Ultra-Fine Polyethylene Hernia Meshes Improve Biocompatibility and Reduce Intraperitoneal Adhesions in IPOM Position in Animal Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Specimens
2.2. Animal Experiments
2.3. Surgical Procedures
2.3.1. Rat Surgeries
2.3.2. Rabbit Surgeries
2.4. Histology and Immunohistochemistry
2.5. Adhesion Score
2.6. Statistical Analysis
3. Results
3.1. Mesh Characterization
3.2. Biocompatibility Testing in Rats
3.2.1. Foreign Body Granuloma
3.2.2. Immunohistology Analysis
3.3. Adhesion Assessment in Rabbits
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liang, M.K.; Holihan, J.L.; Itani, K.; Alawadi, Z.M.; Gonzalez, J.R.; Askenasy, E.P.; Ballacer, C.; Chong, H.S.; Goldblatt, M.I.; Greenbers, J.A.; et al. Ventral hernia management: Expert consensus guided by systematic review. Ann. Surg. 2017, 265, 80–89. [Google Scholar] [CrossRef]
- Luijendijk, R.W.; Hop, W.C.; van den Tol, M.P.; de Lange, D.C.; Braaksma, M.M.; IJzermans, J.N.; Boelhouwer, R.U.; de Vries, B.C.; Salu, M.K.; Wereldsma, J.C.; et al. A comparison of suture repair with mesh repair for incisional hernia. N. Engl. J. Med. 2000, 343, 392–398. [Google Scholar] [CrossRef]
- Zhu, L.M.; Schuster, P.; Klinge, U. Mesh implants: An overview of crucial mesh parameters. World J. Gastrointest. Surg. 2015, 7, 226–236. [Google Scholar] [CrossRef]
- López-Cano, M.; Martin-Dominguez, L.A.; Pereira, J.A.; Armengol-Carrasco, M.; García-Alamino, J.M. Balancing mesh-related complications and benefits in primary ventral and incisional hernia surgery. A meta-analysis and trial sequential analysis. PLoS ONE 2018, 13, e0197813. [Google Scholar] [CrossRef]
- Winny, M.; Grethe, L.; Maegel, L.; Jonigk, D.; Lippmann, T.; Klempnauer, J.; Poehnert, D. Impairment of the peritoneal surface as a decisive factor for intestinal adhesions in intraperitoneal onlay mesh surgery—Introducing a new rat model. Int. J. Med. Sci. 2016, 13, 108–112. [Google Scholar] [CrossRef] [Green Version]
- Sauerland, S.; Walgenbach, M.; Habermalz, B.; Seiler, C.M.; Miserez, M. Laparoscopic versus open surgical techniques for ventral or incisional hernia repair. Cochrane Database Syst. Rev. 2011, 3, CD007781. [Google Scholar] [CrossRef]
- Köckerling, F.; Simon, T.; Hukauf, M.; Hellinger, A.; Fortelny, R.; Reinpold, W.; Bittner, R. The importance of registries in the postmarketing surveillance of surgical meshes. Ann. Surg. 2018, 268, 1097–1104. [Google Scholar] [CrossRef]
- Baylón, K.; Rodríguez-Camarillo, P.; Elías-Zúñiga, A.; Díaz-Elizondo, J.A.; Gilkerson, R.; Lozano, K. Past, present and future of surgical meshes: A review. Membranes 2017, 7, 47. [Google Scholar] [CrossRef]
- Todros, S.; Pavan, P.G.; Natali, A.N. Synthetic surgical meshes used in abdominal wall surgery: Part I—Materials and structural conformation. J. Biomed. Mater. Res. Part B Appl. Biomater. 2017, 105, 689–699. [Google Scholar] [CrossRef]
- Gomez-Gil, V.; Rodriguez, M.; Garcia-Moreno Nisa, F.; Perez-Kohler, B.; Pascual, G. Evaluation of synthetic reticular hybrid meshes designed for intraperitoneal abdominal wall repair: Preclinical and in vitro behavior. PLoS ONE 2019, 14, e0213005. [Google Scholar] [CrossRef]
