Micro-RNAs Predict Response to Systemic Treatments in Metastatic Renal Cell Carcinoma Patients: Results from a Systematic Review of the Literature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Searching Strategy
2.2. Selection of Studies
2.3. Studies and Patient Characteristics
3. Results
3.1. Study Selection
3.2. Liquid Biopsy and miRNAs
3.3. Plasmatic miRNAs
3.4. Exosomal miRNAs
3.5. Urinary miRNAs
4. Role of miRNAs on Cancer Pathophysiology
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Znaor, A.; Lortet-Tieulent, J.; Laversanne, M.; Jemal, A.; Bray, F. International Variations and Trends in Renal Cell Carcinoma Incidence and Mortality. Eur. Urol. 2015, 67, 519–530. [Google Scholar] [CrossRef] [PubMed]
- Chow, W.-H.; Dong, L.M.; Devesa, S.S. Epidemiology and Risk Factors for Kidney Cancer. Nat. Rev. Urol. 2010, 7, 245–257. [Google Scholar] [CrossRef]
- Bandini, M.; Smith, A.; Marchioni, M.; Pompe, R.S.; Martel, T.F.; Cindolo, L.; Montorsi, F.; Shariat, S.F.; Briganti, A.; Kapoor, A.; et al. Adjuvant Therapies in Nonmetastatic Renal-Cell Carcinoma: A Review of the Literature. Clin. Genitourin. Cancer 2018, 16, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, J.J.; Purdue, M.P.; Signoretti, S.; Swanton, C.; Albiges, L.; Schmidinger, M.; Heng, D.Y.; Larkin, J.; Ficarra, V. Renal Cell Carcinoma. Nat. Rev. Dis. Primers 2017, 3, 17009. [Google Scholar] [CrossRef] [PubMed]
- Méjean, A.; Ravaud, A.; Thezenas, S.; Chevreau, C.; Bensalah, K.; Geoffrois, L.; Thiery-Vuillemin, A.; Cormier, L.; Lang, H.; Guy, L.; et al. Sunitinib Alone or After Nephrectomy for Patients with Metastatic Renal Cell Carcinoma: Is There Still a Role for Cytoreductive Nephrectomy? Eur. Urol. 2021, 80, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Benamran, D.; Albiges, L.; Bex, A.; Giannarini, G.; Capitanio, U.; Rouprêt, M. Treatment Options for De Novo Metastatic Clear-Cell Renal Cell Carcinoma: Current Recommendations and Future Insights. Eur. Urol. Oncol. 2022, 5, 125–133. [Google Scholar] [CrossRef]
- Motzer, R.J.; Bacik, J.; Schwartz, L.H.; Reuter, V.; Russo, P.; Marion, S.; Mazumdar, M. Prognostic Factors for Survival in Previously Treated Patients with Metastatic Renal Cell Carcinoma. J. Clin. Oncol. 2004, 22, 454–463. [Google Scholar] [CrossRef] [Green Version]
- Heng, D.Y.C.; Xie, W.; Regan, M.M.; Warren, M.A.; Golshayan, A.R.; Sahi, C.; Eigl, B.J.; Ruether, J.D.; Cheng, T.; North, S.; et al. Prognostic Factors for Overall Survival in Patients with Metastatic Renal Cell Carcinoma Treated with Vascular Endothelial Growth Factor–Targeted Agents: Results from a Large, Multicenter Study. JCO 2009, 27, 5794–5799. [Google Scholar] [CrossRef]
- Marchioni, M.; Kriegmair, M.; Heck, M.; Amiel, T.; Porpiglia, F.; Ceccucci, E.; Campi, R.; Minervini, A.; Mari, A.; Van Bruwaene, S.; et al. Development of a Novel Risk Score to Select the Optimal Candidate for Cytoreductive Nephrectomy Among Patients with Metastatic Renal Cell Carcinoma. Results from a Multi-Institutional Registry (REMARCC). Eur. Urol. Oncol. 2021, 4, 256–263. [Google Scholar] [CrossRef]
- Campi, R.; Kutikov, A. Predictive Models for Patients with a Renal Mass in the Clinical Trenches Continue to Be a Muddy Proposition. Eur. Urol. 2022; in press. [Google Scholar] [CrossRef]
- Rinchai, D.; Verzoni, E.; Huber, V.; Cova, A.; Squarcina, P.; De Cecco, L.; de Braud, F.; Ratta, R.; Dugo, M.; Lalli, L.; et al. Integrated Transcriptional-phenotypic Analysis Captures Systemic Immunomodulation Following Antiangiogenic Therapy in Renal Cell Carcinoma Patients. Clin. Transl. Med. 2021, 11, e434. [Google Scholar] [CrossRef] [PubMed]
