Translational Applications of Extracorporeal Shock Waves in Dental Medicine: A Literature Review
Abstract
:1. Introduction
2. Literature Review
2.1. Salivary Glands
2.2. Treatment of Temporomandibular Joint Disorders (TMDs)
2.3. Fracture/Bone Defect Healing
2.4. Orthodontics
2.5. Periodontics
2.6. Endodontics
2.7. Desensitization
2.8. Squamous Cell Carcinoma
2.9. Facial Soft Tissue
3. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Cao, L.; Wang, Y.-Q.; Yu, T.; Sun, Y.; He, J.; Zhong, Y.; Li, X.; Sun, X. The Effectiveness and Safety of Extracorporeal Shock Wave Lithotripsy for the Management of Kidney Stones: A Protocol of Systematic Review and Meta-Analysis. Medicine 2020, 99, e21910. [Google Scholar] [CrossRef] [PubMed]
- Simplicio, C.L.; Purita, J.; Murrell, W.; Santos, G.S.; Dos Santos, R.G.; Lana, J.F.S.D. Extracorporeal Shock Wave Therapy Mechanisms in Musculoskeletal Regenerative Medicine. J. Clin. Orthop. Trauma 2020, 11, S309–S318. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, Y.; Ito, K.; Shindo, T.; Hao, K.; Shiroto, T.; Matsumoto, Y.; Takahashi, J.; Matsubara, T.; Yamada, A.; Ozaki, Y.; et al. A Multicenter Trial of Extracorporeal Cardiac Shock Wave Therapy for Refractory Angina Pectoris: Report of the Highly Advanced Medical Treatment in Japan. Heart Vessel. 2019, 34, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Alavi, S.N.R.; Neishaboori, A.M.; Yousefifard, M. Extracorporeal Shockwave Therapy in Spinal Cord Injury, Early to Advance to Clinical Trials? A Systematic Review and Meta-Analysis on Animal Studies. Neuroradiol. J. 2021, 34, 552–561. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Joo, S.Y.; Cho, Y.S.; Hur, G.Y.; Seo, C.H. Effect of Extracorporeal Shock Wave Therapy for Burn Scar Regeneration: A Prospective, Randomized, Double-Blinded Study. Burns 2021, 47, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Cleveland, R.O.; Chitnis, P.V.; McClure, S.R. Acoustic Field of a Ballistic Shock Wave Therapy Device. Ultrasound Med. Biol. 2007, 33, 1327–1335. [Google Scholar] [CrossRef]
- Auersperg, V.; Trieb, K. Extracorporeal Shock Wave Therapy: An Update. EFORT Open Rev. 2020, 5, 584–592. [Google Scholar] [CrossRef]
- Császár, N.B.M.; Angstman, N.B.; Milz, S.; Sprecher, C.M.; Kobel, P.; Farhat, M.; Furia, J.P.; Schmitz, C. Radial Shock Wave Devices Generate Cavitation. PLoS ONE 2015, 10, e0140541. [Google Scholar] [CrossRef] [Green Version]
- Walewicz, K.; Taradaj, J.; Rajfur, K.; Ptaszkowski, K.; Kuszewski, M.T.; Sopel, M.; Dymarek, R. The Effectiveness of Radial Extracorporeal Shock Wave Therapy in Patients with Chronic Low Back Pain: A Prospective, Randomized, Single-Blinded Pilot Study. Clin. Interv. Aging 2019, 14, 1859–1869. [Google Scholar] [CrossRef] [Green Version]
- Tam, K.-F.; Cheung, W.-H.; Lee, K.-M.; Qin, L.; Leung, K.-S. Delayed Stimulatory Effect of Low-Intensity Shockwaves on Human Periosteal Cells. Clin. Orthop. Relat. Res. 2005, 438, 260–265. [Google Scholar] [CrossRef]
- Liao, C.-D.; Xie, G.-M.; Tsauo, J.-Y.; Chen, H.-C.; Liou, T.-H. Efficacy of Extracorporeal Shock Wave Therapy for Knee Tendinopathies and Other Soft Tissue Disorders: A Meta-Analysis of Randomized Controlled Trials. BMC Musculoskelet. Disord. 2018, 19, 278. [Google Scholar] [CrossRef] [PubMed]
