this devastating disorder are still lacking. A single dose of a DNA-based gene therapy (AVXS-101 or Zolgensma®) has been approved for the clinical treatment of SMA type 1. Although the beneficial effect of this treatment is clear, increases in AST and ALT liver enzymes have been reported. Resulting from this therapy, life expectancy increased for children enrolled in the trial. The clinical results suggested persistence of the transgene activity in the treated patients [130,131,132]; however, thrombotic microangiopathy (TMA) has been reported as an undesired side effect sometimes observed. The expected beneficial effect for gene therapy-based treatments targeting genetic disorders needs to be properly balanced with issues such as liver toxicity, vascular injury, and neurotoxicity.
The clinical trials against HD are usually focused on the specific mutation of the huntingtin protein (Htt). Htt is the main cause of the disease, and it is involved in axonal transport, related to vesicles and microtubules. Currently, there are two ongoing clinical trials on early stages (Table 2).
Vision loss and retinal degeneration processes are appealing choices for AAV therapeutics, considering that peripheral sensory organs such as the eye are easily accessible and, therefore, fully approachable through a direct AAV delivery. Luxturna® was the first gene therapy treatment receiving FDA approval (NCT00999609). Intravitreal and subretinal injection are useful choices when targeting disorders such as Leber’s congenital amaurosis, retinosis pigmentosa, choroideremia, achromatopsia, retinal neurodegeneration, retinal dystrophy, retinoschisis, and age-related macular degeneration (Table 2).

8. Conclusions

The field of gene therapy has witnessed the arrival of new viral serotypes and capsids which have contributed to bringing AAV-based therapies closer than ever to the clinical scenario. More arrivals to the field have been constantly incorporated at a breathtaking speed. Considering gene therapy overall, main expectancies for therapeutic success are currently represented by CNS applications. Although the best is yet to come, for the very first time, the potential success of disease-modifying treatments is achievable. When implementing AAV-based therapeutics for neurological considerations, there are at least three important items to be properly balanced: (i) biosafety, (ii) selection of the most appropriate target gene, and (iii) disease-tailored delivery route. Furthermore, rare disorders are creating a completely new scenario for gene therapy application; indeed, it is worth nothing that roughly half of the lysosomal storage disorders have a neurological impact, most often related to neurodegenerative pathologies. Lastly, incoming advanced novel therapeutics such as gene therapies are demanding a clear regulatory scenario, to properly preserve patient and pharmaceutical expectations, reaching an adequate balance across all engaged stakeholders. Accordingly, recent advice issued by the FDA is a good step forward in this direction, clarifying underlying rules and regulations within the adequate framework.

Author Contributions

Conceptualization, all authors; literature review, E.R., A.H., S.A., G.A., J.C., E.L.-R. and A.P.; writing—original draft preparation and writing—review and editing, A.F.-S., A.J.R., A.V. and J.L.L.; supervision, A.F.-S., A.J.R. and J.L.L.; funding acquisition, J.L.L. All authors have read and agreed to the published version of the manuscript.

Funding

This research was supported by PID2020-120380RB-I00/ financed by MCIN/ AEI /10.13039/501100011033, CiberNed’s Intramural Program Grant (grant number PI2017/02), and by the Department of Health of the Government of Navarra (grant numbers 046-2017_NAB7 and 011-1383-2019-000006 PI031).

Institutional Review Board Statement

Submission was approved by the Institutional Review Board Statement of the Centro de Investigación Médica Aplicada (CIMA), University of Navarra.

Data Availability Statement

Data reported here are available from authors upon reasonable request.

Acknowledgments

The illustration in Figure 1 was taken and modified from Servier Medical Art (https://smart.servier.com/, accessed on 20 March 2022) licensed under a Creative Commons Attribution 3.0 Unported License (https://creativecommons.org/licenses/by/3.0/, accessed on 20 March 2022).