- Shamseer, L.; Moher, D.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; The PRISMA-P Group. Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015: Elaboration and Explanation. BMJ 2015, 4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Linares-Espinós, E.; Hernández, V.; Domínguez-Escrig, J.L.; Fernández-Pello, S.; Hevia, V.; Mayor, J.; Padilla-Fernández, B.; Ribal, M.J. Methodology of a Systematic Review. Actas Urol. Esp. 2018, 42, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Krol, J.; Loedige, I.; Filipowicz, W. The Widespread Regulation of MicroRNA Biogenesis, Function and Decay. Nat. Rev. Genet. 2010, 11, 597–610. [Google Scholar] [CrossRef]
- Oliveto, S.; Mancino, M.; Manfrini, N.; Biffo, S. Role of MicroRNAs in Translation Regulation and Cancer. World J. Biol. Chem. 2017, 8, 45–56. [Google Scholar] [CrossRef]
- Mensah, M.; Borzi, C.; Verri, C.; Suatoni, P.; Conte, D.; Pastorino, U.; Orazio, F.; Sozzi, G.; Boeri, M. MicroRNA Based Liquid Biopsy: The Experience of the Plasma MiRNA Signature Classifier (MSC) for Lung Cancer Screening. J. Vis. Exp. 2017, 128, e56326. [Google Scholar] [CrossRef]
- Zhang, J.; Li, S.; Li, L.; Li, M.; Guo, C.; Yao, J.; Mi, S. Exosome and Exosomal MicroRNA: Trafficking, Sorting, and Function. Genom. Proteom. Bioinform. 2015, 13, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Sun, I.O.; Lerman, L.O. Urinary MicroRNA in Kidney Disease: Utility and Roles. Am. J. Physiol. Ren. Physiol. 2019, 316, F785–F793. [Google Scholar] [CrossRef]
- Teixeira, A.L.; Ferreira, M.; Silva, J.; Gomes, M.; Dias, F.; Santos, J.I.; Maurício, J.; Lobo, F.; Medeiros, R. Higher Circulating Expression Levels of MiR-221 Associated with Poor Overall Survival in Renal Cell Carcinoma Patients. Tumour. Biol. 2014, 35, 4057–4066. [Google Scholar] [CrossRef]
- Ralla, B.; Busch, J.; Flörcken, A.; Westermann, J.; Zhao, Z.; Kilic, E.; Weickmann, S.; Jung, M.; Fendler, A.; Jung, K. MiR-9-5p in Nephrectomy Specimens Is a Potential Predictor of Primary Resistance to First-Line Treatment with Tyrosine Kinase Inhibitors in Patients with Metastatic Renal Cell Carcinoma. Cancers 2018, 10, 321. [Google Scholar] [CrossRef] [Green Version]
- Gámez-Pozo, A.; Antón-Aparicio, L.M.; Bayona, C.; Borrega, P.; Gallegos Sancho, M.I.; García-Domínguez, R.; de Portugal, T.; Ramos-Vázquez, M.; Pérez-Carrión, R.; Bolós, M.V.; et al. MicroRNA Expression Profiling of Peripheral Blood Samples Predicts Resistance to First-Line Sunitinib in Advanced Renal Cell Carcinoma Patients. Neoplasia 2012, 14, 1144–1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovacova, J.; Juracek, J.; Poprach, A.; Kopecky, J.; Fiala, O.; Svoboda, M.; Fabian, P.; Radova, L.; Brabec, P.; Buchler, T.; et al. MiR-376b-3p Is Associated with Long-Term Response to Sunitinib in Metastatic Renal Cell Carcinoma Patients. Cancer Genom. Proteom. 2019, 16, 353–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, J.; He, J.; Min, L.; He, Y.; Guan, H.; Wang, J.; Peng, X. Extracellular Vesicles Transmitted MiR-31-5p Promotes Sorafenib Resistance by Targeting MLH1 in Renal Cell Carcinoma. Int. J. Cancer 2020, 146, 1052–1063. [Google Scholar] [CrossRef] [PubMed]