- Alshihri, A.; Niu, W.; Kämmerer, P.W.; Al-Askar, M.; Yamashita, A.; Kurisawa, M.; Spector, M. The Effects of Shock Wave Stimulation of Mesenchymal Stem Cells on Proliferation, Migration, and Differentiation in an Injectable Gelatin Matrix for Osteogenic Regeneration. J. Tissue Eng. Regen. Med. 2020, 14, 1630–1640. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.S.; Wang, C.J.; Huang, H.J.; Chung, H.; Chen, R.F.; Yang, K.D. Physical Shock Wave Mediates Membrane Hyperpolarization and Ras Activation for Osteogenesis in Human Bone Marrow Stromal Cells. Biochem. Biophys. Res. Commun. 2001, 287, 648–655. [Google Scholar] [CrossRef] [PubMed]
- Alshihri, A.; Kämmerer, P.W.; Heimes, D.; Niu, W.; Alnassar, T.; Spector, M. Extracorporeal Shock Wave Stimulates Angiogenesis and Collagen Production in Facial Soft Tissue. J. Surg. Res. 2020, 245, 483–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heimes, D.; Wiesmann, N.; Eckrich, J.; Brieger, J.; Mattyasovszky, S.; Proff, P.; Weber, M.; Deschner, J.; Al-Nawas, B.; Kämmerer, P.W. In Vivo Modulation of Angiogenesis and Immune Response on a Collagen Matrix via Extracorporeal Shockwaves. Int. J. Mol. Sci. 2020, 21, 7574. [Google Scholar] [CrossRef] [PubMed]
- Kearney, C.J.; Hsu, H.P.; Spector, M. The Use of Extracorporeal Shock Wave-Stimulated Periosteal Cells for Orthotopic Bone Generation. Tissue Eng. Part A 2012, 18, 1500–1508. [Google Scholar] [CrossRef]
- Sung, P.-H.; Yin, T.-C.; Chai, H.-T.; Chiang, J.Y.; Chen, C.-H.; Huang, C.-R.; Yip, H.-K. Extracorporeal Shock Wave Therapy Salvages Critical Limb Ischemia in B6 Mice through Upregulating Cell Proliferation Signaling and Angiogenesis. Biomedicines 2022, 10, 117. [Google Scholar] [CrossRef]
- Chen, Y.-J.; Wurtz, T.; Wang, C.-J.; Kuo, Y.-R.; Yang, K.D.; Huang, H.-C.; Wang, F.-S. Recruitment of Mesenchymal Stem Cells and Expression of TGF-Beta 1 and VEGF in the Early Stage of Shock Wave-Promoted Bone Regeneration of Segmental Defect in Rats. J. Orthop. Res. 2004, 22, 526–534. [Google Scholar] [CrossRef]
- Chen, R.-F.; Lin, Y.-N.; Liu, K.-F.; Wang, C.-T.; Ramachandran, S.; Wang, C.-J.; Kuo, Y.-R. The Acceleration of Diabetic Wound Healing by Low-Intensity Extracorporeal Shockwave Involves in the GSK-3β Pathway. Biomedicines 2020, 9, 21. [Google Scholar] [CrossRef]
- Falkensammer, F.; Schaden, W.; Krall, C.; Freudenthaler, J.; Bantleon, H.-P. Effect of Extracorporeal Shockwave Therapy (ESWT) on Pulpal Blood Flow after Orthodontic Treatment: A Randomized Clinical Trial. Clin. Oral Investig. 2016, 20, 373–379. [Google Scholar] [CrossRef]
- Pfaff, J.A.; Boelck, B.; Bloch, W.; Nentwig, G.-H. Growth Factors in Bone Marrow Blood of the Mandible With Application of Extracorporeal Shock Wave Therapy. Implant Dent. 2016, 25, 606–612. [Google Scholar] [CrossRef] [PubMed]
- Falkensammer, F.; Arnhart, C.; Krall, C.; Schaden, W.; Freudenthaler, J.; Bantleon, H.-P. Impact of Extracorporeal Shock Wave Therapy (ESWT) on Orthodontic Tooth Movement-a Randomized Clinical Trial. Clin. Oral Investig. 2014, 18, 2187–2192. [Google Scholar] [CrossRef] [PubMed]
- Senel, E.; Ozkan, E.; Bereket, M.C.; Onger, M.E. The Assessment of New Bone Formation Induced by Unfocused Extracorporeal Shock Wave Therapy Applied on Pre-Surgical Phase of Distraction Osteogenesis. Eur. Oral Res. 2019, 53, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-F.; Liu, Y.; Chou, S.-W.; Weng, H. Dose-Related Effects of Radial Extracorporeal Shock Wave Therapy for Knee Osteoarthritis: A Randomized Controlled Trial. J. Rehabil. Med. 2021, 53, 2742. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, X.; Wang, C.; Tang, T.; Chai, Y. The Dose-Effect Relationship in Extracorporeal Shock Wave Therapy: The Optimal Parameter for Extracorporeal Shock Wave Therapy. J. Surg. Res. 2014, 186, 484–492. [Google Scholar] [CrossRef]