- Conze, J.; Rosch, R.; Klinge, U.; Weiss, C.; Anurov, M.; Titkowa, S.; Oettinger, A.; Schumpelick, V. Polypropylene in the intra-abdominal position: Influence of pore size and surface area. Hernia 2004, 8, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Zinther, N.B.; Wara, P.; Friis-Andersen, H. Intraperitoneal onlay mesh: An experimental study of adhesion formation in a sheep model. Hernia 2010, 14, 283–289. [Google Scholar] [CrossRef]
- Eickhoff, R.M.; Bolle, T.; Kossel, K.; Heise, D.; Kroh, A.; Lambertz, A.; Blaeser, A.; Gries, T.; Jockenhoevel, S.; Neumann, U.P.; et al. Improved biocompatibility of profiled sutures through lower macrophages adhesion. J. Biomed. Mater. Res. Part B Appl. Biomater. 2019, 107, 1772–1778. [Google Scholar] [CrossRef] [PubMed]
- Lambertz, A.; van den Hil, L.C.L.; Schöb, D.S.; Binnebösel, M.; Kroh, A.; Klinge, U.; Neumann, U.P.; Klink, C.D. Analysis of adhesion formation of a new elastic thermoplastic polyurethane (TPU) mesh in comparison to polypropylene (PP) meshes in IPOM position. J. Mech. Behav. Biomed. Mater. 2016, 53, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Diamond, M.P.; Linsky, C.B.; Cunningham, T.; Constantine, B.; Dizerega, G.S.; Decherney, A.H. A model for sidewall adhesions in the rabbit: Reduction by an absorbable barrier. Microsurgery 1987, 8, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Tanasescu, C.; Moisin, A.; Mihetiu, A.; Serban, D.; Costache, A.; Bratu, D.G. The use of polypropylene mesh in inguinal hernia surgery: A retrospective study. Exp. Ther. Med. 2021, 22, 1193. [Google Scholar] [CrossRef]
- Sanders, J.E.; Stiles, C.E.; Hayes, C.L. Tissue response to single-polymer fibers of varying diameters: Evaluation of fibrous encapsulation and macrophage density. J. Biomed. Mater. Res. 2000, 52, 231–237. [Google Scholar] [CrossRef]
- Sanders, J.E.; Bale, S.D.; Neumann, T. Tissue response to microfibers of different polymers: Polyester, polyethylene, polylactic acid, and polyurethane. J. Biomed. Mater. Res. 2002, 62, 222–227. [Google Scholar] [CrossRef]
- Gómez-Gil, V.; Pascual, G.; Bellón, J.M. Biomaterial implants in abdominal wall hernia repair: A review on the importance of the peritoneal interface. Processes 2019, 7, 105. [Google Scholar] [CrossRef] [Green Version]
- Fatehi Hassanabad, A.; Zarzycki, A.N.; Jeon, K.; Deniset, J.F.; Fedak, P.W.M. Post-operative adhesions: A comprehensive review of mechanisms. Biomedicines 2021, 9, 867. [Google Scholar] [CrossRef]
- D’Amore, L.; Ceci, F.; Mattia, S.; Fabbi, M.; Negro, P.; Gossetti, F. Adhesion prevention in ventral hernia repair: An experimental study comparing three lightweight porous meshes recommended for intraperitoneal use. Hernia 2017, 21, 115–123. [Google Scholar] [CrossRef] [PubMed]
Mesh | Bard® Soft Mesh | Ultra-Fine PET | Fine PET | PP Monofilament |
---|---|---|---|---|
Material | Polypropylene | PET | PET | Polypropylene |
Filament size (dtex) | 105 | 90 | 90 | 108 |