- Dias, F.; Teixeira, A.L.; Nogueira, I.; Morais, M.; Maia, J.; Bodo, C.; Ferreira, M.; Silva, A.; Vilhena, M.; Lobo, J.; et al. Extracellular Vesicles Enriched in Hsa-MiR-301a-3p and Hsa-MiR-1293 Dynamics in Clear Cell Renal Cell Carcinoma Patients: Potential Biomarkers of Metastatic Disease. Cancers 2020, 12, 1450. [Google Scholar] [CrossRef]
- Li, G.-M. Mechanisms and Functions of DNA Mismatch Repair. Cell Res. 2008, 18, 85–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Outeiro-Pinho, G.; Barros-Silva, D.; Aznar, E.; Sousa, A.-I.; Vieira-Coimbra, M.; Oliveira, J.; Gonçalves, C.S.; Costa, B.M.; Junker, K.; Henrique, R.; et al. MicroRNA-30a-5pme: A Novel Diagnostic and Prognostic Biomarker for Clear Cell Renal Cell Carcinoma in Tissue and Urine Samples. J. Exp. Clin. Cancer Res. 2020, 39, 98. [Google Scholar] [CrossRef]
- Huang, W.; Wu, X.; Xiang, S.; Qiao, M.; Cen, X.; Pan, X.; Huang, X.; Zhao, Z. Regulatory Mechanism of MiR-20a-5p Expression in Cancer. Cell Death Discov. 2022, 8, 262. [Google Scholar] [CrossRef]
- Sayad, A.; Najafi, S.; Kashi, A.H.; Hosseini, S.J.; Akrami, S.M.; Taheri, M.; Ghafouri-Fard, S. Circular RNAs in Renal Cell Carcinoma: Functions in Tumorigenesis and Diagnostic and Prognostic Potentials. Pathol. Res. Pract. 2022, 229, 153720. [Google Scholar] [CrossRef]
- Si, W.; Shen, J.; Zheng, H.; Fan, W. The Role and Mechanisms of Action of MicroRNAs in Cancer Drug Resistance. Clin. Epigenet. 2019, 11, 25. [Google Scholar] [CrossRef]
- Jiang, X.; Cheng, Y.; Hu, C.; Zhang, A.; Ren, Y.; Xu, X. MicroRNA-221 Sensitizes Chronic Myeloid Leukemia Cells to Imatinib by Targeting STAT5. Leuk Lymphoma 2019, 60, 1709–1720. [Google Scholar] [CrossRef]
- Tian, F.; Wang, P.; Lin, D.; Dai, J.; Liu, Q.; Guan, Y.; Zhan, Y.; Yang, Y.; Wang, W.; Wang, J.; et al. Exosome-Delivered MiR-221/222 Exacerbates Tumor Liver Metastasis by Targeting SPINT1 in Colorectal Cancer. Cancer Sci 2021, 112, 3744–3755. [Google Scholar] [CrossRef] [PubMed]
- Catto, J.W.F.; Alcaraz, A.; Bjartell, A.S.; De Vere White, R.; Evans, C.P.; Fussel, S.; Hamdy, F.C.; Kallioniemi, O.; Mengual, L.; Schlomm, T.; et al. MicroRNA in Prostate, Bladder, and Kidney Cancer: A Systematic Review. Eur. Urol. 2011, 59, 671–681. [Google Scholar] [CrossRef] [PubMed]
- Jia, C.-Y.; Xiang, W.; Liu, J.-B.; Jiang, G.-X.; Sun, F.; Wu, J.-J.; Yang, X.-L.; Xin, R.; Shi, Y.; Zhang, D.-D.; et al. MiR-9-1 Suppresses Cell Proliferation and Promotes Apoptosis by Targeting UHRF1 in Lung Cancer. Technol. Cancer Res. Treat. 2021, 20, 15330338211041192. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Zhang, Y.; Lu, Y.; Guo, H.; Dong, Z.; Chen, Q.; Zhang, X.; Shen, W.; Chen, W.; Wang, X. Overexpression of MicroRNA-9 Enhances Cisplatin Sensitivity in Hepatocellular Carcinoma by Regulating EIF5A2-Mediated Epithelial-Mesenchymal Transition. Int. J. Biol. Sci. 2020, 16, 827–837. [Google Scholar] [CrossRef]
- Sur, D.; Cainap, C.; Burz, C.; Havasi, A.; Chis, I.C.; Vlad, C.; Milosevic, V.; Balacescu, O.; Irimie, A. The Role of MiRNA -31-3p and MiR-31-5p in the Anti-EGFR Treatment Efficacy of Wild-Type K-RAS Metastatic Colorectal Cancer. Is It Really the next Best Thing in MiRNAs? J. BUON 2019, 24, 1739–1746. [Google Scholar]
- Cinque, A.; Vago, R.; Trevisani, F. Circulating RNA in Kidney Cancer: What We Know and What We Still Suppose. Genes 2021, 12, 835. [Google Scholar] [CrossRef]
- Redova, M.; Poprach, A.; Nekvindova, J.; Iliev, R.; Radova, L.; Lakomy, R.; Svoboda, M.; Vyzula, R.; Slaby, O. Circulating MiR-378 and MiR-451 in Serum Are Potential Biomarkers for Renal Cell Carcinoma. J. Transl. Med. 2012, 10, 55. [Google Scholar] [CrossRef] [Green Version]