- Senyucel, M.F.; Boybeyi, O.; Ayva, S.; Aslan, M.K.; Soyer, T.; Demet, A.I.; Kısa, U.; Basar, M.; Cakmak, M.A. Evaluation of Contralateral Kidney, Liver and Lung after Extracorporeal Shock Wave Lithotripsy in Rabbits. Urolithiasis 2013, 41, 431–436. [Google Scholar] [CrossRef]
- Delius, M.; Enders, G.; Heine, G.; Stark, J.; Remberger, K.; Brendel, W. Biological Effects of Shock Waves: Lung Hemorrhage by Shock Waves in Dogs—Pressure Dependence. Ultrasound Med. Biol. 1987, 13, 61–67. [Google Scholar] [CrossRef]
- Eroglu, M.; Cimentepe, E.; Demirag, F.; Unsal, E.; Unsal, A. The Effects of Shock Waves on Lung Tissue in Acute Period: An in Vivo Study. Urol. Res. 2007, 35, 155–160. [Google Scholar] [CrossRef]
- Liu, H.-M.; Chao, C.-M.; Hsieh, J.-Y.; Jiang, C.-C. Humeral Head Osteonecrosis after Extracorporeal Shock-Wave Treatment for Rotator Cuff Tendinopathy. A Case Report. J. Bone Jt. Surg. Am. 2006, 88, 1353–1356. [Google Scholar] [CrossRef]
- Durst, H.B.; Blatter, G.; Kuster, M.S. Osteonecrosis of the Humeral Head after Extracorporeal Shock-Wave Lithotripsy. J. Bone Jt. Surg. Br. 2002, 84, 744–746. [Google Scholar] [CrossRef]
- Roerdink, R.L.; Dietvorst, M.; van der Zwaard, B.; van der Worp, H.; Zwerver, J. Complications of Extracorporeal Shockwave Therapy in Plantar Fasciitis: Systematic Review. Int. J. Surg. 2017, 46, 133–145. [Google Scholar] [CrossRef] [PubMed]
- Perouansky, M.; Pizov, R. Acute Myocardial Infarction after Extracorporeal Shock-Wave Lithotripsy: A Dilemma of Management. Isr. J. Med. Sci. 1997, 33, 71–74. [Google Scholar] [PubMed]
- Kiessling, M.C.; Milz, S.; Frank, H.-G.; Korbel, R.; Schmitz, C. Radial Extracorporeal Shock Wave Treatment Harms Developing Chicken Embryos. Sci. Rep. 2015, 5, 8281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynolds, L.F.; Kroczak, T.; Pace, K.T. Indications and Contraindications for Shock Wave Lithotripsy and How to Improve Outcomes. Asian J. Urol. 2018, 5, 256–263. [Google Scholar] [CrossRef]
- Terlecki, R.P.; Triest, J.A. A Contemporary Evaluation of the Auditory Hazard of Extracorporeal Shock Wave Lithotripsy. Urology 2007, 70, 898–899. [Google Scholar] [CrossRef]
- Tuncer, M.; Erdogan, B.A.; Yazici, O.; Sahin, C.; Altin, G.; Faydaci, G.; Eryildirim, B.; Sarica, K. Does Extracorporeal Shock Wave Lithotripsy Cause Hearing Impairment? Urology 2014, 84, 12–15. [Google Scholar] [CrossRef]
- Cobden, S.B.; Cobden, A.; Camurcu, Y.; Duman, S.; Ucpunar, H.; Dagistan, H. Does Radial Extracorporeal Shockwave Therapy Impair Hearing Function in Patients with Plantar Fasciitis? Noise Health 2019, 21, 169–172. [Google Scholar] [CrossRef]
- Naguib, M.B.; Badr-El Din, M.; Madian, Y.T.; Iskander, N.M. Identification of the Auditory Hazards of Extracorporeal Shock Wave Lithotripsy. J. Laryngol. Otol. 2002, 116, 1–5. [Google Scholar] [CrossRef]
- Kraus, S.; Weidner, W. Prolonged Exposure to Extracorporeal Shock Wave Lithotripsy and Noise Induced Hearing Damage. J. Urol. 2001, 165, 1984. [Google Scholar] [CrossRef]
- Özkan, E.; Özkan, T.H. Effects of Extracorporeal Shock Wave Therapy in The Maxillofacial Surgery Practice—A Systematic Review. Int. J. Hum. Health Sci. IJHHS 2019, 3, 186. [Google Scholar] [CrossRef]