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Samulski, R.J.; Muzyczka, N. AAV-Mediated Gene Therapy for Research and Therapeutic Purposes. Ann. Rev. Virol. 2014, 1, 427–451. [Google Scholar] [CrossRef] [PubMed]
  2. Atchison, R.W.; Casto, B.C.; Hammon, W.M. Adenovirus-associated defective virus particles. Science 1965, 149, 754–756. [Google Scholar] [CrossRef] [PubMed]
  3. Tseng, Y.-S.; Agbandje-McKenna, M. Mapping the AAV Capsid Host Antibody Response toward the Development of Second Generation Gene Delivery Vectors. Front. Immunol. 2014, 5, 9. [Google Scholar] [CrossRef] [Green Version]
  4. Haberman, R.P.; McCown, T.J.; Samulski, R.J. Inducible Long-Term Gene Expression in Brain with Adeno-Associated Virus Gene Transfer. Gene Ther. 1998, 5, 1604–1611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  5. Samulski, R.J.; Berns, K.I.; Tan, M.; Muzyczka, N. Cloning of Adeno-Associated Virus into PBR322: Rescue of Intact Virus from the Recombinant Plasmid in Human Cells. Proc. Natl. Acad. Sci. USA 1982, 79, 2077–2081. [Google Scholar] [CrossRef] [Green Version]
  6. Kaplitt, M.G.; Leone, P.; Samulski, R.J.; Xiao, X.; Pfaff, D.W.; O’Malley, K.L.; During, M.J. Long-Term Gene Expression and Phenotypic Correction Using Adeno-Associated Virus Vectors in the Mammalian Brain. Nat. Genet. 1994, 8, 148–154. [Google Scholar] [CrossRef]
  7. Conrad, C.K.; Allen, S.S.; Afione, S.A.; Reynolds, T.C.; Beck, S.E.; Fee-Maki, M.; Barrazza-Ortiz, X.; Adams, R.; Askin, F.B.; Carter, B.J.; et al. Safety of Single-Dose Administration of an Adeno-Associated Virus (AAV)-CFTR Vector in the Primate Lung. Gene Ther. 1996, 3, 658–668. [Google Scholar] [PubMed]
  8. Haery, L.; Deverman, B.E.; Matho, K.S.; Cetin, A.; Woodard, K.; Cepko, C.; Guerin, K.I.; Rego, M.A.; Ersing, I.; Bachle, S.M.; et al. Adeno-Associated Virus Technologies and Methods for Targeted Neuronal Manipulation. Front. Neuroanat. 2019, 13, 93. [Google Scholar] [CrossRef] [Green Version]
  9. Pignataro, D.; Sucunza, D.; Vanrell, L.; Lopez-Franco, E.; Dopeso-Reyes, I.G.; Vales, A.; Hommel, M.; Rico, A.J.; Lanciego, J.L.; Gonzalez-Aseguinolaza, G. Adeno-Associated Viral Vectors Serotype 8 for Cell-Specific Delivery of Therapeutic Genes in the Central Nervous System. Front. Neuroanat. 2017, 11, 2. [Google Scholar] [CrossRef] [Green Version]
  10. Pignataro, D.; Sucunza, D.; Rico, A.J.; Dopeso-Reyes, I.G.; Roda, E.; Rodríguez-Perez, A.I.; Labandeira-Garcia, J.L.; Broccoli, V.; Kato, S.; Kobayashi, K.; et al. Gene Therapy Approaches in the Non-Human Primate Model of Parkinson’s Disease. J. Neural. Transm. 2018, 125, 575–589. [Google Scholar] [CrossRef]
  11. Fajardo-Serrano, A.; Rico, A.J.; Roda, E.; Honrubia, A.; Arrieta, S.; Ariznabarreta, G.; Chocarro, J.; Lorenzo-Ramos, E.; Pejenaute, A.; Vázquez, A.; et al. Adeno-Associated Viral Vectors as Versatile Tools for Parkinson’s Research, Both for Disease Modeling Purposes and for Therapeutic Uses. Int. J. Mol. Sci. 2021, 22, 6389. [Google Scholar] [CrossRef] [PubMed]
  12. Elmer, B.M.; Swanson, K.A.; Bangari, D.S.; Piepenhagen, P.A.; Roberts, E.; Taksir, T.; Guo, L.; Obinu, M.-C.; Barneoud, P.; Ryan, S.; et al. Gene Delivery of a Modified Antibody to Aβ Reduces Progression of Murine Alzheimer’s Disease. PLoS ONE 2019, 14, e0226245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  13. Zhao, L.; Gottesdiener, A.J.; Parmar, M.; Li, M.; Kaminsky, S.M.; Chiuchiolo, M.J.; Sondhi, D.; Sullivan, P.M.; Holtzman, D.M.; Crystal, R.G.; et al. Intracerebral Adeno-Associated Virus Gene Delivery of Apolipoprotein E2 Markedly Reduces Brain Amyloid Pathology in Alzheimer’s Disease Mouse Models. Neurobiol. Aging 2016, 44, 159–172. [Google Scholar] [CrossRef]
  14. Sánchez-Sarasúa, S.; Ribes-Navarro, A.; Beltrán-Bretones, M.T.; Sánchez-Pérez, A.M. AAV Delivery of ShRNA against IRS1 in GABAergic Neurons in Rat Hippocampus Impairs Spatial Memory in Females and Male Rats. Brain Struct. Funct. 2021, 226, 163–178. [Google Scholar] [CrossRef] [PubMed]
  15. Kiyota, T.; Yamamoto, M.; Schroder, B.; Jacobsen, M.T.; Swan, R.J.; Lambert, M.P.; Klein, W.L.; Gendelman, H.E.; Ransohoff, R.M.; Ikezu, T. AAV1/2-Mediated CNS Gene Delivery of Dominant-Negative CCL2 Mutant Suppresses Gliosis, Beta-Amyloidosis, and Learning Impairment of APP/PS1 Mice. Mol. Ther. 2009, 17, 803–809. [Google Scholar] [CrossRef]
  16. Carty, N.C.; Nash, K.; Lee, D.; Mercer, M.; Gottschall, P.E.; Meyers, C.; Muzyczka, N.; Gordon, M.N.; Morgan, D. Adeno-Associated Viral (AAV) Serotype 5 Vector Mediated Gene Delivery of Endothelin-Converting Enzyme Reduces Abeta Deposits in APP + PS1 Transgenic Mice. Mol. Ther. 2008, 16, 1580–1586. [Google Scholar] [CrossRef]
  17. Wu, K.; Meyer, E.M.; Bennett, J.A.; Meyers, C.A.; Hughes, J.A.; King, M.A. AAV2/5-Mediated NGF Gene Delivery Protects Septal Cholinergic Neurons Following Axotomy. Brain Res. 2005, 1061, 107–113. [Google Scholar] [CrossRef]
  18. Mandel, R.J. CERE-110, an Adeno-Associated Virus-Based Gene Delivery Vector Expressing Human Nerve Growth Factor for the Treatment of Alzheimer’s Disease. Curr. Opin. Mol. Ther. 2010, 12, 240–247. [Google Scholar]
  19. Liu, W.; Zhao, L.; Blackman, B.; Parmar, M.; Wong, M.Y.; Woo, T.; Yu, F.; Chiuchiolo, M.J.; Sondhi, D.; Kaminsky, S.M.; et al. Vectored Intracerebral Immunization with the Anti-Tau Monoclonal Antibody PHF1 Markedly Reduces Tau Pathology in Mutant Tau Transgenic Mice. J. Neurosci. 2016, 36, 12425–12435. [Google Scholar] [CrossRef] [Green Version]
  20. Fukuchi, K.; Tahara, K.; Kim, H.-D.; Maxwell, J.A.; Lewis, T.L.; Accavitti-Loper, M.A.; Kim, H.; Ponnazhagan, S.; Lalonde, R. Anti-Abeta Single-Chain Antibody Delivery via Adeno-Associated Virus for Treatment of Alzheimer’s Disease. Neurobiol. Dis. 2006, 23, 502–511. [Google Scholar] [CrossRef] [Green Version]
  21. Kiyota, T.; Ingraham, K.L.; Swan, R.J.; Jacobsen, M.T.; Andrews, S.J.; Ikezu, T. AAV Serotype 2/1-Mediated Gene Delivery of Anti-Inflammatory Interleukin-10 Enhances Neurogenesis and Cognitive Function in APP+PS1 Mice. Gene Ther. 2012, 19, 724–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  22. Hudry, E.; Martin, C.; Gandhi, S.; György, B.; Scheffer, D.I.; Mu, D.; Merkel, S.F.; Mingozzi, F.; Fitzpatrick, Z.; Dimant, H.; et al. Exosome-Associated AAV Vector as a Robust and Convenient Neuroscience Tool. Gene Ther. 2016, 23, 380–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  23. Wang, Y.-J.; Gao, C.-Y.; Yang, M.; Liu, X.-H.; Sun, Y.; Pollard, A.; Dong, X.-Y.; Wu, X.-B.; Zhong, J.-H.; Zhou, H.-D.; et al. Intramuscular Delivery of a Single Chain Antibody Gene Prevents Brain Aβ Deposition and Cognitive Impairment in a Mouse Model of Alzheimer’s Disease. Brain Behav. Immun. 2010, 24, 1281–1293. [Google Scholar] [CrossRef] [PubMed]
  24. Wang, Q.-H.; Wang, Y.-R.; Zhang, T.; Jiao, S.-S.; Liu, Y.-H.; Zeng, F.; Li, J.; Yao, X.-Q.; Zhou, H.-D.; Zhou, X.-F.; et al. Intramuscular Delivery of P75NTR Ectodomain by an AAV Vector Attenuates Cognitive Deficits and Alzheimer’s Disease-like Pathologies in APP/PS1 Transgenic Mice. J. Neurochem. 2016, 138, 163–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  25. Chen, X.; He, Y.; Tian, Y.; Wang, Y.; Wu, Z.; Lan, T.; Wang, H.; Cheng, K.; Xie, P. Different Serotypes of Adeno-Associated Virus Vector- and Lentivirus-Mediated Tropism in Choroid Plexus by Intracerebroventricular Delivery. Hum. Gene Ther. 2020, 31, 440–447. [Google Scholar] [CrossRef]
  26. So, K.-H.; Choi, J.H.; Islam, J.; Kc, E.; Moon, H.C.; Won, S.Y.; Kim, H.K.; Kim, S.; Hyun, S.-H.; Park, Y.S. An Optimization of AAV-82Q-Delivered Rat Model of Huntington’s Disease. J. Korean Neurosurg. Soc. 2020, 63, 579–589. [Google Scholar] [CrossRef] [Green Version]
  27. Kells, A.P.; Fong, D.M.; Dragunow, M.; During, M.J.; Young, D.; Connor, B. AAV-Mediated Gene Delivery of BDNF or GDNF Is Neuroprotective in a Model of Huntington Disease. Mol. Ther. 2004, 9, 682–688. [Google Scholar] [CrossRef]
  28. Ekman, F.K.; Ojala, D.S.; Adil, M.M.; Lopez, P.A.; Schaffer, D.V.; Gaj, T. CRISPR-Cas9-Mediated Genome Editing Increases Lifespan and Improves Motor Deficits in a Huntington’s Disease Mouse Model. Mol. Ther. Nucleic Acids 2019, 17, 829–839. [Google Scholar] [CrossRef] [Green Version]
  29. Cheng, A.; Yang, Y.; Zhou, Y.; Maharana, C.; Lu, D.; Peng, W.; Liu, Y.; Wan, R.; Marosi, K.; Misiak, M.; et al. Mitochondrial SIRT3 Mediates Adaptive Responses of Neurons to Exercise and Metabolic and Excitatory Challenges. Cell Metab. 2016, 23, 128–142. [Google Scholar] [CrossRef] [Green Version]
  30. Zuleta, A.; Vidal, R.L.; Armentano, D.; Parsons, G.; Hetz, C. AAV-Mediated Delivery of the Transcription Factor XBP1s into the Striatum Reduces Mutant Huntingtin Aggregation in a Mouse Model of Huntington’s Disease. Biochem. Biophys. Res. Commun. 2012, 420, 558–563. [Google Scholar] [CrossRef]
  31. Keeler, A.M.; Sapp, E.; Chase, K.; Sottosanti, E.; Danielson, E.; Pfister, E.; Stoica, L.; DiFiglia, M.; Aronin, N.; Sena-Esteves, M. Cellular Analysis of Silencing the Huntington’s Disease Gene Using AAV9 Mediated Delivery of Artificial Micro RNA into the Striatum of Q140/Q140 Mice. J. Huntingt. Dis. 2016, 5, 239–248. [Google Scholar] [CrossRef] [PubMed]
  32. Franich, N.R.; Fitzsimons, H.L.; Fong, D.M.; Klugmann, M.; During, M.J.; Young, D. AAV Vector-Mediated RNAi of Mutant Huntingtin Expression Is Neuroprotective in a Novel Genetic Rat Model of Huntington’s Disease. Mol. Ther. 2008, 16, 947–956. [Google Scholar] [CrossRef] [PubMed]
  33. Ceccarelli, I.; Fiengo, P.; Remelli, R.; Miragliotta, V.; Rossini, L.; Biotti, I.; Cappelli, A.; Petricca, L.; La Rosa, S.; Caricasole, A.; et al. Recombinant Adeno Associated Viral (AAV) Vector Type 9 Delivery of Ex1-Q138-Mutant Huntingtin in the Rat Striatum as a Short-Time Model for in Vivo Studies in Drug Discovery. Neurobiol. Dis. 2016, 86, 41–51. [Google Scholar] [CrossRef] [PubMed]
  34. Agustín-Pavón, C.; Mielcarek, M.; Garriga-Canut, M.; Isalan, M. Deimmunization for Gene Therapy: Host Matching of Synthetic Zinc Finger Constructs Enables Long-Term Mutant Huntingtin Repression in Mice. Mol. Neurodegener. 2016, 11, 64. [Google Scholar] [CrossRef] [Green Version]
  35. Lubansu, A.; Abeloos, L.; Bockstael, O.; Lehtonen, E.; Blum, D.; Brotchi, J.; Levivier, M.; Tenenbaum, L. Recombinant AAV Viral Vectors Serotype 1, 2, and 5 Mediate Differential Gene Transfer Efficiency in Rat Striatal Fetal Grafts. Cell Transplant. 2007, 16, 1013–1020. [Google Scholar] [CrossRef]
  36. Ramaswamy, S.; McBride, J.L.; Han, I.; Berry-Kravis, E.M.; Zhou, L.; Herzog, C.D.; Gasmi, M.; Bartus, R.T.; Kordower, J.H. Intrastriatal CERE-120 (AAV-Neurturin) Protects Striatal and Cortical Neurons and Delays Motor Deficits in a Transgenic Mouse Model of Huntington’s Disease. Neurobiol. Dis. 2009, 34, 40–50. [Google Scholar] [CrossRef]
  37. Monteys, A.M.; Spengler, R.M.; Dufour, B.D.; Wilson, M.S.; Oakley, C.K.; Sowada, M.J.; McBride, J.L.; Davidson, B.L. Single Nucleotide Seed Modification Restores in Vivo Tolerability of a Toxic Artificial MiRNA Sequence in the Mouse Brain. Nucleic Acids Res. 2014, 42, 13315–13327. [Google Scholar] [CrossRef] [Green Version]