Filament count | 1 | 700 | 72 | 1 |
Ø single filament (µm) | 121 | 3 | 11 | 122 |
Parameter | Score Points |
---|---|
Extent of site involvement | |
None | 0 |
<25% | 1 |
<50% | 2 |
<75% | 3 |
<100% | 4 |
Type | |
None | 0 |
Filmy, transparent, avascular | 1 |
Opaque, translucent, avascular | 2 |
Opaque, capillaries present | 3 |
Opaque, larger vessels present | 4 |
Tenacity | |
None | 0 |
Adhesion falls apart | 1 |
Adhesion lysed with traction | 2 |
Adhesion requiring sharp dissection | 3 |
Possible total | 11 |
Mesh Type | PP | Bard Soft | FPET | UFPET |
---|---|---|---|---|
After 7 days | ||||
IFBG (µm) | 60.7 ± 18.7 | 53.4 ± 18.0 | 45.0 ± 9.8 | 36.1 ± 8.0 |
OFBG (µm) | 163.9 ± 35.1 | 142.7 ± 42.2 | 108.6 ± 32.0 | 99.0 ± 48.3 |
After 21 days | ||||
IFBG (µm) | 52.1 ± 12.4 | 44.9 ± 18.0 | 45.0 ± 9.8 | 33.3 ± 14.25 |
OFBG (µm) | 170.8 ± 25.8 | 167.1 ± 47.6 | 152.4 ± 40.2 | 86.0 ± 40.2 |
Mesh Type | PP | Bard Soft | FPET | UFPET |
---|---|---|---|---|
7 days | ||||
CD 68+ | 8.93 ± 3.72% | 8.76 ± 3.39% | 10.5 ± 4.13% | 13.2 ± 5.5% |
CD 3+ | 2.52 ± 1.84% | 1.83 ± 1.63% | 1.97 ± 0.99% | 1.33 ± 0.715% |
KI 67+ | 1.77 ± 1.58% | 1.75 ± 1.25% | 1.12 ± 0.68% | 2.37 ± 2.16% |
CD 45+ | 2.6 ± 1.42% | 3.05 ± 1.41% | 2.31 ± 1.27% | 2.5 ± 1.48% |
21 days | ||||
CD 68+ | 11.9 ± 3.55% | 11.7 ± 2.65% | 14.7 ± 3.24% | 11.5 ± 4.25% |
CD 3+ | 4.65 ± 2.27% | 4.88 ± 2.18% | 5.44 ± 4.1% | 5.44 ± 4.1% |
KI 67+ | 4.16 ± 2.02% | 5.05 ± 2.21% | 4.1 ± 3.45% | 4.79 ± 2.93% |
CD 45+ | 5.52 ± 1.88% | 4.54 ± 2.69% | 5.07 ± 2.1% | 5.07 ± 2.14% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Helmedag, M.J.; Heise, D.; Eickhoff, R.M.; Schmitz, S.M.; Mechelinck, M.; Emonts, C.; Bolle, T.; Gries, T.; Neumann, U.P.; Klink, C.D.; et al. Ultra-Fine Polyethylene Hernia Meshes Improve Biocompatibility and Reduce Intraperitoneal Adhesions in IPOM Position in Animal Models. Biomedicines 2022, 10, 1294. https://doi.org/10.3390/biomedicines10061294
Helmedag MJ, Heise D, Eickhoff RM, Schmitz SM, Mechelinck M, Emonts C, Bolle T, Gries T, Neumann UP, Klink CD, et al. Ultra-Fine Polyethylene Hernia Meshes Improve Biocompatibility and Reduce Intraperitoneal Adhesions in IPOM Position in Animal Models. Biomedicines. 2022; 10(6):1294. https://doi.org/10.3390/biomedicines10061294
Chicago/Turabian StyleHelmedag, Marius J., Daniel Heise, Roman M. Eickhoff, Sophia M. Schmitz, Mare Mechelinck, Caroline Emonts, Tim Bolle, Thomas Gries, Ulf Peter Neumann, Christian Daniel Klink, and et al. 2022. "Ultra-Fine Polyethylene Hernia Meshes Improve Biocompatibility and Reduce Intraperitoneal Adhesions in IPOM Position in Animal Models" Biomedicines 10, no. 6: 1294. https://doi.org/10.3390/biomedicines10061294
APA StyleHelmedag, M. J., Heise, D., Eickhoff, R. M., Schmitz, S. M., Mechelinck, M., Emonts, C., Bolle, T., Gries, T., Neumann, U. P., Klink, C. D., & Lambertz, A. (2022). Ultra-Fine Polyethylene Hernia Meshes Improve Biocompatibility and Reduce Intraperitoneal Adhesions in IPOM Position in Animal Models. Biomedicines, 10(6), 1294. https://doi.org/10.3390/biomedicines10061294