- Lafont, J.; Graillon, N.; Hadj Saïd, M.; Tardivo, D.; Foletti, J.M.; Chossegros, C. Extracorporeal Lithotripsy of Salivary Gland Stone: A 55 Patients Study. J. Stomatol. Oral Maxillofac. Surg. 2018, 119, 375–378. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wu, J. Treatment of Temporomandibular Joint Disorders by Ultrashort Wave and Extracorporeal Shock Wave: A Comparative Study. Med. Sci. Monit. 2020, 26, e923461-1–e923461-5. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, E.A.E.; Eldibany, M.M.; Melek, L.F.; Abdel-Naby, H.M. Effect of Shockwave Therapy Versus Low-Intensity Pulsed Ultrasound on Bone Healing Of Mandibular Fractures; (A Randomized Clinical Trial). Alex. Dent. J. 2021, 46, 50–58. [Google Scholar] [CrossRef]
- Falkensammer, F.; Rausch-Fan, X.; Arnhart, C.; Krall, C.; Schaden, W.; Freudenthaler, J. Impact of Extracorporeal Shock-Wave Therapy on the Stability of Temporary Anchorage Devices in Adults: A Single-Center, Randomized, Placebo-Controlled Clinical Trial. Am. J. Orthod. Dentofacial Orthop. 2014, 146, 413–422. [Google Scholar] [CrossRef]
- Falkensammer, F.; Rausch-Fan, X.; Schaden, W.; Kivaranovic, D.; Freudenthaler, J. Impact of Extracorporeal Shockwave Therapy on Tooth Mobility in Adult Orthodontic Patients: A Randomized Single-Center Placebo-Controlled Clinical Trial. J. Clin. Periodontol 2015, 42, 294–301. [Google Scholar] [CrossRef]
- Kim, Y.H.; Bang, J.I.; Son, H.J.; Kim, Y.; Kim, J.H.; Bae, H.; Han, S.J.; Yoon, H.J.; Kim, B.S. Protective Effects of Extracorporeal Shockwave on Rat Chondrocytes and Temporomandibular Joint Osteoarthritis; Preclinical Evaluation with in Vivo 99m Tc-HDP SPECT and Ex Vivo Micro-CT. Osteoarthr. Cartil. 2019, 27, 1692–1701. [Google Scholar] [CrossRef] [PubMed]
- Vares, Y.E.; Shtybel, N.V.; Dudash, A.P. Does Extracorporeal Shock Wave Therapy Lead to Restitution of Postoperative Bone Defects On The Mandible? An Experimental Study. Int. J. Med. Dent. 2020, 24, 84–87. [Google Scholar]
- Bereket, C.; Cakir-Özkan, N.; Önger, M.E.; Arici, S. The Effect of Different Doses of Extracorporeal Shock Waves on Experimental Model Mandibular Distraction. J. Craniofacial Surg. 2018, 29, 1666–1670. [Google Scholar] [CrossRef] [PubMed]
- Özkan, E.; Bereket, M.C.; Önger, M.E.; Polat, A.V. The Effect of Unfocused Extracorporeal Shock Wave Therapy on Bone Defect Healing in Diabetics. J. Craniofacial Surg. 2018, 29, 1081–1086. [Google Scholar] [CrossRef] [PubMed]
- Onger, M.E.; Bereket, C.; Sener, I.; Ozkan, N.; Senel, E.; Polat, A.V. Is It Possible to Change of the Duration of Consolidation Period in the Distraction Osteogenesis with the Repetition of Extracorporeal Shock Waves? Med. Oral Patol. Oral Cir. Bucal 2017, 22, e251–e257. [Google Scholar] [CrossRef] [Green Version]
- Ginini, J.G.; Emodi, O.; Sabo, E.; Maor, G.; Shilo, D.; Rachmiel, A. Effects of Timing of Extracorporeal Shock Wave Therapy on Mandibular Distraction Osteogenesis: An Experimental Study in a Rat Model. J. Oral Maxillofac. Surg. Off. J. Am. Assoc. Oral Maxillofac. Surg. 2019, 77, 629–638. [Google Scholar] [CrossRef] [PubMed]
- Özkan, E.; Bereket, M.C.; Şenel, E.; Önger, M.E. Effect of Electrohydraulic Extracorporeal Shockwave Therapy on the Repair of Bone Defects Grafted With Particulate Allografts. J. Craniofacial Surg. 2019, 30, 1298–1302. [Google Scholar] [CrossRef] [PubMed]