  38. Birolini, G.; Verlengia, G.; Talpo, F.; Maniezzi, C.; Zentilin, L.; Giacca, M.; Conforti, P.; Cordiglieri, C.; Caccia, C.; Leoni, V.; et al. SREBP2 Gene Therapy Targeting Striatal Astrocytes Ameliorates Huntington’s Disease Phenotypes. Brain 2021, 144, 3175–3190. [Google Scholar] [CrossRef]
  39. van der Bom, I.M.J.; Moser, R.P.; Gao, G.; Mondo, E.; O’Connell, D.; Gounis, M.J.; McGowan, S.; Chaurette, J.; Bishop, N.; Sena-Esteves, M.S.; et al. Finding the Striatum in Sheep: Use of a Multi-Modal Guided Approach for Convection Enhanced Delivery. J. Huntingt. Dis. 2013, 2, 41–45. [Google Scholar] [CrossRef]
  40. Dufour, B.D.; Smith, C.A.; Clark, R.L.; Walker, T.R.; McBride, J.L. Intrajugular Vein Delivery of AAV9-RNAi Prevents Neuropathological Changes and Weight Loss in Huntington’s Disease Mice. Mol. Ther. 2014, 22, 797–810. [Google Scholar] [CrossRef] [Green Version]
  41. Li, C.; Xiao, P.; Gray, S.J.; Weinberg, M.S.; Samulski, R.J. Combination Therapy Utilizing ShRNA Knockdown and an Optimized Resistant Transgene for Rescue of Diseases Caused by Misfolded Proteins. Proc. Natl. Acad. Sci. USA 2011, 108, 14258–14263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  42. Pfister, E.L.; DiNardo, N.; Mondo, E.; Borel, F.; Conroy, F.; Fraser, C.; Gernoux, G.; Han, X.; Hu, D.; Johnson, E.; et al. Artificial MiRNAs Reduce Human Mutant Huntingtin Throughout the Striatum in a Transgenic Sheep Model of Huntington’s Disease. Hum. Gene Ther. 2018, 29, 663–673. [Google Scholar] [CrossRef] [PubMed]
  43. Jara, J.H.; Stanford, M.J.; Zhu, Y.; Tu, M.; Hauswirth, W.W.; Bohn, M.C.; DeVries, S.H.; Özdinler, P.H. Healthy and Diseased Corticospinal Motor Neurons Are Selectively Transduced upon Direct AAV2-2 Injection into the Motor Cortex. Gene Ther. 2016, 23, 272–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  44. Biferi, M.G.; Cohen-Tannoudji, M.; Cappelletto, A.; Giroux, B.; Roda, M.; Astord, S.; Marais, T.; Bos, C.; Voit, T.; Ferry, A.; et al. A New AAV10-U7-Mediated Gene Therapy Prolongs Survival and Restores Function in an ALS Mouse Model. Mol. Ther. 2017, 25, 2038–2052. [Google Scholar] [CrossRef] [Green Version]
  45. Wang, W.; Wen, D.; Duan, W.; Yin, J.; Cui, C.; Wang, Y.; Li, Z.; Liu, Y.; Li, C. Systemic Administration of ScAAV9-IGF1 Extends Survival in SOD1G93A ALS Mice via Inhibiting P38 MAPK and the JNK-Mediated Apoptosis Pathway. Brain Res. Bull. 2018, 139, 203–210. [Google Scholar] [CrossRef]
  46. Thomsen, G.M.; Alkaslasi, M.; Vit, J.-P.; Lawless, G.; Godoy, M.; Gowing, G.; Shelest, O.; Svendsen, C.N. Systemic Injection of AAV9-GDNF Provides Modest Functional Improvements in the SOD1G93A ALS Rat but Has Adverse Side Effects. Gene Ther. 2017, 24, 245–252. [Google Scholar] [CrossRef] [Green Version]
  47. Eykens, C.; Rossaert, E.; Duqué, S.; Rué, L.; Bento-Abreu, A.; Hersmus, N.; Lenaerts, A.; Kerstens, A.; Corthout, N.; Munck, S.; et al. AAV9-Mediated Gene Delivery of MCT1 to Oligodendrocytes Does Not Provide a Therapeutic Benefit in a Mouse Model of ALS. Mol. Ther. Methods Clin. Dev. 2021, 20, 508–519. [Google Scholar] [CrossRef]
  48. Lee, S.H.; Lee, N.; Kim, S.; Lee, J.; Choi, W.; Yu, S.S.; Kim, J.H.; Kim, S. Intramuscular Delivery of HGF-Expressing Recombinant AAV Improves Muscle Integrity and Alleviates Neurological Symptoms in the Nerve Crush and SOD1-G93A Transgenic Mouse Models. Biochem. Biophys. Res. Commun. 2019, 517, 452–457. [Google Scholar] [CrossRef]
  49. Lin, H.; Hu, H.; Duan, W.; Liu, Y.; Tan, G.; Li, Z.; Liu, Y.; Deng, B.; Song, X.; Wang, W.; et al. Intramuscular Delivery of ScAAV9-HIGF1 Prolongs Survival in the HSOD1G93A ALS Mouse Model via Upregulation of D-Amino Acid Oxidase. Mol. Neurobiol. 2018, 55, 682–695. [Google Scholar] [CrossRef]
  50. Lu, Y.-Y.; Wang, L.-J.; Muramatsu, S.; Ikeguchi, K.; Fujimoto, K.; Okada, T.; Mizukami, H.; Matsushita, T.; Hanazono, Y.; Kume, A.; et al. Intramuscular Injection of AAV-GDNF Results in Sustained Expression of Transgenic GDNF, and Its Delivery to Spinal Motoneurons by Retrograde Transport. Neurosci. Res. 2003, 45, 33–40. [Google Scholar] [CrossRef]
  51. Wang, L.-J.; Lu, Y.-Y.; Muramatsu, S.; Ikeguchi, K.; Fujimoto, K.; Okada, T.; Mizukami, H.; Matsushita, T.; Hanazono, Y.; Kume, A.; et al. Neuroprotective Effects of Glial Cell Line-Derived Neurotrophic Factor Mediated by an Adeno-Associated Virus Vector in a Transgenic Animal Model of Amyotrophic Lateral Sclerosis. J. Neurosci. 2002, 22, 6920–6928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  52. Ayers, J.I.; Fromholt, S.; Sinyavskaya, O.; Siemienski, Z.; Rosario, A.M.; Li, A.; Crosby, K.W.; Cruz, P.E.; DiNunno, N.M.; Janus, C.; et al. Widespread and Efficient Transduction of Spinal Cord and Brain Following Neonatal AAV Injection and Potential Disease Modifying Effect in ALS Mice. Mol. Ther. 2015, 23, 53–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  53. Towne, C.; Setola, V.; Schneider, B.L.; Aebischer, P. Neuroprotection by Gene Therapy Targeting Mutant SOD1 in Individual Pools of Motor Neurons Does Not Translate into Therapeutic Benefit in FALS Mice. Mol. Ther. 2011, 19, 274–283. [Google Scholar] [CrossRef]
  54. Kaspar, B.K.; Lladó, J.; Sherkat, N.; Rothstein, J.D.; Gage, F.H. Retrograde Viral Delivery of IGF-1 Prolongs Survival in a Mouse ALS Model. Science 2003, 301, 839–842. [Google Scholar] [CrossRef] [Green Version]
  55. Wen, D.; Cui, C.; Duan, W.; Wang, W.; Wang, Y.; Liu, Y.; Li, Z.; Li, C. The Role of Insulin-like Growth Factor 1 in ALS Cell and Mouse Models: A Mitochondrial Protector. Brain Res. Bull. 2019, 144, 1–13. [Google Scholar] [CrossRef] [PubMed]
  56. Li, K.; Hala, T.J.; Seetharam, S.; Poulsen, D.J.; Wright, M.C.; Lepore, A.C. GLT1 Overexpression in SOD1(G93A) Mouse Cervical Spinal Cord Does Not Preserve Diaphragm Function or Extend Disease. Neurobiol. Dis. 2015, 78, 12–23. [Google Scholar] [CrossRef]
  57. Lim, C.K.W.; Gapinske, M.; Brooks, A.K.; Woods, W.S.; Powell, J.E.; Zeballos, C.; Winter, J.; Perez-Pinera, P.; Gaj, T. Treatment of a Mouse Model of ALS by In Vivo Base Editing. Mol. Ther. 2020, 28, 1177–1189. [Google Scholar] [CrossRef]
  58. Herranz-Martin, S.; Chandran, J.; Lewis, K.; Mulcahy, P.; Higginbottom, A.; Walker, C.; Valenzuela, I.M.-P.Y.; Jones, R.A.; Coldicott, I.; Iannitti, T.; et al. Viral Delivery of C9orf72 Hexanucleotide Repeat Expansions in Mice Leads to Repeat-Length-Dependent Neuropathology and Behavioural Deficits. Dis. Model. Mech. 2017, 10, 859–868. [Google Scholar] [CrossRef] [Green Version]
  59. Rashnonejad, A.; Amini Chermahini, G.; Gündüz, C.; Onay, H.; Aykut, A.; Durmaz, B.; Baka, M.; Su, Q.; Gao, G.; Özkınay, F. Fetal Gene Therapy Using a Single Injection of Recombinant AAV9 Rescued SMA Phenotype in Mice. Mol. Ther. 2019, 27, 2123–2133. [Google Scholar] [CrossRef]
  60. Besse, A.; Astord, S.; Marais, T.; Roda, M.; Giroux, B.; Lejeune, F.-X.; Relaix, F.; Smeriglio, P.; Barkats, M.; Biferi, M.G. AAV9-Mediated Expression of SMN Restricted to Neurons Does Not Rescue the Spinal Muscular Atrophy Phenotype in Mice. Mol. Ther. 2020, 28, 1887–1901. [Google Scholar] [CrossRef]
  61. Passini, M.A.; Bu, J.; Richards, A.M.; Treleaven, C.M.; Sullivan, J.A.; O’Riordan, C.R.; Scaria, A.; Kells, A.P.; Samaranch, L.; San Sebastian, W.; et al. Translational Fidelity of Intrathecal Delivery of Self-Complementary AAV9–Survival Motor Neuron 1 for Spinal Muscular Atrophy. Hum. Gene Ther. 2014, 25, 619–630. [Google Scholar] [CrossRef] [PubMed]
  62. Armbruster, N.; Lattanzi, A.; Jeavons, M.; Van Wittenberghe, L.; Gjata, B.; Marais, T.; Martin, S.; Vignaud, A.; Voit, T.; Mavilio, F.; et al. Efficacy and Biodistribution Analysis of Intracerebroventricular Administration of an Optimized ScAAV9-SMN1 Vector in a Mouse Model of Spinal Muscular Atrophy. Mol. Ther. Methods Clin. Dev. 2016, 3, 16060. [Google Scholar] [CrossRef] [PubMed]
  63. Kaifer, K.A.; Villalón, E.; Smith, C.E.; Simon, M.E.; Marquez, J.; Hopkins, A.E.; Morcos, T.I.; Lorson, C.L. AAV9-DOK7 Gene Therapy Reduces Disease Severity in Smn2B/- SMA Model Mice. Biochem. Biophys. Res. Commun. 2020, 530, 107–114. [Google Scholar] [CrossRef] [PubMed]
  64. Hinderer, C.; Katz, N.; Buza, E.L.; Dyer, C.; Goode, T.; Bell, P.; Richman, L.K.; Wilson, J.M. Severe Toxicity in Nonhuman Primates and Piglets Following High-Dose Intravenous Administration of an Adeno-Associated Virus Vector Expressing Human SMN. Hum. Gene Ther. 2018, 29, 285–298. [Google Scholar] [CrossRef] [Green Version]
  65. Benkhelifa-Ziyyat, S.; Besse, A.; Roda, M.; Duque, S.; Astord, S.; Carcenac, R.; Marais, T.; Barkats, M. Intramuscular ScAAV9-SMN Injection Mediates Widespread Gene Delivery to the Spinal Cord and Decreases Disease Severity in SMA Mice. Mol. Ther. 2013, 21, 282–290. [Google Scholar] [CrossRef] [Green Version]
  66. Donadon, I.; Bussani, E.; Riccardi, F.; Licastro, D.; Romano, G.; Pianigiani, G.; Pinotti, M.; Konstantinova, P.; Evers, M.; Lin, S.; et al. Rescue of Spinal Muscular Atrophy Mouse Models with AAV9-Exon-Specific U1 SnRNA. Nucleic Acids Res. 2019, 47, 7618–7632. [Google Scholar] [CrossRef]
  67. Guo, Y.; Wang, D.; Qiao, T.; Yang, C.; Su, Q.; Gao, G.; Xu, Z. A Single Injection of Recombinant Adeno-Associated Virus into the Lumbar Cistern Delivers Transgene Expression Throughout the Whole Spinal Cord. Mol. Neurobiol. 2016, 53, 3235–3248. [Google Scholar] [CrossRef] [Green Version]
  68. Song, L.; Llanga, T.; Conatser, L.M.; Zaric, V.; Gilger, B.C.; Hirsch, M.L. Serotype Survey of AAV Gene Delivery via Subconjunctival Injection in Mice. Gene Ther. 2018, 25, 402–414. [Google Scholar] [CrossRef] [Green Version]
  69. Moreno, A.M.; Fu, X.; Zhu, J.; Katrekar, D.; Shih, Y.-R.V.; Marlett, J.; Cabotaje, J.; Tat, J.; Naughton, J.; Lisowski, L.; et al. In Situ Gene Therapy via AAV-CRISPR-Cas9-Mediated Targeted Gene Regulation. Mol. Ther. 2018, 26, 1818–1827. [Google Scholar] [CrossRef] [Green Version]
  70. Wang, S.K.; Xue, Y.; Cepko, C.L. Microglia Modulation by TGF-Β1 Protects Cones in Mouse Models of Retinal Degeneration. J. Clin. Investig. 2020, 130, 4360–4369. [Google Scholar] [CrossRef]
  71. Ramachandran, P.S.; Lee, V.; Wei, Z.; Song, J.Y.; Casal, G.; Cronin, T.; Willett, K.; Huckfeldt, R.; Morgan, J.I.W.; Aleman, T.S.; et al. Evaluation of Dose and Safety of AAV7m8 and AAV8BP2 in the Non-Human Primate Retina. Hum. Gene Ther. 2017, 28, 154–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  72. Levy, J.M.; Yeh, W.-H.; Pendse, N.; Davis, J.R.; Hennessey, E.; Butcher, R.; Koblan, L.W.; Comander, J.; Liu, Q.; Liu, D.R. Cytosine and Adenine Base Editing of the Brain, Liver, Retina, Heart and Skeletal Muscle of Mice via Adeno-Associated Viruses. Nat. Biomed. Eng. 2020, 4, 97–110. [Google Scholar] [CrossRef] [PubMed]
  73. Tornabene, P.; Trapani, I.; Minopoli, R.; Centrulo, M.; Lupo, M.; de Simone, S.; Tiberi, P.; Dell’Aquila, F.; Marrocco, E.; Iodice, C.; et al. Intein-Mediated Protein Trans-Splicing Expands Adeno-Associated Virus Transfer Capacity in the Retina. Sci. Transl. Med. 2019, 11. [Google Scholar] [CrossRef] [PubMed]
  74. Li, F.; Wing, K.; Wang, J.-H.; Luu, C.D.; Bender, J.A.; Chen, J.; Wang, Q.; Lu, Q.; Nguyen Tran, M.T.; Young, K.M.; et al. Comparison of CRISPR/Cas Endonucleases for in Vivo Retinal Gene Editing. Front. Cell. Neurosci. 2020, 14, eaav4523. [Google Scholar] [CrossRef] [PubMed]