- Dias, F.; Teixeira, A.L.; Ferreira, M.; Adem, B.; Bastos, N.; Vieira, J.; Fernandes, M.; Sequeira, M.I.; Maurício, J.; Lobo, F.; et al. Plasmatic MiR-210, MiR-221 and MiR-1233 Profile: Potential Liquid Biopsies Candidates for Renal Cell Carcinoma. Oncotarget 2017, 8, 103315–103326. [Google Scholar] [CrossRef]
- Fasanella, D.; Antonaci, A.; Esperto, F.; Scarpa, R.M.; Ferro, M.; Schips, L.; Marchioni, M. Potential Prognostic Value of MiRNAs as Biomarker for Progression and Recurrence after Nephrectomy in Renal Cell Carcinoma: A Literature Review. Diagnosis 2021, 9, 157–165. [Google Scholar] [CrossRef]
- Bex, A.; Mulders, P.; Jewett, M.; Wagstaff, J.; van Thienen, J.V.; Blank, C.U.; van Velthoven, R.; del Pilar Laguna, M.; Wood, L.; van Melick, H.H.E.; et al. Comparison of Immediate vs Deferred Cytoreductive Nephrectomy in Patients with Synchronous Metastatic Renal Cell Carcinoma Receiving Sunitinib: The SURTIME Randomized Clinical Trial. JAMA Oncol. 2019, 5, 164. [Google Scholar] [CrossRef]
- Motzer, R.J.; Escudier, B.; McDermott, D.F.; Arén Frontera, O.; Melichar, B.; Powles, T.; Donskov, F.; Plimack, E.R.; Barthélémy, P.; Hammers, H.J.; et al. Survival Outcomes and Independent Response Assessment with Nivolumab plus Ipilimumab versus Sunitinib in Patients with Advanced Renal Cell Carcinoma: 42-Month Follow-up of a Randomized Phase 3 Clinical Trial. J. Immunother. Cancer 2020, 8, e000891. [Google Scholar] [CrossRef]
- Bedke, J.; Albiges, L.; Capitanio, U.; Giles, R.H.; Hora, M.; Lam, T.B.; Ljungberg, B.; Marconi, L.; Klatte, T.; Volpe, A.; et al. The 2021 Updated European Association of Urology Guidelines on Renal Cell Carcinoma: Immune Checkpoint Inhibitor–Based Combination Therapies for Treatment-Naive Metastatic Clear-Cell Renal Cell Carcinoma Are Standard of Care. European Urology 2021, 80, 393–397. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Di, W.; Dong, Y.; Lu, G.; Yu, J.; Li, J.; Li, P. High Serum MiR-183 Level Is Associated with Poor Responsiveness of Renal Cancer to Natural Killer Cells. Tumour. Biol. 2015, 36, 9245–9249. [Google Scholar] [CrossRef] [PubMed]
- Zhai, W.; Li, S.; Zhang, J.; Chen, Y.; Ma, J.; Kong, W.; Gong, D.; Zheng, J.; Xue, W.; Xu, Y. Sunitinib-Suppressed MiR-452-5p Facilitates Renal Cancer Cell Invasion and Metastasis through Modulating SMAD4/SMAD7 Signals. Mol. Cancer 2018, 17, 157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jingushi, K.; Uemura, M.; Ohnishi, N.; Nakata, W.; Fujita, K.; Naito, T.; Fujii, R.; Saichi, N.; Nonomura, N.; Tsujikawa, K.; et al. Extracellular Vesicles Isolated from Human Renal Cell Carcinoma Tissues Disrupt Vascular Endothelial Cell Morphology via Azurocidin. Int. J. Cancer 2018, 142, 607–617. [Google Scholar] [CrossRef] [Green Version]
- Fujii, N.; Hirata, H.; Ueno, K.; Mori, J.; Oka, S.; Shimizu, K.; Kawai, Y.; Inoue, R.; Yamamoto, Y.; Matsumoto, H.; et al. Extracellular MiR-224 as a Prognostic Marker for Clear Cell Renal Cell Carcinoma. Oncotarget 2017, 8, 109877–109888. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Zhao, A.; Péoch, M.; Cottier, M.; Mottet, N. Detection of Urinary Cell-Free MiR-210 as a Potential Tool of Liquid Biopsy for Clear Cell Renal Cell Carcinoma. Urol. Oncol. 2017, 35, 294–299. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar]
First Author (Year) | Country (Study Design) | miRNA | Patients’ Characteristics | Main Results |
---|---|---|---|---|