- Hazan-Molina, H.; Gabet, Y.; Aizenbud, I.; Aizenbud, N.; Aizenbud, D. Orthodontic Force and Extracorporeal Shock Wave Therapy: Assessment of Orthodontic Tooth Movement and Bone Morphometry in a Rat Model. Arch. Oral Biol. 2022, 134, 105327. [Google Scholar] [CrossRef] [PubMed]
- Demir, O.; Arici, N. Dose-Related Effects of Extracorporeal Shock Waves on Orthodontic Tooth Movement in Rabbits. Sci. Rep. 2021, 11, 3405. [Google Scholar] [CrossRef] [PubMed]
- Atsawasuwan, P.; Chen, Y.; Ganjawalla, K.; Kelling, A.L.; Evans, C.A. Extracorporeal Shockwave Treatment Impedes Tooth Movement in Rats. Head Face Med. 2018, 14, 24. [Google Scholar] [CrossRef] [Green Version]
- Hazan-Molina, H.; Reznick, A.Z.; Kaufman, H.; Aizenbud, D. Periodontal Cytokines Profile under Orthodontic Force and Extracorporeal Shock Wave Stimuli in a Rat Model. J. Periodontal Res. 2015, 50, 389–396. [Google Scholar] [CrossRef]
- Datey, A.; Thaha, C.S.A.; Patil, S.R.; Gopalan, J.; Chakravortty, D. Shockwave Therapy Efficiently Cures Multispecies Chronic Periodontitis in a Humanized Rat Model. Front. Bioeng. Biotechnol. 2019, 7, 382. [Google Scholar] [CrossRef] [Green Version]
- Cai, Z.; Falkensammer, F.; Andrukhov, O.; Chen, J.; Mittermayr, R.; Rausch-Fan, X. Effects of Shock Waves on Expression of IL-6, IL-8, MCP-1, and TNF-α Expression by Human Periodontal Ligament Fibroblasts: An In Vitro Study. Med. Sci. Monit. 2016, 22, 914–921. [Google Scholar] [CrossRef] [Green Version]
- Vatanpour, M.; Toursavadkouhi, S.; Sajjad, S. Comparison of Three Irrigation Methods: SWEEPS, Ultrasonic, and Traditional Irrigation, in Smear Layer and Debris Removal Abilities in the Root Canal, beyond the Fractured Instrument. Photodiagn. Photodyn. Ther. 2021, 37, 102707. [Google Scholar] [CrossRef]
- ha Lee, C.; Jo, S.A.; Kang, K.; Dhont, J.; Ferracane, J.; Lee, I.B. Shockwave Application Enhances the Effect of Dentin Desensitizer. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2021, 37, 113–119. [Google Scholar] [CrossRef]
- Chang, C.-L.; Chen, K.-H.; Sung, P.-H.; Chiang, J.Y.; Huang, C.-R.; Chen, H.-H.; Yip, H.-K. Combined High Energy of Extracorporeal Shock Wave and 5-FU Effectively Suppressed the Proliferation and Growth of Tongue Squamous Cell Carcinoma. Biomed. Pharm. 2021, 142, 112036. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.C.; Zhang, B.R.; Hong, L.; Shi, K.; Wu, W.W.; Yu, J.A. Extracorporeal Shock Wave Therapy with Low-Energy Flux Density Inhibits Hypertrophic Scar Formation in an Animal Model. Int. J. Mol. Med. 2018, 41, 1931–1938. [Google Scholar] [CrossRef] [Green Version]
- Hammett, J.T.; Walker, C. Sialolithiasis; StatPearls Publishing: Treasure Island, FL, USA; SAUSHEC: San Antonio, TX, USA, 2021. [Google Scholar]
- Faizal, B.; Gangadharan, S.; Thankappan, K. Comparison between Sialendoscopy and Conventional Methods in the Treatment of Sialolithiasis. Malays. J. Med. Sci. MJMS 2017, 24, 94–100. [Google Scholar] [CrossRef]
- Shi, H.; Zhao, J.; Hze-Khoong, E.P.; Liu, S.; Yin, X.; Hu, Y. A Gland-Sparing, Intraoral Sialolithotomy Approach for Hilar and Intraparenchymal Multiple Stones in the Submandibular Gland. Sci. Rep. 2020, 10, 8495. [Google Scholar] [CrossRef] [PubMed]
- Gauer, R.L.; Semidey, M.J. Diagnosis and Treatment of Temporomandibular Disorders. Am. Fam. Physician 2015, 91, 378–386. [Google Scholar]
- Lin, S.F.; Chen, Y.J.; Tu, H.P.; Lee, C.L.; Hsieh, C.L.; Wu, W.L.; Chen, C.H. The Effects of Extracorporeal Shock Wave Therapy in Patients with Coccydynia: A Randomized Controlled Trial. PLoS ONE 2015, 10, e0142475. [Google Scholar] [CrossRef] [PubMed]