  75. Tu, L.; Wang, J.-H.; Barathi, V.A.; Prea, S.M.; He, Z.; Lee, J.H.; Bender, J.; King, A.E.; Logan, G.J.; Alexander, I.E.; et al. AAV-Mediated Gene Delivery of the Calreticulin Anti-Angiogenic Domain Inhibits Ocular Neovascularization. Angiogenesis 2018, 21, 95–109. [Google Scholar] [CrossRef]
  76. Byrne, L.C.; Day, T.P.; Visel, M.; Strazzeri, J.A.; Fortuny, C.; Dalkara, D.; Merigan, W.H.; Schaffer, D.V.; Flannery, J.G. In Vivo-Directed Evolution of Adeno-Associated Virus in the Primate Retina. JCI Insight 2020, 5, e135112. [Google Scholar] [CrossRef] [Green Version]
  77. Dalkara, D.; Byrne, L.C.; Klimczak, R.R.; Visel, M.; Yin, L.; Merigan, W.H.; Flannery, J.G.; Schaffer, D.V. In Vivo-Directed Evolution of a New Adeno-Associated Virus for Therapeutic Outer Retinal Gene Delivery from the Vitreous. Sci. Transl. Med. 2013, 5, 189ra76. [Google Scholar] [CrossRef]
  78. Khabou, H.; Desrosiers, M.; Winckler, C.; Fouquet, S.; Auregan, G.; Bemelmans, A.-P.; Sahel, J.-A.; Dalkara, D. Insight into the Mechanisms of Enhanced Retinal Transduction by the Engineered AAV2 Capsid Variant-7m8. Biotechnol. Bioeng. 2016, 113, 2712–2724. [Google Scholar] [CrossRef] [Green Version]
  79. György, B.; Nist-Lund, C.; Pan, B.; Asai, Y.; Karavitaki, K.D.; Kleinstiver, B.P.; Garcia, S.P.; Zaborowski, M.P.; Solanes, P.; Spataro, S.; et al. Allele-Specific Gene Editing Prevents Deafness in a Model of Dominant Progressive Hearing Loss. Nat. Med. 2019, 25, 1123–1130. [Google Scholar] [CrossRef]
  80. Taiber, S.; Cohen, R.; Yizhar-Barnea, O.; Sprinzak, D.; Holt, J.R.; Avraham, K.B. Neonatal AAV Gene Therapy Rescues Hearing in a Mouse Model of SYNE4 Deafness. EMBO Mol. Med. 2021, 13, e13259. [Google Scholar] [CrossRef]
  81. Kang, W.; Zhao, X.; Sun, Z.; Dong, T.; Jin, C.; Tong, L.; Zhu, W.; Tao, Y.; Wu, H. Adeno-Associated Virus Vector Enables Safe and Efficient Cas9 Activation in Neonatal and Adult Cas9 Knockin Murine Cochleae. Gene Ther. 2020, 27, 392–405. [Google Scholar] [CrossRef] [PubMed]
  82. Gu, X.; Chai, R.; Guo, L.; Dong, B.; Li, W.; Shu, Y.; Huang, X.; Li, H. Transduction of Adeno-Associated Virus Vectors Targeting Hair Cells and Supporting Cells in the Neonatal Mouse Cochlea. Front. Cell. Neurosci. 2019, 13, 8. [Google Scholar] [CrossRef] [PubMed]
  83. Tao, Y.; Huang, M.; Shu, Y.; Ruprecht, A.; Wang, H.; Tang, Y.; Vandenberghe, L.H.; Wang, Q.; Gao, G.; Kong, W.J.; et al. Delivery of Adeno-Associated Virus Vectors in Adult Mammalian Inner-Ear Cell Subtypes Without Auditory Dysfunction. Hum. Gene Ther. 2018, 29, 492–506. [Google Scholar] [CrossRef] [PubMed]
  84. Zhao, X.; Jin, C.; Dong, T.; Sun, Z.; Zheng, X.; Feng, B.; Cheng, Z.; Li, X.; Tao, Y.; Wu, H. Characterization of Promoters for Adeno-Associated Virus Mediated Efficient Cas9 Activation in Adult Cas9 Knock-in Murine Cochleae. Hear. Res. 2020, 394, 107999. [Google Scholar] [CrossRef]
  85. Cooper, L.B.; Chan, D.K.; Roediger, F.C.; Shaffer, B.R.; Fraser, J.F.; Musatov, S.; Selesnick, S.H.; Kaplitt, M.G. AAV-Mediated Delivery of the Caspase Inhibitor XIAP Protects against Cisplatin Ototoxicity. Otol. Neurotol. 2006, 27, 484–490. [Google Scholar] [CrossRef]
  86. György, B.; Meijer, E.J.; Ivanchenko, M.V.; Tenneson, K.; Emond, F.; Hanlon, K.S.; Indzhykulian, A.A.; Volak, A.; Karavitaki, K.D.; Tamvakologos, P.I.; et al. Gene Transfer with AAV9-PHP.B Rescues Hearing in a Mouse Model of Usher Syndrome 3A and Transduces Hair Cells in a Non-Human Primate. Mol. Ther. Methods Clin. Dev. 2019, 13, 1–13. [Google Scholar] [CrossRef] [Green Version]
  87. Pan, B.; Askew, C.; Galvin, A.; Heman-Ackah, S.; Asai, Y.; Indzhykulian, A.A.; Jodelka, F.M.; Hastings, M.L.; Lentz, J.J.; Vandenberghe, L.H.; et al. Gene Therapy Restores Auditory and Vestibular Function in a Mouse Model of Usher Syndrome Type 1c. Nat. Biotechnol. 2017, 35, 264–272. [Google Scholar] [CrossRef]
  88. György, B.; Sage, C.; Indzhykulian, A.A.; Scheffer, D.I.; Brisson, A.R.; Tan, S.; Wu, X.; Volak, A.; Mu, D.; Tamvakologos, P.I.; et al. Rescue of Hearing by Gene Delivery to Inner-Ear Hair Cells Using Exosome-Associated AAV. Mol. Ther. 2017, 25, 379–391. [Google Scholar] [CrossRef] [Green Version]
  89. Kim, M.-A.; Ryu, N.; Kim, H.-M.; Kim, Y.-R.; Lee, B.; Kwon, T.-J.; Bok, J.; Kim, U.-K. Targeted Gene Delivery into the Mammalian Inner Ear Using Synthetic Serotypes of Adeno-Associated Virus Vectors. Mol. Ther. Methods Clin. Dev. 2019, 13, 197–204. [Google Scholar] [CrossRef] [Green Version]
  90. Lee, J.; Nist-Lund, C.; Solanes, P.; Goldberg, H.; Wu, J.; Pan, B.; Schneider, B.L.; Holt, J.R. Efficient Viral Transduction in Mouse Inner Ear Hair Cells with Utricle Injection and AAV9-PHP.B. Hear. Res. 2020, 394, 107882. [Google Scholar] [CrossRef]
  91. Miyanohara, A.; Kamizato, K.; Juhas, S.; Juhasova, J.; Navarro, M.; Marsala, S.; Lukacova, N.; Hruska-Plochan, M.; Curtis, E.; Gabel, B.; et al. Potent Spinal Parenchymal AAV9-Mediated Gene Delivery by Subpial Injection in Adult Rats and Pigs. Mol. Ther. Methods Clin. Dev. 2016, 3, 16046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  92. Bravo-Hernández, M.; Tadokoro, T.; Marsala, M. Subpial AAV Delivery for Spinal Parenchymal Gene Regulation in Adult Mammals. Methods Mol. Biol. 2019, 1950, 209–233. [Google Scholar] [CrossRef] [PubMed]
  93. Williams, C.L.; Uytingco, C.R.; Green, W.W.; McIntyre, J.C.; Ukhanov, K.; Zimmerman, A.D.; Shively, D.T.; Zhang, L.; Nishimura, D.Y.; Sheffield, V.C.; et al. Gene Therapeutic Reversal of Peripheral Olfactory Impairment in Bardet-Biedl Syndrome. Mol. Ther. 2017, 25, 904–916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  94. Lonser, R.R.; Akhter, A.S.; Zabek, M.; Elder, J.B.; Bankiewicz, K.S. Direct Convective Delivery of Adeno-Associated Virus Gene Therapy for Treatment of Neurological Disorders. J. Neurosurg. 2020, 134, 1751–1763. [Google Scholar] [CrossRef] [PubMed]
  95. Lundstrom, K. Viral Vectors in Gene Therapy. Diseases 2018, 6, 42. [Google Scholar] [CrossRef] [Green Version]
  96. Samaranch, L.; Blits, B.; San Sebastian, W.; Hadaczek, P.; Bringas, J.; Sudhakar, V.; Macayan, M.; Pivirotto, P.J.; Petry, H.; Bankiewicz, K.S. MR-Guided Parenchymal Delivery of Adeno-Associated Viral Vector Serotype 5 in Non-Human Primate Brain. Gene Ther. 2017, 24, 253–261. [Google Scholar] [CrossRef]
  97. Tervo, D.G.R.; Hwang, B.-Y.; Viswanathan, S.; Gaj, T.; Lavzin, M.; Ritola, K.D.; Lindo, S.; Michael, S.; Kuleshova, E.; Ojala, D.; et al. A Designer AAV Variant Permits Efficient Retrograde Access to Projection Neurons. Neuron 2016, 92, 372–382. [Google Scholar] [CrossRef] [Green Version]
  98. Tordo, J.; O’Leary, C.; Antunes, A.S.L.M.; Palomar, N.; Aldrin-Kirk, P.; Basche, M.; Bennett, A.; D’Souza, Z.; Gleitz, H.; Godwin, A.; et al. A Novel Adeno-Associated Virus Capsid with Enhanced Neurotropism Corrects a Lysosomal Transmembrane Enzyme Deficiency. Brain 2018, 141, 2014–2031. [Google Scholar] [CrossRef] [Green Version]
  99. Davidsson, M.; Wang, G.; Aldrin-Kirk, P.; Cardoso, T.; Nolbrant, S.; Hartnor, M.; Mudannayake, J.; Parmar, M.; Björklund, T. A Systematic Capsid Evolution Approach Performed in Vivo for the Design of AAV Vectors with Tailored Properties and Tropism. Proc. Natl. Acad. Sci. USA 2019, 116, 27053–27062. [Google Scholar] [CrossRef] [Green Version]
  100. Hinderer, C.; Bell, P.; Katz, N.; Vite, C.H.; Louboutin, J.-P.; Bote, E.; Yu, H.; Zhu, Y.; Casal, M.L.; Bagel, J.; et al. Evaluation of Intrathecal Routes of Administration for Adeno-Associated Viral Vectors in Large Animals. Hum. Gene Ther. 2018, 29, 15–24. [Google Scholar] [CrossRef]
  101. Hordeaux, J.; Buza, E.L.; Dyer, C.; Goode, T.; Mitchell, T.W.; Richman, L.; Denton, N.; Hinderer, C.; Katz, N.; Schmid, R.; et al. Adeno-Associated Virus-Induced Dorsal Root Ganglion Pathology. Hum. Gene Ther. 2020, 31, 808–818. [Google Scholar] [CrossRef] [PubMed]
  102. Deverman, B.E.; Pravdo, P.L.; Simpson, B.P.; Kumar, S.R.; Chan, K.Y.; Banerjee, A.; Wu, W.-L.; Yang, B.; Huber, N.; Pasca, S.P.; et al. Cre-Dependent Selection Yields AAV Variants for Widespread Gene Transfer to the Adult Brain. Nat. Biotechnol. 2016, 34, 204–209. [Google Scholar] [CrossRef] [PubMed]
  103. Galvan, A.; Petkau, T.L.; Hill, A.M.; Korecki, A.J.; Lu, G.; Choi, D.; Rahman, K.; Simpson, E.; Leavitt, B.R.; Smith, Y. Intracerebroventricular Administration of AAV9-PHP.B SYN1-EmGFP Induces Widespread Transgene Expression in the Mouse and Monkey CNS. Hum. Gene Ther. 2021, 32, 599–615. [Google Scholar] [CrossRef] [PubMed]
  104. Hordeaux, J.; Wang, Q.; Katz, N.; Buza, E.L.; Bell, P.; Wilson, J.M. The Neurotropic Properties of AAV-PHP.B Are Limited to C57BL/6J Mice. Mol. Ther. 2018, 26, 664–668. [Google Scholar] [CrossRef]
  105. Flotte, T.R.; Carter, B.J. Adeno-Associated Virus Vectors for Gene Therapy. Gene Ther. 1995, 2, 357–362. [Google Scholar]
  106. Wagner, J.A.; Messner, A.H.; Moran, M.L.; Daifuku, R.; Kouyama, K.; Desch, J.K.; Manley, S.; Norbash, A.M.; Conrad, C.K.; Friborg, S.; et al. Safety and Biological Efficacy of an Adeno-Associated Virus Vector-Cystic Fibrosis Transmembrane Regulator (AAV-CFTR) in the Cystic Fibrosis Maxillary Sinus. Laryngoscope 1999, 109, 266–274. [Google Scholar] [CrossRef]
  107. Salegio, E.; Samaranch, L.; Kells, A.; Mittermeyer, G.; San Sebastián, W.; Zhou, S.; Beyer, J.; Forsayeth, J.; Bankiewicz, K. Axonal Transport of Adeno-Associated Viral Vectors Is Serotype-Dependent. Gene Ther. 2012, 20, 348–352. [Google Scholar] [CrossRef]
  108. Kells, A.P.; Forsayeth, J.; Bankiewicz, K.S. Glial-Derived Neurotrophic Factor Gene Transfer for Parkinson’s Disease: Anterograde Distribution of AAV2 Vectors in the Primate Brain. Neurobiol. Dis. 2012, 48, 228–235. [Google Scholar] [CrossRef] [Green Version]
  109. Green, F.; Samaranch, L.; Zhang, H.S.; Manning-Bog, A.; Meyer, K.; Forsayeth, J.; Bankiewicz, K.S. Axonal Transport of AAV9 in Nonhuman Primate Brain. Gene Ther. 2016, 23, 520–526. [Google Scholar] [CrossRef] [Green Version]
  110. Mandel, T.E.; Koulmanda, M.; Cozzi, E.; Waterworth, P.; Tolan, M.; Langford, G.; White, D.J. Transplantation of Normal and DAF-Transgenic Fetal Pig Pancreas into Cynomolgus Monkeys. Transplant. Proc. 1997, 29, 940. [Google Scholar] [CrossRef]
  111. Bartus, R.T.; Weinberg, M.S.; Samulski, R.J. Parkinson’s Disease Gene Therapy: Success by Design Meets Failure by Efficacy. Mol. Ther 2014, 22, 487–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  112. Christine, C.W.; Bankiewicz, K.S.; Van Laar, A.D.; Richardson, R.M.; Ravina, B.; Kells, A.P.; Boot, B.; Martin, A.J.; Nutt, J.; Thompson, M.E.; et al. Magnetic Resonance Imaging-Guided Phase 1 Trial of Putaminal AADC Gene Therapy for Parkinson’s Disease. Ann. Neurol. 2019, 85, 704–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  113. Muramatsu, S.; Fujimoto, K.; Kato, S.; Mizukami, H.; Asari, S.; Ikeguchi, K.; Kawakami, T.; Urabe, M.; Kume, A.; Sato, T.; et al. A Phase I Study of Aromatic L-Amino Acid Decarboxylase Gene Therapy for Parkinson’s Disease. Mol. Ther. 2010, 18, 1731–1735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  114. McFarthing, K.; Prakash, N.; Simuni, T. Clinical trial highlights: 1. Gene therapy for Parkinson´s, 2. Phase 3 study in focus intec pharma´s accordion pill, 3. Clinial trials resources. J. Parkinsons Dis. 2019, 9, 251–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  115. Bäckman, C.M.; Shan, L.; Zhang, Y.J.; Hoffer, B.J.; Leonard, S.; Troncoso, J.C.; Vonsatel, P.; Tomac, A.C. Gene Expression Patterns for GDNF and Its Receptors in the Human Putamen Affected by Parkinson’s Disease: A Real-Time PCR Study. Mol. Cell. Endocrinol. 2006, 252, 160–166. [Google Scholar] [CrossRef]