Texeira et al. (2014) | Portugal (Retrospective) | miR-221 | 77 RCC patients | miR-221 levels were higher in the plasma of metastatic patients than patients with no metastasis; high expression correlated. |
Ralla et al. (2018) | Germany (Retrospective) | miR9-5-p | 60 mRCC patients treated with nephrectomy + TKIs (32 M+ at diagnosis) | A total of 41 (68.3%) patients were classified as responders. Overexpression of miR-9-5p and under-expression of miR-489-3p statistically significantly associated with the TKI non-responder status. |
Gomez-Pozo et al. (2012) | Spain (Prospective) | miR-192 miR193-3p miR-501-3p | 38 mRCC patients treated with sunitinib | miR-192, miR-193-3p, and miR501-3p have the ability to identify poor responder patients to TKI therapy. |
Kovakova et al. (2019) | Czech Republic (Retrospective) | miR-376b-3p | 179 mRCC | Gradually decreasing levels of miR-376b-3p were observed in those who were long-responders to those classified as non-responders. miR-376b predicted the response to sunitinib therapy and identified long-term responsive patients vs. non-responders. |
First Author (Year) | Country (Study Design) | miRNA | Patients’ Characteristics | Main Results |
---|---|---|---|---|
He et al. (2020) | China (Retrospective) | miR-31-5p | - | Higher miR-35-5p. Increased resistance to TKI therapy (sorafenib). |
Dias et al. (2020) | Portugal (Prospective) | miR-301a-3p miR-1293 | 69 RCC (37 M+) | Localized disease vs. metastatic; higher miR-301a-3p and lower miR-1293. |
First Author (Year) | Country (Study Design) | miRNA | Patients’ Characteristics | Main Results |
---|---|---|---|---|
Outeiro-Pinho et al. (2020) | Portugal (Prospective and retrospective multicenter) | miR-30a-5p | Prospective cohort: 53 ccRCC, 57 AC *. Retrospective cohort: 171 ccRCC, 85 AC *. | Higher miR-30a-5p levels independently predicted metastatic dissemination and survival |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monti, M.; Lunardini, S.; Magli, I.A.; Campi, R.; Primiceri, G.; Berardinelli, F.; Amparore, D.; Terracciano, D.; Lucarelli, G.; Schips, L.; et al. Micro-RNAs Predict Response to Systemic Treatments in Metastatic Renal Cell Carcinoma Patients: Results from a Systematic Review of the Literature. Biomedicines 2022, 10, 1287. https://doi.org/10.3390/biomedicines10061287
Monti M, Lunardini S, Magli IA, Campi R, Primiceri G, Berardinelli F, Amparore D, Terracciano D, Lucarelli G, Schips L, et al. Micro-RNAs Predict Response to Systemic Treatments in Metastatic Renal Cell Carcinoma Patients: Results from a Systematic Review of the Literature. Biomedicines. 2022; 10(6):1287. https://doi.org/10.3390/biomedicines10061287
Chicago/Turabian StyleMonti, Martina, Susanna Lunardini, Igino Andrea Magli, Riccardo Campi, Giulia Primiceri, Francesco Berardinelli, Daniele Amparore, Daniela Terracciano, Giuseppe Lucarelli, Luigi Schips, and et al. 2022. "Micro-RNAs Predict Response to Systemic Treatments in Metastatic Renal Cell Carcinoma Patients: Results from a Systematic Review of the Literature" Biomedicines 10, no. 6: 1287. https://doi.org/10.3390/biomedicines10061287
APA StyleMonti, M., Lunardini, S., Magli, I. A., Campi, R., Primiceri, G., Berardinelli, F., Amparore, D., Terracciano, D., Lucarelli, G., Schips, L., Ferro, M., & Marchioni, M. (2022). Micro-RNAs Predict Response to Systemic Treatments in Metastatic Renal Cell Carcinoma Patients: Results from a Systematic Review of the Literature. Biomedicines, 10(6), 1287. https://doi.org/10.3390/biomedicines10061287