- Jun, J.H.; Park, G.Y.; Chae, C.S.; Suh, D.C. The Effect of Extracorporeal Shock Wave Therapy on Pain Intensity and Neck Disability for Patients With Myofascial Pain Syndrome in the Neck and Shoulder: A Meta-Analysis of Randomized Controlled Trials. Am. J. Phys. Med. Rehabil. 2021, 100, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Sikora, M.; Chlubek, M.; Grochans, E.; Jurczak, A.; Safranow, K.; Chlubek, D. Analysis of Factors Affecting Quality of Life in Patients Treated for Maxillofacial Fractures. Int. J. Environ. Res. Public Health 2019, 17, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altuntas, E.E.; Oztemur, Z.; Ozer, H.; Muderris, S. Effect of Extracorporeal Shock Waves on Subcondylar Mandibular Fractures. J. Craniofacial Surg. 2012, 23, 1645–1648. [Google Scholar] [CrossRef]
- Amengual-Penafiel, L.; Jara-Sepúlveda, M.; Parada-Pozas, L.; Marchesani-Carrasco, F.; Cartes-Velásquez, R.; Galdames-Gutiérrez, B. Immunomodulation of Osseointegration Through Extracorporeal Shock Wave Therapy. Dent. Hypotheses 2018, 9, 45. [Google Scholar] [CrossRef]
- Song, W.P.; Ma, X.H.; Sun, Y.X.; Zhang, L.; Yao, Y.; Hao, X.Y.; Zeng, J.Y. Extracorporeal Shock Wave Therapy (ESWT) May Be Helpful in the Osseointegration of Dental Implants: A Hypothesis. Med. Hypotheses 2020, 145, 110294. [Google Scholar] [CrossRef] [PubMed]
- Guglielmotti, M.B.; Olmedo, D.G.; Cabrini, R.L. Research on Implants and Osseointegration. Periodontology 2000 2019, 79, 178–189. [Google Scholar] [CrossRef] [PubMed]
- Elisetti, N. Extracorporeal Shock Wave Therapy (ESWT): An Emerging Treatment for Peri-Implantitis. Med. Hypotheses 2021, 150, 110565. [Google Scholar] [CrossRef] [PubMed]
- Prabhuji, M.L.V.; Khaleelahmed, S.; Vasudevalu, S.; Vinodhini, K. Extracorporeal Shock Wave Therapy in Periodontics: A New Paradigm. J. Indian Soc. Periodontol. 2014, 18, 412–415. [Google Scholar] [CrossRef]
Reference | Year | Application Area | Therapeutic Goal | ESW Parameters | Outcomes | Study Type | Adverse Event | |
---|---|---|---|---|---|---|---|---|
1 | [20] | 2015 | Mandibular anterior teeth pulp | Pulpal blood flow | Focused, 1000 impulses, 5 Hz, 0.19–0.23 mJ/mm2 | No identifiable effect | Comparative clinical trial | No side effect or complications were found |
2 | [21] | 2016 | Mandible | Bone marrow cell proliferation and growth factor expression | Focused, 1000 impulses, 4 Hz, 0.25 mJ/mm2, single session | No identifiable effect | Comparative clinical trial | Non-reported |
3 | [22] | 2014 | Mandibular molar area | Orthodontic tooth movement rate, periodontal profile measures | Focused, 1000 impulses, 5 Hz, 0.19–0.23 mJ/mm2 | No significant effect | Comparative clinical trial | No side effect or complications were found |
4 | [41] | 2018 | Sialolithiasis in parotid and submandibular gland | Pain, obstructive syndrome, salivary gland infection, need for future surgery | Focused, 5000 impulses, 0.15–0.19 mJ/mm2, 2–4 sessions | Positive effect, decreased pain, obstruction, infection, and need for surgery | Retrospective clinical study, patient reported | Discomfort, dental/glandular pain, ecchymosis, cutaneous dermabrasion |
5 | [42] | 2020 | TMD/myofascial pain | TMJ/muscular pain, mandibular movement, joint noise, joint press, and disability index | Radial, 1000–1500 impulses, 8 Hz, 4 sessions | Positive effect, decreased pain, improved functional indexes of TMJ and mouth opening limit | Comparative clinical trial | Non-reported |