  116. Airaksinen, M.S.; Saarma, M. The GDNF Family: Signalling, Biological Functions and Therapeutic Value. Nat. Rev. Neurosci. 2002, 3, 383–394. [Google Scholar] [CrossRef]
  117. Björklund, A.; Kirik, D.; Rosenblad, C.; Georgievska, B.; Lundberg, C.; Mandel, R.J. Towards a Neuroprotective Gene Therapy for Parkinson’s Disease: Use of Adenovirus, AAV and Lentivirus Vectors for Gene Transfer of GDNF to the Nigrostriatal System in the Rat Parkinson Model. Brain Res. 2000, 886, 82–98. [Google Scholar] [CrossRef]
  118. Marks, W.J.; Ostrem, J.L.; Verhagen, L.; Starr, P.A.; Larson, P.S.; Bakay, R.A.; Taylor, R.; Cahn-Weiner, D.A.; Stoessl, A.J.; Olanow, C.W.; et al. Safety and Tolerability of Intraputaminal Delivery of CERE-120 (Adeno-Associated Virus Serotype 2-Neurturin) to Patients with Idiopathic Parkinson’s Disease: An Open-Label, Phase I Trial. Lancet Neurol. 2008, 7, 400–408. [Google Scholar] [CrossRef]
  119. Bartus, R.T.; Baumann, T.L.; Siffert, J.; Herzog, C.D.; Alterman, R.; Boulis, N.; Turner, D.A.; Stacy, M.; Lang, A.E.; Lozano, A.M.; et al. Safety/Feasibility of Targeting the Substantia Nigra with AAV2-Neurturin in Parkinson Patients. Neurology 2013, 80, 1698–1701. [Google Scholar] [CrossRef] [Green Version]
  120. LeWitt, P.A.; Rezai, A.R.; Leehey, M.A.; Ojemann, S.G.; Flaherty, A.W.; Eskandar, E.N.; Kostyk, S.K.; Thomas, K.; Sarkar, A.; Siddiqui, M.S.; et al. AAV2-GAD Gene Therapy for Advanced Parkinson’s Disease: A Double-Blind, Sham-Surgery Controlled, Randomised Trial. Lancet Neurol. 2011, 10, 309–319. [Google Scholar] [CrossRef]
  121. Kaplitt, M.G.; Feigin, A.; Tang, C.; Fitzsimons, H.L.; Mattis, P.; Lawlor, P.A.; Bland, R.J.; Young, D.; Strybing, K.; Eidelberg, D.; et al. Safety and Tolerability of Gene Therapy with an Adeno-Associated Virus (AAV) Borne GAD Gene for Parkinson’s Disease: An Open Label, Phase I Trial. Lancet 2007, 369, 2097–2105. [Google Scholar] [CrossRef]
  122. Feigin, A.; Kaplitt, M.G.; Tang, C.; Lin, T.; Mattis, P.; Dhawan, V.; During, M.J.; Eidelberg, D. Modulation of Metabolic Brain Networks after Subthalamic Gene Therapy for Parkinson’s Disease. Proc. Natl. Acad. Sci. USA 2007, 104, 19559–19564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  123. Niethammer, M.; Tang, C.C.; LeWitt, P.A.; Rezai, A.R.; Leehey, M.A.; Ojemann, S.G.; Flaherty, A.W.; Eskandar, E.N.; Kostyk, S.K.; Sarkar, A.; et al. Long-Term Follow-up of a Randomized AAV2-GAD Gene Therapy Trial for Parkinson’s Disease. JCI Insight 2017, 2, e90133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  124. Luo, J.; Kaplitt, M.G.; Fitzsimons, H.L.; Zuzga, D.S.; Liu, Y.; Oshinsky, M.L.; During, M.J. Subthalamic GAD Gene Therapy in a Parkinson’s Disease Rat Model. Science 2002, 298, 425–429. [Google Scholar] [CrossRef]
  125. Blandini, F.; Cilia, R.; Cerri, S.; Pezzoli, G.; Schapira, A.H.V.; Mullin, S.; Lanciego, J.L. Glucocerebrosidase Mutations and Synucleinopathies: Toward a Model of Precision Medicine. Mov. Disord. 2019, 34, 9–21. [Google Scholar] [CrossRef]
  126. Rocha, E.M.; Smith, G.A.; Park, E.; Cao, H.; Brown, E.; Hayes, M.A.; Beagan, J.; McLean, J.R.; Izen, S.C.; Perez-Torres, E.; et al. Glucocerebrosidase Gene Therapy Prevents α-Synucleinopathy of Midbrain Dopamine Neurons. Neurobiol. Dis. 2015, 82, 495–503. [Google Scholar] [CrossRef] [Green Version]
  127. Morabito, G.; Giannelli, S.G.; Ordazzo, G.; Bido, S.; Castoldi, V.; Indrigo, M.; Cabassi, T.; Cattaneo, S.; Luoni, M.; Cancellieri, C.; et al. AAV-PHP.B-Mediated Global-Scale Expression in the Mouse Nervous System Enables GBA1 Gene Therapy for Wide Protection from Synucleinopathy. Mol. Ther. 2017, 25, 2727–2742. [Google Scholar] [CrossRef] [Green Version]
  128. Sucunza, D.; Rico, A.J.; Roda, E.; Collantes, M.; González-Aseguinolaza, G.; Rodríguez-Pérez, A.I.; Peñuelas, I.; Vázquez, A.; Labandeira-García, J.L.; Broccoli, V.; et al. Glucocerebrosidase Gene Therapy Induces Alpha-Synuclein Clearance and Neuroprotection of Midbrain Dopaminergic Neurons in Mice and Macaques. Int. J. Mol. Sci. 2021, 22, 4825. [Google Scholar] [CrossRef]
  129. Xu, R.; Camboni, M.; Martin, P.T. Postnatal Overexpression of the CT GalNAc Transferase Inhibits Muscular Dystrophy in Mdx Mice without Altering Muscle Growth or Neuromuscular Development. Neuromuscul. Disord. 2007, 17, 209–220. [Google Scholar] [CrossRef] [Green Version]
  130. Fischell, J.M.; Fishman, P.S. A Multifaceted Approach to Optimizing AAV Delivery to the Brain for the Treatment of Neurodegenerative Diseases. Front. Neurosci. 2021, 15, 1235. [Google Scholar] [CrossRef]
  131. Mendell, J.R.; Al-Zaidy, S.A.; Lehman, K.J.; McColly, M.; Lowes, L.P.; Alfano, L.N.; Reash, N.F.; Iammarino, M.A.; Church, K.R.; Kleyn, A.; et al. Five-Year Extension Results of the Phase 1 START Trial of Onasemnogene Abeparvovec in Spinal Muscular Atrophy. JAMA Neurol. 2021, 78, 834–841. [Google Scholar] [CrossRef] [PubMed]
  132. Zolgensma. FDA. C. for B.E. and ZOLGENSMA. FDA. 2021. Available online: https://www.fda.gov/vaccines-blood-biologics/zolgensma (accessed on 20 March 2022).
  133. Richardson, R.M.; Kells, A.P.; Rosenbluth, K.H.; Salegio, E.A.; Fiandaca, M.S.; Larson, P.S.; Starr, P.A.; Martin, A.J.; Lonser, R.R.; Federoff, H.J.; et al. Interventional MRI-Guided Putaminal Delivery of AAV2-GDNF for a Planned Clinical Trial in Parkinson’s Disease. Mol. Ther. 2011, 19, 1048–1057. [Google Scholar] [CrossRef] [PubMed]
  134. Nutt, J.G.; Curtze, C.; Hiller, A.; Anderson, S.; Larson, P.S.; Van Laar, A.D.; Richardson, R.M.; Thompson, M.E.; Sedkov, A.; Leinonen, M.; et al. Aromatic L-Amino Acid Decarboxylase Gene Therapy Enhances Levodopa Response in Parkinson’s Disease. Mov. Disord. 2020, 35, 851–858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  135. Rafii, M.S.; Tuszynski, M.H.; Thomas, R.G.; Barba, D.; Brewer, J.B.; Rissman, R.A.; Siffert, J.; Aisen, P.S. AAV2-NGF Study Team Adeno-Associated Viral Vector (Serotype 2)-Nerve Growth Factor for Patients with Alzheimer Disease: A Randomized Clinical Trial. JAMA Neurol. 2018, 75, 834–841. [Google Scholar] [CrossRef] [PubMed]
  136. Nagahara, A.H.; Merrill, D.A.; Coppola, G.; Tsukada, S.; Schroeder, B.E.; Shaked, G.M.; Wang, L.; Blesch, A.; Kim, A.; Conner, J.M.; et al. Neuroprotective Effects of Brain-Derived Neurotrophic Factor in Rodent and Primate Models of Alzheimer’s Disease. Nat. Med. 2009, 15, 331–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  137. Nagahara, A.H.; Tuszynski, M.H. Potential Therapeutic Uses of BDNF in Neurological and Psychiatric Disorders. Nat. Rev. Drug Discov. 2011, 10, 209–219. [Google Scholar] [CrossRef] [PubMed]
  138. Rodrigues, F.B.; Wild, E.J. Huntington’s Disease Clinical Trials Corner: April 2020. J. Huntingt. Dis. 2020, 9, 185–197. [Google Scholar] [CrossRef] [Green Version]
  139. Day, J.W.; Finkel, R.S.; Chiriboga, C.A.; Connolly, A.M.; Crawford, T.O.; Darras, B.T.; Iannaccone, S.T.; Kuntz, N.L.; Peña, L.D.M.; Shieh, P.B.; et al. Onasemnogene Abeparvovec Gene Therapy for Symptomatic Infantile-Onset Spinal Muscular Atrophy in Patients with Two Copies of SMN2 (STR1VE): An Open-Label, Single-Arm, Multicentre, Phase 3 Trial. Lancet Neurol. 2021, 20, 284–293. [Google Scholar] [CrossRef]
  140. Bevan, A.K.; Duque, S.; Foust, K.D.; Morales, P.R.; Braun, L.; Schmelzer, L.; Chan, C.M.; McCrate, M.; Chicoine, L.G.; Coley, B.D.; et al. Systemic Gene Delivery in Large Species for Targeting Spinal Cord, Brain, and Peripheral Tissues for Pediatric Disorders. Mol. Ther. 2011, 19, 1971–1980. [Google Scholar] [CrossRef] [Green Version]
  141. Foust, K.D.; Wang, X.; McGovern, V.L.; Braun, L.; Bevan, A.K.; Haidet, A.M.; Le, T.T.; Morales, P.R.; Rich, M.M.; Burghes, A.H.M.; et al. Rescue of the Spinal Muscular Atrophy Phenotype in a Mouse Model by Early Postnatal Delivery of SMN. Nat. Biotechnol. 2010, 28, 271–274. [Google Scholar] [CrossRef] [Green Version]
  142. Ashtari, M.; Cyckowski, L.L.; Monroe, J.F.; Marshall, K.A.; Chung, D.C.; Auricchio, A.; Simonelli, F.; Leroy, B.P.; Maguire, A.M.; Shindler, K.S.; et al. The Human Visual Cortex Responds to Gene Therapy-Mediated Recovery of Retinal Function. J. Clin. Investig. 2011, 121, 2160–2168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  143. Simonelli, F.; Maguire, A.M.; Testa, F.; Pierce, E.A.; Mingozzi, F.; Bennicelli, J.L.; Rossi, S.; Marshall, K.; Banfi, S.; Surace, E.M.; et al. Gene Therapy for Leber’s Congenital Amaurosis Is Safe and Effective through 1.5 Years after Vector Administration. Mol. Ther. 2010, 18, 643–650. [Google Scholar] [CrossRef] [PubMed]
  144. Acland, G.M.; Aguirre, G.D.; Bennett, J.; Aleman, T.S.; Cideciyan, A.V.; Bennicelli, J.; Dejneka, N.S.; Pearce-Kelling, S.E.; Maguire, A.M.; Palczewski, K.; et al. Long-Term Restoration of Rod and Cone Vision by Single Dose RAAV-Mediated Gene Transfer to the Retina in a Canine Model of Childhood Blindness. Mol. Ther. 2005, 12, 1072–1082. [Google Scholar] [CrossRef] [PubMed]
  145. Bainbridge, J.W.B.; Smith, A.J.; Barker, S.S.; Robbie, S.; Henderson, R.; Balaggan, K.; Viswanathan, A.; Holder, G.E.; Stockman, A.; Tyler, N.; et al. Effect of Gene Therapy on Visual Function in Leber’s Congenital Amaurosis. N. Engl. J. Med. 2008, 358, 2231–2239. [Google Scholar] [CrossRef]
  146. Cideciyan, A.V.; Aleman, T.S.; Boye, S.L.; Schwartz, S.B.; Kaushal, S.; Roman, A.J.; Pang, J.-J.; Sumaroka, A.; Windsor, E.A.M.; Wilson, J.M.; et al. Human Gene Therapy for RPE65 Isomerase Deficiency Activates the Retinoid Cycle of Vision but with Slow Rod Kinetics. Proc. Natl. Acad. Sci. USA 2008, 105, 15112–15117. [Google Scholar] [CrossRef] [Green Version]
  147. Hauswirth, W.W.; Aleman, T.S.; Kaushal, S.; Cideciyan, A.V.; Schwartz, S.B.; Wang, L.; Conlon, T.J.; Boye, S.L.; Flotte, T.R.; Byrne, B.J.; et al. Treatment of Leber Congenital Amaurosis Due to RPE65 Mutations by Ocular Subretinal Injection of Adeno-Associated Virus Gene Vector: Short-Term Results of a Phase I Trial. Hum. Gene Ther. 2008, 19, 979–990. [Google Scholar] [CrossRef] [Green Version]
  148. Jacobson, S.G.; Boye, S.L.; Aleman, T.S.; Conlon, T.J.; Zeiss, C.J.; Roman, A.J.; Cideciyan, A.V.; Schwartz, S.B.; Komaromy, A.M.; Doobrajh, M.; et al. Safety in Nonhuman Primates of Ocular AAV2-RPE65, a Candidate Treatment for Blindness in Leber Congenital Amaurosis. Hum. Gene Ther. 2006, 17, 845–858. [Google Scholar] [CrossRef] [Green Version]
  149. Feuer, W.J.; Schiffman, J.C.; Davis, J.L.; Porciatti, V.; Gonzalez, P.; Koilkonda, R.D.; Yuan, H.; Lalwani, A.; Lam, B.L.; Guy, J. Gene Therapy for Leber Hereditary Optic Neuropathy: Initial Results. Ophthalmology 2016, 123, 558–570. [Google Scholar] [CrossRef] [Green Version]
  150. Newman, N.J.; Yu-Wai-Man, P.; Carelli, V.; Biousse, V.; Moster, M.L.; Vignal-Clermont, C.; Sergott, R.C.; Klopstock, T.; Sadun, A.A.; Girmens, J.-F.; et al. Intravitreal Gene Therapy vs. Natural History in Patients with Leber Hereditary Optic Neuropathy Carrying the m.11778G>A ND4 Mutation: Systematic Review and Indirect Comparison. Front. Neurol. 2021, 12, 662838. [Google Scholar] [CrossRef]
  151. Yang, S.; Ma, S.-Q.; Wan, X.; He, H.; Pei, H.; Zhao, M.-J.; Chen, C.; Wang, D.-W.; Dong, X.-Y.; Yuan, J.-J.; et al. Long-Term Outcomes of Gene Therapy for the Treatment of Leber’s Hereditary Optic Neuropathy. EBioMedicine 2016, 10, 258–268. [Google Scholar] [CrossRef] [Green Version]
  152. Ran, R.; Yang, S.; He, H.; Ma, S.; Chen, Z.; Li, B. A Retrospective Analysis of Characteristics of Visual Field Damage in Patients with Leber’s Hereditary Optic Neuropathy. Springerplus 2016, 5, 843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  153. Parinot, C.; Nandrot, E.F. A Comprehensive Review of Mutations in the MERTK Proto-Oncogene. Adv. Exp. Med. Biol. 2016, 854, 259–265. [Google Scholar] [CrossRef] [PubMed]
  154. Cehajic-Kapetanovic, J.; Xue, K.; Martinez-Fernandez de la Camara, C.; Nanda, A.; Davies, A.; Wood, L.J.; Salvetti, A.P.; Fischer, M.D.; Aylward, J.W.; Barnard, A.R.; et al. Initial Results from a First-in-Human Gene Therapy Trial on X-Linked Retinitis Pigmentosa Caused by Mutations in RPGR. Nat. Med. 2020, 26, 354–359. [Google Scholar] [CrossRef] [PubMed]
  155. Petit, L.; Lhériteau, E.; Weber, M.; Le Meur, G.; Deschamps, J.-Y.; Provost, N.; Mendes-Madeira, A.; Libeau, L.; Guihal, C.; Colle, M.-A.; et al. Restoration of Vision in the Pde6β-Deficient Dog, a Large Animal Model of Rod-Cone Dystrophy. Mol. Ther. 2012, 20, 2019–2030. [Google Scholar] [CrossRef] [Green Version]
  156. Pichard, V.; Provost, N.; Mendes-Madeira, A.; Libeau, L.; Hulin, P.; Tshilenge, K.-T.; Biget, M.; Ameline, B.; Deschamps, J.-Y.; Weber, M.; et al. AAV-Mediated Gene Therapy Halts Retinal Degeneration in PDE6β-Deficient Dogs. Mol. Ther. 2016, 24, 867–876. [Google Scholar] [CrossRef] [Green Version]
  157. Simunovic, M.P.; Jolly, J.K.; Xue, K.; Edwards, T.L.; Groppe, M.; Downes, S.M.; MacLaren, R.E. The Spectrum of CHM Gene Mutations in Choroideremia and Their Relationship to Clinical Phenotype. Investig. Ophthalmol. Vis. Sci. 2016, 57, 6033–6039. [Google Scholar] [CrossRef] [Green Version]
  158. Xue, K.; Oldani, M.; Jolly, J.K.; Edwards, T.L.; Groppe, M.; Downes, S.M.; MacLaren, R.E. Correlation of Optical Coherence Tomography and Autofluorescence in the Outer Retina and Choroid of Patients with Choroideremia. Investig. Ophthalmol. Vis. Sci. 2016, 57, 3674–3684. [Google Scholar] [CrossRef]
  159. Seitz, I.P.; Zhour, A.; Kohl, S.; Llavona, P.; Peter, T.; Wilhelm, B.; Zrenner, E.; Ueffing, M.; Bartz-Schmidt, K.U.; Fischer, M.D. Multimodal Assessment of Choroideremia Patients Defines Pre-Treatment Characteristics. Graefes Arch. Clin. Exp. Ophthalmol. 2015, 253, 2143–2150. [Google Scholar] [CrossRef]
  160. MacLaren, R.E.; Groppe, M.; Barnard, A.R.; Cottriall, C.L.; Tolmachova, T.; Seymour, L.; Clark, K.R.; During, M.J.; Cremers, F.P.M.; Black, G.C.M.; et al. Retinal Gene Therapy in Patients with Choroideremia: Initial Findings from a Phase 1/2 Clinical Trial. Lancet 2014, 383, 1129–1137. [Google Scholar] [CrossRef] [Green Version]
  161. Davis, J.L. The Blunt End: Surgical Challenges of Gene Therapy for Inherited Retinal Diseases. Am. J. Ophthalmol. 2018, 196, 25–29. [Google Scholar] [CrossRef]
  162. Maguire, A.M.; Simonelli, F.; Pierce, E.A.; Pugh, E.N.; Mingozzi, F.; Bennicelli, J.; Banfi, S.; Marshall, K.A.; Testa, F.; Surace, E.M.; et al. Safety and Efficacy of Gene Transfer for Leber’s Congenital Amaurosis. N. Engl. J. Med. 2008, 358, 2240–2248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  163. Fischer, M.D.; Ochakovski, G.A.; Beier, B.; Seitz, I.P.; Vaheb, Y.; Kortuem, C.; Reichel, F.F.L.; Kuehlewein, L.; Kahle, N.A.; Peters, T.; et al. Efficacy and Safety of Retinal Gene Therapy Using Adeno-Associated Virus Vector for Patients with Choroideremia: A Randomized Clinical Trial. JAMA Ophthalmol. 2019, 137, 1247–1254. [Google Scholar] [CrossRef] [PubMed]
  164. Banin, E.; Gootwine, E.; Obolensky, A.; Ezra-Elia, R.; Ejzenberg, A.; Zelinger, L.; Honig, H.; Rosov, A.; Yamin, E.; Sharon, D.; et al. Gene Augmentation Therapy Restores Retinal Function and Visual Behavior in a Sheep Model of CNGA3 Achromatopsia. Mol. Ther. 2015, 23, 1423–1433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  165. Komáromy, A.M.; Alexander, J.J.; Rowlan, J.S.; Garcia, M.M.; Chiodo, V.A.; Kaya, A.; Tanaka, J.C.; Acland, G.M.; Hauswirth, W.W.; Aguirre, G.D. Gene Therapy Rescues Cone Function in Congenital Achromatopsia. Hum. Mol. Genet. 2010, 19, 2581–2593. [Google Scholar] [CrossRef] [PubMed]
Figure 1. Illustration of most commonly used AAV delivery routes. For CNS diseases (e.g., Parkinson, Alzheimer, Huntington), the intraparenchymal administration of viral particles is by far the strategy most commonly used, followed by intra-CSF administration (intraventricular, intracisternal, and intrathecal). Several ongoing gene therapy studies are focused on targeting blindness and deafness disorders, and, in these scenarios, eye delivery (e.g., subretinal, intravitreal, intracameral, etc.) and ear delivery (e.g., cochleostomy or RWM) have proven preclinical success.
Figure 1. Illustration of most commonly used AAV delivery routes. For CNS diseases (e.g., Parkinson, Alzheimer, Huntington), the intraparenchymal administration of viral particles is by far the strategy most commonly used, followed by intra-CSF administration (intraventricular, intracisternal, and intrathecal). Several ongoing gene therapy studies are focused on targeting blindness and deafness disorders, and, in these scenarios, eye delivery (e.g., subretinal, intravitreal, intracameral, etc.) and ear delivery (e.g., cochleostomy or RWM) have proven preclinical success.
Biomedicines 10 00746 g001
Table 1. Summary of selected ongoing initiatives which have been available in recent years for different CNS disorders approached by with AAV-based therapeutics, such as Alzheimer disease (AD), Huntington disease (HD), amyotrophic lateral sclerosis (ALS), and spinal muscular atrophy (SMA), as well as either vision- or hearing-related diseases. Abbreviations: Aβ (β-amyloid), APOE (apolipoprotein E), shIRS1 (short hairpin RNA against insulin receptor substrate 1), NTR (neurotrophin receptor), CCL2 (chemokine L2), ECE (endothelin-converting enzyme), NGF (nerve growth factor), scFv (semisynthetic anti-Aβ antibody), PHF1 (monoclonar antibody against TAU), IL-10 (interleukin-10), BDNF (brain-derived neurotrophic factor), GDNF (glial cell-derived neurotrophic factor), HTT (huntingtin protein), SIRT3 (mitochondrial protein deacetylase), XBP1 (X-box binding protein 1), ZNF10 (zinc finger protein 10), SREBP2 (sterol regulatory element-binding protein 2), AAT (α-1 antitrypsin), SOD1 (superoxide dismutase 1), HGF (hepatocyte growth factor), hIGF1 (insulin-like growth factor 1), DOK7 (tyrosine kinase 7), GLT1 (glutamate transporter 1), NMJ (neuromuscular junction), TGF-β1 (transforming growth factor beta 1), CAD180 (calreticulin anti-angiogenic domain), SYNE4 (spectrin repeat containing nuclear envelope family member 4), XIAP (X-linked inhibitor of apoptosis).
Table 1. Summary of selected ongoing initiatives which have been available in recent years for different CNS disorders approached by with AAV-based therapeutics, such as Alzheimer disease (AD), Huntington disease (HD), amyotrophic lateral sclerosis (ALS), and spinal muscular atrophy (SMA), as well as either vision- or hearing-related diseases. Abbreviations: Aβ (β-amyloid), APOE (apolipoprotein E), shIRS1 (short hairpin RNA against insulin receptor substrate 1), NTR (neurotrophin receptor), CCL2 (chemokine L2), ECE (endothelin-converting enzyme), NGF (nerve growth factor), scFv (semisynthetic anti-Aβ antibody), PHF1 (monoclonar antibody against TAU), IL-10 (interleukin-10), BDNF (brain-derived neurotrophic factor), GDNF (glial cell-derived neurotrophic factor), HTT (huntingtin protein), SIRT3 (mitochondrial protein deacetylase), XBP1 (X-box binding protein 1), ZNF10 (zinc finger protein 10), SREBP2 (sterol regulatory element-binding protein 2), AAT (α-1 antitrypsin), SOD1 (superoxide dismutase 1), HGF (hepatocyte growth factor), hIGF1 (insulin-like growth factor 1), DOK7 (tyrosine kinase 7), GLT1 (glutamate transporter 1), NMJ (neuromuscular junction), TGF-β1 (transforming growth factor beta 1), CAD180 (calreticulin anti-angiogenic domain), SYNE4 (spectrin repeat containing nuclear envelope family member 4), XIAP (X-linked inhibitor of apoptosis).
DiseaseDelivery RoutesTargetSpeciesAAV SerotypeReferences
AlzheimerIntraparenchymalMiceAAV1[12]
IntraparenchymalAPOE2MiceAAV9 and AArh10[13]
IntraparenchymalshIRS1 (IRS1: neuroprotective role)RatsAAV2/DJ8[14]
IntraparenchymalCCL2 (diffuse amyloid plaques)MiceAAV1/2[15]
IntraparenchymalECE (protease involved in Aβ degradation)MiceAAV5[16]
IntraparenchymalNGF (improving cholinergic activity)RatsAAV2 and AAV5[17]
IntraparenchymalNGFMiceCERE-110 (AAV2)[18]
IntraparenchymalPHF1 (anti-phospho-TAU antibody)MiceAAVrh10[19]
IntraparenchymalCascFv59 (anti-Aβ antibody)MiceAAV2[20]
IntraparenchymalIL-10 (inhibition of proinflammatory cytokines)MiceAAV1[21]
Intramuscular and intravenousGFPMiceAAV9, exo-AAV9 (IM) and AAV8 (IV)[22]
IntramuscularscFv (anti-Aβ antibody)MiceAAV1[23]
IntramuscularP75NTR (protective against Aβ)MiceAAV8[24]
IntracerebroventricularGFPMiceAAV1, AAV5, AAV8, AAV9, AAV2-BR1 and AAV2-PHP.eB[25]
Huntington Intraparenchymal82Q (mutant Htt)RatsAAV2[26]
IntraparenchymalBDNF and GDNFRatsAAV2[27]
IntraparenchymalCRISPR/Cas9 (Htt)MiceAAV1[28]
IntraparenchymalSIRT3 (protective against oxidative and mitochondrial stress)MiceAAV-DJ[29]
IntraparenchymalXBP1 (involved in the splicing events of Htt)MiceAAV2[30]
IntraparenchymalmRNA or siRNA (Htt)MiceAAV9[31]
IntraparenchymaliRNA (Htt)MiceAAV8[32]
IntraparenchymalExon1-Q138 mHtt and Exon1-Q17 wildtype HttMiceAAV9[33]
IntraparenchymalHuman KRAB domain from KOX1 (ZNF10); ZNF10 represses mutant Htt expression MiceAAV9[34]
IntraparenchymalGFPRatsAAV1, AAV2 and AAV5[35]
IntraparenchymalGDNF (neurturin)MiceAAV8[36]
IntraparenchymalmiHDS1 (Htt)MiceAAV1[37]
IntraparenchymalSREBP2 (to reverse synaptic defects in Huntington disease)MiceAAV5[38]
IntraparenchymalsiRNA (Htt)SheepAAV serotype not disclosed[39]
IntravenousiRNA (Htt)MiceAAV1[40]
Intramuscular and intravenousshRNA (AAT)MiceAAV8 (IV) and AAV6 (IM)[41]
IntrathecalmiRNA based on endogenous mir155 backbone (Htt)SheepAAV9[42]
Amyotrophic lateral sclerosisIntraparenchymal and intramuscularGFPMiceAAV1, AAV2, AAV5, AAV6, AAV7, AAV8[43]
Intravenous and intracisternalSOD1MiceAAVrh10[44]
IntravenousIGF1MiceAAV9[45]
IntravenousGDNFRatAAV9[46]
IntracerebroventricularGFPMiceAAV9[47]
IntramuscularHGF in SOD1 modelMiceAAV6[48]
IntramuscularhIGF1 in SOD1modelMiceAAV9[49]
IntramuscularGDNFMiceAAV2[50]
IntramuscularGDNFMiceAAV2[51]
IntramuscularGFPMiceAAV1, AAV5, AAV8 and AAV9[52]
IntramuscularSOD1MiceAAV6[53]
IntramuscularIGF1 and GDNFMiceAAV2[54]
IntramuscularIGF1MiceAAV9[55]