6 | [43] | 2021 | Mandible | Mandibular fracture | Focused, 4000 impulses, 0.35 mJ/mm2, 5 Hz, single session | Positive effect, pain reduction, increased bone density | Comparative clinical trial | Non-reported |
7 | [44] | 2014 | Mandibular molar area (orthodontic temporary anchorage devices (TADs)) | Stability of orthodontic TADs | Focused, 1000 impulses, 5 Hz, 0.19–0.23 mJ/mm2 | No identifiable effect | Comparative clinical trial | No side effect or complications were found |
8 | [45] | 2015 | Mandibular anterior teeth | Tooth mobility post-orthodontic treatment | Focused, 1000 impulses, 5 Hz, 0.19–0.23 mJ/mm2 | Positive effect, reduced tooth mobility | Comparative clinical trial | No side effect or complications were found |
Reference | Year | Application Area | Therapeutic Goal | ESW Parameters | Outcomes | Study Type | |
---|---|---|---|---|---|---|---|
1 | [14] | 2020 | Skin | Angiogenesis and collagen production | Focused, 1000 impulses, 4 Hz, 0.15 and 0.45 mJ/mm2, single session | Positive effect, induced dermal thickness, neovascularization, and collagen production | In vivo goat model |
2 | [23] | 2019 | Mandible | Distraction osteogenesis | Radial, 500 impulses, 5 Hz, 0.19 mJ/mm2, 3–6 sessions | No significant effect was found in the ESWs group vs. the control in bone density, formation, maturation, and vascularization | In vivo rabbit model |
3 | [46] | 2019 | Rat-derived chondrocytes, temporomandibular joint | Temporomandibular joint osteoarthritis | Focused, 500 impulses, 5 Hz, 0.068 mJ/mm2, 4 sessions | Positive effect, downregulation of pro-inflammatory cytokine expression, chondrocytes apoptosis, and TMJ tissue degradation | In vitro/in vivo rat model |
4 | [47] | 2020 | Mandible | Mandibular bone defect healing | Radial, 500 impulses, 1.2/1.6 pressure bar, 5 Hz, 0.19 mJ/mm2, 3 sessions | Dose-related positive effect on bone healing | In vivo rabbit model |
5 | [48] | 2018 | Mandible | Distraction osteogenesis | Focused, 500/1000 impulses, 5 Hz, 0.19 mJ/mm2, single session | Positive effect on induced bone mineral density and vascularization | In vivo rabbit model |
6 | [49] | 2018 | Mandible | Mandibular bone defect healing | Radial, 500 impulses, 5 Hz, 0.19 mJ/mm2, 3 sessions | No effect in non-diabetic, positive effect in diabetic animals for bone density, new bone formation, connective tissue, and neovascularization | In vivo rat model |
7 | [50] | 2017 | Mandible | Distraction osteogenesis | Focused, 500/1000 impulses, 4 Hz, 0.19 mJ/mm2, 2 sessions | Dose-related effect on consolidation of bone defect, significant induction of bone mineral density, new bone formation, and neovascularization | In vivo rabbit model |
8 | [51] | 2019 | Mandible | Distraction osteogenesis | Radial, 500 impulses, 0.18 mJ/mm2, 1 Hz, single session | Positive effect, induced bone formation, mineralization, mineral density, collagen deposition, and angiogenesis | In vivo rat model |
9 | [52] | 2019 | Mandible | Grafted (allograft) mandibular defects healing | Radial, 200 impulses, 5 Hz, 0.19 mJ/mm2, 3 sessions | Positive effect, accelerated graft healing, higher bone density, more new bone, connective tissue, and vessels formation | In vivo rat model |
10 | [53] | 2022 | Maxillary molars | Orthodontic tooth movement rate | Radial, 1000 impulses, 5 Hz, 0.1 mJ/mm2, single session | Positive effect, increased rate of tooth movement and bone remodeling | In vivo rat model |
11 | [54] | 2021 | Maxillary incisors | Orthodontic tooth movement rate | Radial/Focused, 500/1000 impulses, 5 Hz, 0.19 mJ/mm2, 3 sessions | Dose-related positive effect, increased rate of tooth movement and bone remodeling | In vivo rabbit model |
12 | [55] | 2018 | Maxillary molars | Orthodontic tooth movement rate | Focused, 500 impulses, 5 Hz, 0.1 mJ/mm2, single session | Increased bone cell activities, imbalanced-induced remodeling, hindered tooth movement rated | In vivo rat model |
13 | [56] | 2015 | Maxillary orthodontically activated molars | Periodontal cytokines levels | Radial, 1000 impulses, 5 Hz, 0.1 mJ/mm2, single session | Positive effect, anti-inflammatory effect, reduced periodontal cytokines expression | In vivo rat model |
14 | [56] | 2015 | Maxillary molars | Periodontal cytokines levels | Radial, 1000 impulses, 5 Hz, 0.1 mJ/mm2, single session | No identifiable effect | In vivo rat model |
15 | [57] | 2019 | Oral multispecies biofilm | Periodontitis | Customized shock wave model | Disrupted biofilm structure, significant reduction in multispecies biofilm when accompanied with antimicrobials | In vivo rat model |
16 | [58] | 2016 | Periodontal ligament fibroblasts | Periodontal cytokines levels | Radial, 100/300/500 impulses, 3 Hz, 0.05/0.10/0.19 mJ/mm2, single session | Dose-related effect on cytokine expression and cell viability | In vitro |
17 | [59] | 2021 | Extracted Molars, Root Canal | Efficiency of smear layer and debris removal | Shock wave enhanced emission photoacoustic streaming | Positive effect in removing the debris and smear layer | In vitro |
18 | [60] | 2020 | Extracted molars, root canal | Dentinal tubules seal, desensitizers penetration | Focused, micro-shock wave generator, piezo-electric actuator (100 m stroke, 10,000 G) | Positive effect, reduced dentin permeability, and enhanced dentinal tubule occlusion | In vitro |
19 | [61] | 2021 | Tongue squamous cells | Squamous cell carcinoma proliferation and tumor growth | Focused, 140 impulses. Cells: 0.1, 0.12, 0.14, 0.25, 0.35 mJ/mm2. Animals: 500 impulses, 0.05, 0.1, 0.3, 0.5 mJ/mm2, 4 sessions | Dose-related effect on cell viability, positive effect on suppressing cell proliferation, and inducing tumor cell apoptosis | In vivo mouse model |
20 | [62] | 2018 | Skin | Hypertrophic scar formation | Radial, 500 impulses, 8 Hz, 0.1, 0.2 mJ/mm2, 4 sessions | Positive effect in suppressing the hypertrophic scar formation, reduced scar elevation index, fibroblast density, and a-SMA | In vivo rabbit model |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshihri, A. Translational Applications of Extracorporeal Shock Waves in Dental Medicine: A Literature Review. Biomedicines 2022, 10, 902. https://doi.org/10.3390/biomedicines10040902
Alshihri A. Translational Applications of Extracorporeal Shock Waves in Dental Medicine: A Literature Review. Biomedicines. 2022; 10(4):902. https://doi.org/10.3390/biomedicines10040902
Chicago/Turabian StyleAlshihri, Abdulmonem. 2022. "Translational Applications of Extracorporeal Shock Waves in Dental Medicine: A Literature Review" Biomedicines 10, no. 4: 902. https://doi.org/10.3390/biomedicines10040902
APA StyleAlshihri, A. (2022). Translational Applications of Extracorporeal Shock Waves in Dental Medicine: A Literature Review. Biomedicines, 10(4), 902. https://doi.org/10.3390/biomedicines10040902