IntrathecalGLT1 overexpression in SOD1 animal modelMiceAAV8[56]
IntrathecalSOD1MiceAAV9[57]
IntracisternalC9orf72 hexanucleotide repeat expansions (generates neuropathology)MiceAAV9[58]
Spinal muscular atrophyIntracerebroventricular and intraperitonealGFPMiceAAV9[59]
IntracerebroventricularSMN1 (gene replacement strategy)MiceAAV9[60]
Intracerebroventricular (mice) and intracisternal (pigs and NHP)hSMN1Mice, Pigs, and NHPsAAV9[61]
Intracerebroventricular and intravenousSMN1MiceAAV9[62]
IntramuscularDOK7 (tuning down disease severity)MiceAAV9[63]
IntravenousSMN transgenePiglets and NHPsAAVhu68[64]
IntramuscularGFPMiceAAV9[65]
IntrathecalSMN2 (to rescue the SMA model)MiceAAV9[66]
IntracisternalmiRNAMiceAAVrh10[67]
Vision disordersSubconjuntivalGFPMiceAAV2, AAV6 and AAV8[68]
IntravenousCRISPR/Cas9 (retinitis pigmentosa)MiceAAV2, AAV6 and AAV8[69]
SubretinalTGF-β1 (retinitis pigmentosa)MiceAAV8[70]
GFPMice and NHPsAAV7m8 and AAV8BP2[71]
GFPMiceAAV8, AAV9. AAV-PHP.B, AAV-PHP.eB[72]
GFPMice and pigsAAV8[73]
RetinalCRISPR/Cas9 (retinal editing)MiceAAV2 and AAV7[74]
IntravitrealCAD180 (endogenous inhibitor of angiogenesis) retinal neovascularization (RNV)MiceAAV2[75]
GFPNHPsAAV2[76]
GFPMice and NHPsAAV2[77]
GFPMiceAAV2, AAV5, AAV8 and AAV9[78]
Hearing disordersCochlearCRISPR/Cas9 (gene editing)MiceAAV2[79]
SYNE4 (to rescue in a deafness model)MiceAAV9-PHP.B[80]
GFPMiceAAV2, AAV6, AAV8, AAV/Anc80L65[81]
GFPMice and guinea pigsAAV2, AAV9 and Anc80L65[82]
Canalastomy (inner ear cells)GFPMiceAAV1, AAV2, AAV6.2, AAV8, AAV9, AAVrh.39, AAVrh.43 and Anc80L65[83]
CRISPR/Cas9 (GFP, Biodistribution)MiceAAV8[84]
Round window membraneXIAP against Cisplatin (chemotherapeutic agent)MiceAAV2[85]
GFPMice and NHPsAAV9-PHP.B [86]
Harmonin-a1 and harmonin-b1 (To rescue Usher syndrome type 1c)MiceAAV1 and AAV/Anc80L65[87]
GFPMiceAAV1 and exo-AAV1[88]
GFPMiceAAV2/DJ, AAV2/DJ8, AAV2-PHP.B[89]
Utricle (inner and outer cells)GFPMiceAAV9-PHP-B, Anc80L65 and AAV2.7m8[90]
Table 2. AAV-based clinical trials for neurological disorders with AAV for PD, AD, HD, SMA and blindness related diseases. (http://www.genetherapynet.com/clinical-trials.html; last access: 10 February 2022). Abbreviations: hTERT (active telomerase), CM (cisterna magna), STN (subthalamic nucleus), NBM (nucleus basalis of Meynert), TH (thalamus), AADC (aromatic l-amino acid decarboxylase), GDNF (glial cell-derived neurotrophic factor), GAD (glutamic acid decarboxylase), NRTN (neurturin), GBA (lysosomal enzyme glucocerebrosidase), APOE (apolipoprotein E), NGF (nerve growth factor), BDNF (brain-derived neurotrophic factor), HTT (huntingtin), RPGR (retinitis pigmentosa GTPase regulator), MCO-I (multi-characteristic opsin I), ND4 (NADH-ubiquinone oxidoreductase chain 4, IP (intraparenchymal), ICV (intracerebroventricular), IV (intravenous), IT (intrathecal), IC (intracisternal), IM (intramuscular), IVT (intravitreal), SR (subretinal), REP1 (Rab escort protein 1), RPE (retinal pigment epithelium), MERTK (proto-oncogene tyrosine kinase MER), PDE6B (phosphodiesterase 6B), RS1 (retinoschisin 1), Ab (antibody), VEGF (vascular endothelial growth factor), CNGA3 (cyclic nucleotide-gated cation channel alpha-3), CNGB3 (cyclic nucleotide-gated cation channel beta-3).
Table 2. AAV-based clinical trials for neurological disorders with AAV for PD, AD, HD, SMA and blindness related diseases. (http://www.genetherapynet.com/clinical-trials.html; last access: 10 February 2022). Abbreviations: hTERT (active telomerase), CM (cisterna magna), STN (subthalamic nucleus), NBM (nucleus basalis of Meynert), TH (thalamus), AADC (aromatic l-amino acid decarboxylase), GDNF (glial cell-derived neurotrophic factor), GAD (glutamic acid decarboxylase), NRTN (neurturin), GBA (lysosomal enzyme glucocerebrosidase), APOE (apolipoprotein E), NGF (nerve growth factor), BDNF (brain-derived neurotrophic factor), HTT (huntingtin), RPGR (retinitis pigmentosa GTPase regulator), MCO-I (multi-characteristic opsin I), ND4 (NADH-ubiquinone oxidoreductase chain 4, IP (intraparenchymal), ICV (intracerebroventricular), IV (intravenous), IT (intrathecal), IC (intracisternal), IM (intramuscular), IVT (intravitreal), SR (subretinal), REP1 (Rab escort protein 1), RPE (retinal pigment epithelium), MERTK (proto-oncogene tyrosine kinase MER), PDE6B (phosphodiesterase 6B), RS1 (retinoschisin 1), Ab (antibody), VEGF (vascular endothelial growth factor), CNGA3 (cyclic nucleotide-gated cation channel alpha-3), CNGB3 (cyclic nucleotide-gated cation channel beta-3).
DiseaseClinical Trial DurationPhaseTargetAAV SerotypeDelivery RoutesStatusCompany
References
ParkinsonNCT019735432013–2020IAADCAAV2IP in the PutamenCompleted[112] University of California
NCT024185982015–2018I/IIAADCAAV2IP in the PutamenTerminated (another clinical study for regulatory approval is planned)[113] Jichi Medical University
NCT030651922017–2021IAADC01AAV2IP in the PutamenActive, not recruitingNeurocrine Biosciences
NCT035624942018–2022IIAADC02AAV2IPActive, not recruiting[114] Voyager Therapeutics (Neurocrine Biosciences)
NCT037334962018–2026IVAADC01AAV2IP in the PutamenEnrolling, by invitation[112,133,134] Voyager Therapeutics (Neurocrine Biosciences)
NCT041675402020–2022IGDNFAAV2IP in the PutamenRecruitingAsk Bio (formerly Brain Neurotherapy Bio, Inc.)
NCT016215812013–2022IGDNFAAV2IP in the Putamen Completed[114,115,116,117] National Institute of Neurological Disorders and Stroke
NCT006438902008–2010IIGADAAV2IP in the STNTerminated (due to financial reasons)[120,121,122,123] Neurologix, Inc.
NCT001951432003–2005IGADAAV2IP in the STNCompleted[121,122,123,124] Neurologix, Inc.
NCT013015732011–2012IVGADAAV2IP in the STNTerminated (due to financial reasons)Neurologix, Inc.
NCT002528502005–2007INRTNCERE-120 (AAV2)IP in the PutamenCompleted[118] Ceregene
NCT009855172009–2017I/IINRTNCERE-120 (AAV2)IP in the PutamenCompleted[119] Sangamo Therapeutics
NCT004006342006–2008IINRTNCERE-120 (AAV2)IP in the PutamenCompleted[118] Ceregene
NCT041275782020–2027I/IIGBA1AAV9IC in the CMRecruitingPrevail Therapeutics
AlzheimerNCT036340072019–2023IAPOE2AAVrh.10hIC in the CMRecruitingLexeo Therapeutics
NCT041334542019–2021IhTERTN.A.IV and ITThe status was recruiting; currently unknownLibella Gene Therapeutics
NCT000877892004–2010INGFCERE-110 (AAV2)IP in the NBMCompletedCeregene
NCT008768632008–2015IINGFCERE-110 (AAV2)IP in the NBMCompleted[135] Sangamo Therapeutics
NCT050402172021–2025IBDNFAAV2IPRecruiting[136,137]
Huntington’s diseaseNCT048851142021–2024ImiHttAAV1IP in the Putamen and THWithdrawn (novel AAV that may enable IV delivery)Voyager Therapeutics
NCT041204932019–2026I/IImiHttAAV5IP in the striatumRecruiting[138] UniQure Biopharma B.V.
Spinal muscular atrophyNCT033062772017–2019IIISMNAAV9IVCompleted[139] Novartis Gene Therapies
NCT040420252020–2035IVSMNAAV9IVEnrolling by invitationNovartis Gene Therapies
NCT038371842019–2021IIISMNAAV9IVCompletedNovartis Gene Therapies
NCT021229522014–2017IAVXS-101AAV9IVCompleted[140,141]
NCT034612892018–2020IIISMNAAV9IVCompletedNovartis Gene Therapies
NCT033817292017–2024ISMNAAV9ITCompletedNovartis Gene Therapies
Vision-related diseasesLeber’s congenital amaurosisNCT027814802016–2018I/IIRPE65AAV2/5SRCompletedMeiraGTx UK II
NCT014960402011–2014I/IIRPE65AAV2/4SRCompletedNantes University Hospital
NCT005164772007–2018IRPE65AAV2SRCompletedSpark Therapeutics
NCT009996092012–2029IIIRPE65AAV2SRActive, not recruiting[142,143] Spark Therapeutics
NCT008213402016–2017IRPE65AAV2SRCompleted[144,145] Hadassah Medical Organization
NCT004815462007–2026IRPE65AAV2SRActive, not recruiting[146,147] University of Pennsylvania
NCT029468792016–2023I/IIRPE65AAV2/5SRRecruitingMeiraGTx UK II
NCT007499572009–2017I/IIRPE65AAV2SRCompleted[144,148] Applied Genetic Technologies Corp
NCT021613802014–2023IND4AAV2IVTActive, not recruiting[149] University of Miami
NCT026527672016–2019IIIND4AAV2/2IVTCompleted[150] GenSight Biologics
NCT026527802016–2018IIIND4AAV2/2IVTCompleted[150] GenSight Biologics
NCT031532932017–2025II/IIIND4AAV2IVTActive, not recruiting[151,152]
Retinitis pigmentosaNCT014821952011–2019IMERTKAAV2SRCompleted[153] King Khaled Eye Specialist Hospital
NCT031161132017–2020IIIBIIB112 (RPGR)AAV8SREnrolling by invitation[154] NightstaRx, Biogen Company
NCT032528472017–2020I/IIRPGRAAV2/5SRCompletedMeiraGTx UK II
NCT033263362018–2025I/IIGS030-DPAAV2.7m8IVTRecruitingGenSight Biologics
NCT049194732019–2020I/IIvMCO-IAAV2IVTCompletedNanoscope Therapeutics
NCT033281302017–2026I/IIPDE6BAAV2/5SRRecruiting[155,156] Horama
NCT049457722021–2023IIvMCO-010AAV2IVTRecruitingNanoscope Therapeutics
NCT048501182021–2029II/IIIRPGRAAV2SRNot yet recruitingApplied Genetic Technologies
NCT033165602018–2026I/IIRPGRAAV2SRRecruitingApplied Genetic Technologies
NCT043126722019–2023I/IIRPGRAAV2SRRecruitingMeiraGTx UK II
Retinitis pigmentosa/choroideremiaNCT035841652018–2027IIIBIIB111 (REP1) and BIIB112 (RPGR)AAV2 and AAV8SREnrolling by invitationNightstaRx, Biogen Company
ChoroideremiaNCT021613802011–2017I/IIREP1AAV2SRActive, not recruiting[157,158,159,160] University of Oxford
NCT025531352015–2018IIIREP1AAV2SREnrolling by invitation[161] University of Miami
NCT035076862018–2022IIIBIIB111 (REP1)AAV2SREnrolling by invitation[161] NightstaRx, Biogen Company
NCT020773612015–2025IIIREP1AAV2SREnrolling by invitation[147,162] University of Alberta
NCT026715392016–2018IIIREP1AAV2SREnrolling by invitation[163] STZ eyetrial
NCT034960122017–2020IIIBIIB111 (REP1)AAV2SREnrolling by invitation[161] NightstaRx, Biogen Company
NCT023418072015–2022I/IIREP1AAV2SRActive, not recruitingSpark Therapeutics
NCT024076782016–2021IIIREP1AAV2SREnrolling by invitationUniversity of Oxford
AchromatopsiaNCT037584042019–2021I/IICNGA3AAV2/8SRCompletedMeiraGTx UK II
NCT029355172017–2025I/IICNGA3AAV2SRRecruiting[164] Applied Genetic Technologies Corp
NCT025999222016–2025I/IIhCNGB3AAV2SRRecruiting[165] Applied Genetic Technologies Corp
NCT030013102017–2019I/IICNGB3AAV2/8SRCompletedMeiraGTx UK II
NCT032788732017–2024I/IICNGB3 & CNGA3AAV2/8SRActive, not recruitingMeiraGTx UK II
Retinal degenerationNCT006437472007–2014I/IIRPE65AAV2/2SRCompleted[145] University College, London
Retinal dystrophyNCT045163692020–2026IIIRPE65AAV2SRActive, not recruitingNovartis Pharmaceuticals
RetinoschisisNCT024166222015–2023I/IIRS1AAV2IVTActive, not recruitingApplied Genetic Technologies
Age-related macular degenerationNCT037487842018–2022IafliberceptAAV.7m8IVTActive, not recruitingAdverum Biotechnologies
NCT046452122020–2025IVafliberceptAAV.7m8IVTEnrolling by invitationAdverum Biotechnologies
NCT030662582017–2021I/IIRGX-314 (Ab against VEGF)AAV8SRActive, not recruitingRegenxbio
NCT048327242021–2022IIRGX-314AAV8SRRecruitingRegenxbio
Diabetic macular edema/
diabetic retinopathy
NCT044184272020–2022IIafliberceptAAV.7m8IVTActive, not recruitingAdverum Biotechnologies
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Fajardo-Serrano, A.; Rico, A.J.; Roda, E.; Honrubia, A.; Arrieta, S.; Ariznabarreta, G.; Chocarro, J.; Lorenzo-Ramos, E.; Pejenaute, A.; Vázquez, A.; et al. Adeno-Associated Viral Vectors as Versatile Tools for Neurological Disorders: Focus on Delivery Routes and Therapeutic Perspectives. Biomedicines 2022, 10, 746. https://doi.org/10.3390/biomedicines10040746

AMA Style

Fajardo-Serrano A, Rico AJ, Roda E, Honrubia A, Arrieta S, Ariznabarreta G, Chocarro J, Lorenzo-Ramos E, Pejenaute A, Vázquez A, et al. Adeno-Associated Viral Vectors as Versatile Tools for Neurological Disorders: Focus on Delivery Routes and Therapeutic Perspectives. Biomedicines. 2022; 10(4):746. https://doi.org/10.3390/biomedicines10040746

Chicago/Turabian Style

Fajardo-Serrano, Ana, Alberto J. Rico, Elvira Roda, Adriana Honrubia, Sandra Arrieta, Goiaz Ariznabarreta, Julia Chocarro, Elena Lorenzo-Ramos, Alvaro Pejenaute, Alfonso Vázquez, and et al. 2022. "Adeno-Associated Viral Vectors as Versatile Tools for Neurological Disorders: Focus on Delivery Routes and Therapeutic Perspectives" Biomedicines 10, no. 4: 746. https://doi.org/10.3390/biomedicines10040746

APA Style

Fajardo-Serrano, A., Rico, A. J., Roda, E., Honrubia, A., Arrieta, S., Ariznabarreta, G., Chocarro, J., Lorenzo-Ramos, E., Pejenaute, A., Vázquez, A., & Lanciego, J. L. (2022). Adeno-Associated Viral Vectors as Versatile Tools for Neurological Disorders: Focus on Delivery Routes and Therapeutic Perspectives. Biomedicines, 10(4), 746. https://doi.org/10.3390/biomedicines10040746

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop