Laboratory Predictors of Prognosis in Cardiogenic Shock Complicating Acute Myocardial Infarction
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Creatinine Clearance
3.2. Glucose Serum Levels
3.3. Lactate Blood Concentration
3.4. Hemoglobin Levels
3.5. Hypoalbuminemia
3.6. N-Terminal Pro-Brain Natriuretic Peptide
3.7. Systemic Inflammation
3.8. Novel Biomarkers
3.8.1. Activated Protein C
3.8.2. Catalytic Iron
3.8.3. Osteoprotegerin and Growth Differentiation Factor 15
3.8.4. Fibroblast Growth Factor 23
3.8.5. Angiopoietin-2
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Harjola, V.-P.; Lassus, J.; Sionis, A.; Køber, L.; Tarvasmäki, T.; Spinar, J.; Parissis, J.; Banaszewski, M.; Silva-Cardoso, J.; Carubelli, V.; et al. Clinical picture and risk prediction of short-term mortality in cardiogenic shock: clinical picture and outcome of cardiogenic shock. Eur. J. Heart Fail. 2015, 17, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Hashmi, K.A.; Abbas, K.; Hashmi, A.A.; Irfan, M.; Edhi, M.M.; Ali, N.; Khan, A. In-hospital mortality of patients with cardiogenic shock after acute myocardial infarction; impact of early revascularization. BMC Res. Notes 2018, 11, 721. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [PubMed]
- Hochman, J.S.; Sleeper, L.A.; Webb, J.G.; Sanborn, T.A.; White, H.D.; Talley, J.D.; Christopher, E.B.; Jacobs, A.K.; Slater, J.N.; Col, J.; et al. Early revascularization in acute myocardial infarction complicated by cardiogenic shock. SHOCK investigators. Should we emergently revascularize occluded coronaries for cardiogenic shock. N. Engl. J. Med. 1999, 341, 625–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thiele, H.; Zeymer, U.; Neumann, F.-J.; Ferenc, M.; Olbrich, H.-G.; Hausleiter, J.; Richardt, G.; Hennersdorf, M.; Empen, K.; Fuernau, G.; et al. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N. Engl. J. Med. 2012, 367, 1287–1296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tehrani, B.N.; Truesdell, A.G.; Psotka, M.A.; Rosner, C.; Singh, R.; Sinha, S.S.; Damluji, A.A.; Batchelor, W.B. A Standardized and Comprehensive Approach to the Management of Cardiogenic Shock. JACC. Heart Fail. 2020, 8, 879–891. [Google Scholar] [CrossRef]
- Baran, D.A.; Grines, C.L.; Bailey, S.; Burkhoff, D.; Hall, S.A.; Henry, T.D.; Hollenberg, S.M.; Kapur, N.K.; O'Neill, W.; Ornato, J.P.; et al. SCAI clinical expert consensus statement on the classification of cardiogenic shock. Catheter. Cardiovasc. Interv. 2019, 94, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Fuernau, G.; Poenisch, C.; Eitel, I.; Denks, D.; de Waha, S.; Pöss, J.; Heine, G.H.; Desch, S.; Schuler, G.; Adams, V.; et al. Prognostic impact of established and novel renal function biomarkers in myocardial infarction with cardiogenic shock: A biomarker substudy of the IABP-SHOCK II-trial. Int. J. Cardiol. 2015, 191, 159–166. [Google Scholar] [CrossRef]
- Katz, J.N.; Stebbins, A.L.; Alexander, J.H.; Reynolds, H.; Pieper, K.S.; Ruzyllo, W.; Werdan, K.; Geppert, A.; Dzavik, V.; Van de Werf, F.; et al. TRIUMPH Investigators. Predictors of 30-day mortality in patients with refractory cardiogenic shock following acute myocardial infarction despite a patent infarct artery. Am. Heart J. 2009, 158, 680–687. [Google Scholar] [CrossRef]
- Klein, L.W.; Shaw, R.E.; Krone, R.J.; Brindis, R.G.; Anderson, H.V.; Block, P.C.; McKay, C.R.; Hewitt, K.; Weintraub, W.S. Mortality after emergent percutaneous coronary intervention in cardiogenic shock secondary to acute myocardial infarction and usefulness of a mortality prediction model. Am. J. Cardiol. 2005, 96, 35–41. [Google Scholar] [CrossRef]
- Bataille, Y.; Déry, J.-P.; Larose, É.; Déry, U.; Costerousse, O.; Rodés-Cabau, J.; Gleeton, O.; Proulx, G.; Abdelaal, E.; Machaalany, J.; et al. Deadly association of cardiogenic shock and chronic total occlusion in acute ST-elevation myocardial infarction. Am. Heart J. 2012, 164, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Sleeper, L.A.; Reynolds, H.; White, H.D.; Webb, J.G.; Džavík, V.; Hochman, J. A severity scoring system for risk assessment of patients with cardiogenic shock: a report from the SHOCK Trial and Registry. Am. Heart J. 2010, 160, 443–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pöss, J.; Köster, J.; Fuernau, G.; Eitel, I.; de Waha, S.; Ouarrak, T.; Lassus, J.; Harjola, V.P.; Zeymer, U.; Thiele, H.; et al. Risk stratification for patients in cardiogenic shock after acute myocardial infarction. J. Am. Coll Cardiol. 2017, 69, 1913–1920. [Google Scholar] [CrossRef]
- Hasdai, D.; Holmes, D.R.; Califf, R.M.; Thompson, T.D.; Hochman, J.S.; Pfisterer, M.; Topol, E. Cardiogenic shock complicating acute myocardial infarction: predictors of death. GUSTO Investigators. Global Utilization of Streptokinase and Tissue-Plasminogen Activator for Occluded Coronary Arteries. Am. Heart J. 1999, 138, 21–31. [Google Scholar] [CrossRef]
- Cheng, J.M.; Helming, A.M.; Van Vark, L.C.; Kardys, I.; Uil, C.A.D.; Jewbali, L.S.D.; Van Geuns, R.-J.; Zijlstra, F.; Van Domburg, R.T.; Boersma, E.; et al. A simple risk chart for initial risk assessment of 30-day mortality in patients with cardiogenic shock from ST-elevation myocardial infarction. Eur. Heart J. Acute Cardiovasc. Care 2016, 5, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Alvarez, A.; Arzamendi, D.; Loma-Osorio, P.; Kiamco, R.; Masotti, M.; Sionis, A.; Betriu, A.; Brugada, J.; Bosch, X. Early risk stratification of patients with cardiogenic shock complicating acute myocardial infarction who undergo percutaneous coronary intervention. Am. J. Cardiol. 2009, 103, 1073–1077. [Google Scholar] [CrossRef]
- Ceglarek, U.; Schellong, P.; Rosolowski, M.; Scholz, M.; Willenberg, A.; Kratzsch, J.; Zeymer, U.; Fuernau, G.; de Waha-Thiele, S.; Büttner, P.; et al. The novel cystatin C, lactate, interleukin-6, and N-terminal pro-B-type natriuretic peptide (CLIP)-based mortality risk score in cardiogenic shock after acute myocardial infarction. Eur. Heart J. 2021, 42, 2344–2352. [Google Scholar] [CrossRef]
- Ghionzoli, N.; Sciaccaluga, C.; Mandoli, G.; Vergaro, G.; Gentile, F.; D’Ascenzi, F.; Mondillo, S.; Emdin, M.; Valente, S.; Cameli, M. Cardiogenic shock and acute kidney injury: The rule rather than the exception. Heart Fail. Rev. 2020, 26, 487–496. [Google Scholar] [CrossRef]
- Tarvasmäki, T.; Haapio, M.; Mebazaa, A.; Sionis, A.; Silva-Cardoso, J.; Tolppanen, H.; Lindholm, M.G.; Pulkki, K.; Parissis, J.; Harjola, V.-P.; et al. Acute kidney injury in cardiogenic shock: Definitions, incidence, haemodynamic alterations, and mortality. Eur. J. Heart Fail. 2018, 20, 572–581. [Google Scholar] [CrossRef] [Green Version]
- Marenzi, G.; Assanelli, E.; Campodonico, J.; De Metrio, M.; Lauri, G.; Marana, I.; Moltrasio, M.; Rubino, M.; Veglia, F.; Montorsi, P.; et al. Acute kidney injury in ST-segment elevation acute myocardial infarction complicated by cardiogenic shock at admission. Crit. Care Med. 2010, 38, 438–444. [Google Scholar] [CrossRef]
- Singh, S.; Kanwar, A.; Sundaragiri, P.; Cheungpasitporn, W.; Truesdell, A.; Rab, S.; Singh, M.; Vallabhajosyula, S. Acute Kidney Injury in Cardiogenic Shock: An Updated Narrative Review. J. Cardiovasc. Dev. Dis. 2021, 28, 88. [Google Scholar] [CrossRef] [PubMed]
- Yap, S.C.; Lee, H.T. Acute kidney injury and extrarenal organ dysfunction: new concepts and experimental evidence. Anesthesiology 2012, 116, 1139–1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Zhu, J.; Tan, H.-Q.; Liang, Y.; Liu, L.-S.; Li, Y. Predictors of short term mortality in patients with acute ST-elevation myocardial infarction complicated by cardiogenic shock. Zhonghua Xin Xue Guan Bing Za Zhi 2010, 38, 695–701. [Google Scholar] [PubMed]
- Pres, D.; Gasior, M.; Strojek, K.; Gierlotka, M.; Hawranek, M.; Lekston, A.; Wilczek, K.; Tajstra, M.; Gumprecht, J.; Poloński, L. Blood glucose level on admission determines in-hospital and long-term mortality in patients with ST-segment elevation myocardial infarction complicated by cardiogenic shock treated with percutaneous coronary intervention. Kardiol. Pol. 2010, 68, 743–751. [Google Scholar]
- Vis, M.M.; Sjauw, K.D.; van der Schaaf, R.J.; Baan, J.; Koch, K.T.; DeVries, J.H.; Tijssen, J.G.; de Winter, R.J.; Piek, J.J.; Henriques, J.P. In patients with ST-segment elevation myocardial infarction with cardiogenic shock treated with percutaneous coronary intervention, admission glucose level is a strong independent predictor for 1-year mortality in patients without a prior diagnosis of diabetes. Am. Heart J. 2007, 154, 1184–1190. [Google Scholar]
- Gokhroo, R.; Mittal, S.R. Electrocardiographic correlates of hyperglycaemia in acute myocardial infarction. Int. J. Cardiol. 1989, 22, 267–269. [Google Scholar] [CrossRef]
- Marfella, R.; De Angelis, L.; Siniscalchi, M.; Rossi, F.; Giugliano, D.; Nappo, F. The effect of acute hyperglycaemia on QTc duration in healthy man. Diabetologia 2000, 43, 571–575. [Google Scholar] [CrossRef]
- Iwakura, K.; Ito, H.; Ikushima, M.; Kawano, S.; Okamura, A.; Asano, K.; Kuroda, T.; Tanaka, K.; Masuyama, T.; Hori, M.; et al. Association between hyperglycaemia and the no-reflow phenomenon in patients with acute myocardial infarction. J. Am. Coll Cardiol. 2003, 41, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Malmberg, K.; Rydén, L.; Efendic, S.; Herlitz, J.; Nicol, P.; Waldenström, A.; Wedel, H.; Welin, L. Randomized trial of insulin-glucose infusion followed by subcutaneous insulin treatment in diabetic patients with acute myocardial infarction (DIGAMI study): effects on mortality at 1 year. J. Am. Coll Cardiol. 1995, 26, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Malmberg, K. Prospective randomised study of intensive insulin treatment on long term survival after acute myocardial infarction in patients with diabetes mellitus. DIGAMI (Diabetes Mellitus, Insulin Glucose Infusion in Acute Myocardial Infarction) Study Group. BMJ 1997, 314, 1512–1515. [Google Scholar] [CrossRef]
- Fuernau, G.; Desch, S.; de Waha-Thiele, S.; Eitel, I.; Neumann, F.-J.; Hennersdorf, M.; Felix, S.B.; Fach, A.; Böhm, M.; Pöss, J.; et al. Arterial Lactate in Cardiogenic Shock: Prognostic Value of Clearance Versus Single Values. JACC Cardiovasc. Interv. 2020, 13, 2208–2216. [Google Scholar] [CrossRef] [PubMed]
- Frydland, M.; Møller, J.E.; Wiberg, S.; Lindholm, M.G.; Hansen, R.; Henriques, J.P.; Møller-Helgestad, O.K.; Bang, L.E.; Frikke-Schmidt, R.; Goetze, J.P.; et al. Lactate is a prognostic factor in patients admitted with suspected ST-elevation myocardial infarction. Shock 2019, 51, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Lindholm, M.G.; Hongisto, M.; Lassus, J.; Spinar, J.; Parissis, J.; Banaszewski, M.; Silva-Cardoso, J.; Carubelli, V.; Salvatore, D.; Sionis, A.; et al. Serum Lactate and a Relative Change in Lactate as Predictors of Mortality in Patients with Cardiogenic Shock-Results from the Cardshock Study. Shock 2020, 53, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Valente, S.; Lazzeri, C.; Salvadori, C.; Chiostri, M.; Giglioli, C.; Poli, S.; Gensini, G.F. Predictors of in-hospital mortality after percutaneous coronary intervention for cardiogenic shock. Int. J. Cardiol. 2007, 114, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Koreny, M.; Karth, G.D.; Geppert, A.; Neunteufl, T.; Priglinger, U.; Heinz, G.; Siostrzonek, P. Prognosis of patients who develop acute renal failure during the first 24 hours of cardiogenic shock after myocardial infarction. Am. J. Med. 2002, 112, 115–119. [Google Scholar] [CrossRef]
- Lauten, A.; Engström, A.E.; Jung, C.; Empen, K.; Erne, P.; Cook, S.; Windecker, S.; Bergmann, M.W.; Klingenberg, R.; Lüscher, T.F.; et al. Percutaneous left-ventricular support with the Impella-2.5-assist device in acute cardiogenic shock: results of the Impella-EUROSHOCK-registry. Circ. Heart Fail. 2013, 6, 23–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Englehart, M.S.; Schreiber, M.A. Measurement of acid-base resuscitation endpoints: lactate, base deficit, bicarbonate or what? Curr. Opin Crit. Care 2006, 12, 569–574. [Google Scholar] [CrossRef]
- Attaná, P.; Lazzeri, C.; Chiostri, M.; Picariello, C.; Gensini, G.F.; Valente, S. Lactate clearance in cardiogenic shock following ST elevation myocardial infarction: a pilot study. Acute Card. Care 2012, 14, 20–26. [Google Scholar] [CrossRef]
- Marbach, J.A.; Stone, S.; Schwartz, B.; Pahuja, M.; Thayer, K.L.; Faugno, A.J.; Chweich, H.; Rabinowitz, J.B.; Kapur, N.K. Lactate clearance is associated with improved survival in cardiogenic shock: a systematic review and meta-analysis of prognostic factor studies. J. Card Fail. 2021, 27, 1082–1089. [Google Scholar] [CrossRef]
- Marbach, J.A.; Di Santo, P.; Kapur, N.K.; Thayer, K.L.; Simard, T.; Jung, R.G.; Parlow, S.; Abdel-Razek, O.; Fernando, S.M.; Labinaz, M.; et al. Lactate Clearance as a Surrogate for Mortality in Cardiogenic Shock: Insights from the DOREMI Trial. J. Am. Heart Assos. 2022, 11, e023322. [Google Scholar] [CrossRef]
- Park, I.H.; Cho, H.K.; Oh, J.H.; Chun, W.J.; Park, Y.H.; Lee, M.; Kim, M.S.; Choi, K.H.; Kim, J.; Bin Song, Y.; et al. Clinical Significance of Serum Lactate in Acute Myocardial Infarction: A Cardiac Magnetic Resonance Imaging Study. J. Clin. Med. 2021, 10, 5278. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Liang, D.; Wu, S.; Zhou, X.; Shi, R.; Xiang, W.; Zhou, J.; Wang, S.; Shan, P.; Huang, W. Association of hemoglobin with incidence of in-hospital cardiac arrest in patients with acute coronary syndrome complicated by cardiogenic shock. J. Int. Med. Res. 2019, 47, 4151–4162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jäntti, T.; Tarvasmäki, T.; Harjola, V.-P.; Parissis, J.; Pulkki, K.; Javanainen, T.; Tolppanen, H.; Jurkko, R.; Hongisto, M.; Kataja, A.; et al. Hypoalbuminemia is a frequent marker of increased mortality in cardiogenic shock. PLoS ONE 2019, 14, e0217006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radwan, H.; Selem, A.; Ghazal, K. Value of N-terminal pro brain natriuretic peptide in predicting prognosis and severity of coronary artery disease in acute coronary syndrome. J. Saudi Heart Assoc. 2014, 26, 192–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarai, R.; Fellner, B.; Haoula, D.; Jordanova, N.; Heinz, G.; Karth, G.D.; Huber, K.; Geppert, A. Early assessment of outcome in cardiogenic shock: Relevance of plasma N-terminal pro-B-type natriuretic peptide and interleukin-6 levels. Crit. Care Med. 2009, 37, 1837–1844. [Google Scholar] [CrossRef] [PubMed]
- Mega, J.L.; Morrow, D.A.; de Lemos, J.A.; Sabatine, M.S.; Murphy, S.A.; Rifai, N.; Gibson, C.; Antman, E.M.; Braunwald, E. B-type natriuretic peptide at presentation and prognosis in patients with ST-segment elevation myocardial infarction: an ENTIRE–TIMI-23 substudy. J. Am. Coll Cardiol. 2004, 44, 335–339. [Google Scholar] [CrossRef] [Green Version]
- Kohsaka, S.; Menon, V.; Lowe, A.M.; Lange, M.; Dzavik, V.; Sleeper, L.A.; Hochman, J. Systemic inflammatory response syndrome after acute myocardial infarction complicated by cardiogenic shock. Arch. Intern. Med. 2005, 165, 1643–1650. [Google Scholar] [CrossRef]
- Acharya, D. Predictors of Outcomes in Myocardial Infarction and Cardiogenic Shock. Cardiol. Rev. 2018, 26, 255–266. [Google Scholar] [CrossRef]
- Reynolds, H.R.; Hochman, J.S. Cardiogenic shock: Current concepts and improving outcomes. Circulation 2008, 117, 686–697. [Google Scholar] [CrossRef]
- Geppert, A.; Steiner, A.; Zorn, G.; Delle-Karth, G.; Koreny, M.; Haumer, M.; Siostrzonek, P.; Huber, K.; Heinz, G. Multiple organ failure in patients with cardiogenic shock is associated with high plasma levels of interleukin-6. Crit. Care Med. 2002, 30, 1987–1994. [Google Scholar] [CrossRef]
- Geppert, A.; Dorninger, A.; Delle-Karth, G.; Zorn, G.; Heinz, G.; Huber, K. Plasma concentrations of interleukin-6, organ failure, vasopressor support, and successful coronary revascularization in predicting 30-day mortality of patients with cardiogenic shock complicating acute myocardial infarction. Crit. Care Med. 2006, 34, 2035–2042. [Google Scholar] [CrossRef] [PubMed]
- Prondzinsky, R.; Unverzagt, S.; Lemm, H.; Wegener, N.-A.; Schlitt, A.; Heinroth, K.M.; Dietz, S.; Buerke, U.; Kellner, P.; Loppnow, H.; et al. Interleukin-6, -7, -8 and -10 predict outcome in acute myocardial infarction complicated by cardiogenic shock. Clin. Res. Cardiol. 2012, 101, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Prondzinsky, R.; Unverzagt, S.; Lemm, H.; Wegener, N.; Heinroth, K.; Buerke, U.; Fiedler, G.M.; Thiery, J.; Haerting, J.; Werdan, K.; et al. Acute myocardial infarction and cardiogenic shock: prognostic impact of cytokines: INF-γ, TNF-α, MIP-1β, G-CSF, and MCP-1β. Med. Klin. Intensivmed. Notfmed. 2012, 107, 476–484. [Google Scholar] [CrossRef] [PubMed]
- Fellner, B.; Rohla, M.; Jarai, R.; Smetana, P.; Freynhofer, M.K.; Egger, F.; Zorn, G.; Weiss, T.W.; Huber, K.; Geppert, A. Activated protein C levels and outcome in patients with cardiogenic shock complicating acute myocardial infarction. Eur. Heart J. Acute Cardiovasc. Care 2017, 6, 348–358. [Google Scholar] [CrossRef]
- Fuernau, G.; Traeder, F.; Lele, S.S.; Rajapurkar, M.M.; Mukhopadhyay, B.; de Waha, S.; Desch, S.; Eitel, I.; Schuler, G.; Adams, V.; et al. Catalytic iron in acute myocardial infarction complicated by cardiogenic shock—A biomarker substudy of the IABP-SHOCK II-trial. Int. J. Cardiol. 2017, 227, 83–88. [Google Scholar] [CrossRef]
- Rochette, L.; Meloux, A.; Rigal, E.; Zeller, M.; Cottin, Y.; Vergely, C. The Role of Osteoprotegerin and Its Ligands in Vascular Function. Int. J. Mol. Sci. 2019, 20, 705. [Google Scholar] [CrossRef] [Green Version]
- Fuernau, G.; Poenisch, C.; Eitel, I.; de Waha, S.; Desch, S.; Schuler, G.; Adams, V.; Werdan, K.; Zeymer, U.; Thiele, H.; et al. Growth-differentiation factor 15 and osteoprotegerin in acute myocardial infarction complicated by cardiogenic shock: a biomarker substudy of the IABP-SHOCK II-trial. Eur. J. Heart Fail. 2014, 16, 880–887. [Google Scholar] [CrossRef] [Green Version]
- Fuernau, G.; Zaehringer, S.; Eitel, I.; de Waha, S.; Droppa, M.; Desch, S.; Schuler, G.; Adams, V.; Thiele, H. Osteoprotegerin in ST-elevation myocardial infarction: prognostic impact and association with markers of myocardial damage by magnetic resonance imaging. Int. J. Cardiol. 2013, 167, 2134–2139. [Google Scholar] [CrossRef]
- Fuernau, G.; Pöss, J.; Denks, D.; Desch, S.; Heine, G.H.; Eitel, I.; Seiler, S.; De Waha, S.; Ewen, S.; Link, A.; et al. Fibroblast growth factor 23 in acute myocardial infarction complicated by cardiogenic shock: a biomarker substudy of the Intraaortic Balloon Pump in Cardiogenic Shock II (IABP-SHOCK II) trial. Crit. Care 2014, 18, 713. [Google Scholar] [CrossRef] [Green Version]
- Faul, C.; Amaral, A.P.; Oskouei, B.; Hu, M.-C.; Sloan, A.; Isakova, T.; Gutiérrez, O.M.; Aguillon-Prada, R.; Lincoln, J.; Hare, J.M.; et al. FGF23 induces left ventricular hypertrophy. J. Clin. Invest. 2011, 121, 4393–4408. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, I.; Ide, N.; Ix, J.H.; Kestenbaum, B.; Lanske, B.; Schiller, N.B.; Whooley, M.A.; Mukamal, K.J. Fibroblast growth factor-23 and cardiac structure and function. J. Am. Heart Assoc. 2014, 3, e000584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akwii, R.G.; Sajib, M.S.; Zahra, F.T.; Mikelis, C.M. Role of Angiopoietin-2 in Vascular Physiology and Pathophysiology. Cells 2009, 8, 471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pöss, J.; Fuernau, G.; Denks, D.; Desch, S.; Eitel, I.; De Waha, S.; Link, A.; Schuler, G.; Adams, V.; Böhm, M.; et al. Angiopoietin-2 in acute myocardial infarction complicated by cardiogenic shock-a biomarker substudy of the IABP-SHOCK II-Trial. Eur. J. Heart Fail. 2015, 17, 1152–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Link, A.; Pöss, J.; Rbah, R.; Barth, C.; Feth, L.; Selejan, S.; Böhm, M. Circulating angiopoietins and cardiovascular mortality in cardiogenic shock. Eur. Heart J. 2013, 34, 1651–1661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Sobrino, T.; Yusef, H.; Gershlick, T. Predicting outcomes in cardiogenic shock: are we at risk of having too many scores but too little information? Eur. Heart J. 2019, 40, 2695–2699. [Google Scholar] [CrossRef] [PubMed]
Study/Authors | Variables | Score Ranges and Predicted Mortality |
---|---|---|
IABP-SHOCK II trial [8] | Age > 73 years (1 point) Prior stroke (2 points) Glucose at admission > 10.6 mmol/L (1 point) Creatinine at admission > 132.6 μmol/L (1 point) Arterial blood lactate at admission > 5 mmol/L (2 points) TIMI flow grade < 3 after PCI (2 points) | 30-day mortality risk Low (0–2)—28% Intermediate (3–4)—43% High (5–9)—77% |
SHOCK trial [12] | Stage 1 (without invasive hemodynamics): Anoxic brain damage (30 points) Shock on admission (6 points) Noninferior myocardial infarction (3 points) Age (0–25 points) Clinical evidence of end-organ hypoperfusion (14 points) Prior CABG (7 points) Creatinine ≥ 1.9 mg/dL (5 points) Systolic blood pressure (6–12 points) Stage 2 (with invasive hemodynamics): Anoxic brain damage (25 points) Left ventricular ejection fraction < 28% (8 points) Age (0–20 points) End-organ hypoperfusion (14 points) Stroke Work g/m × (0–18 points) | In-hospital mortality risk at 30 days Without invasive hemodynamics: Range < 24 to ≥ 48 26–73% with early revascularization 23–91% with no/late revascularization With invasive hemodynamics: Range < 25 to ≥ 49 9–82% with early revascularization 19–85% with no/late revascularization |
The GUSTO-I trial [14] | Without right heart catheterization: Age, height, baseline heart rate, blood pressure, time to thrombolytic treatment, prior infarction, prior angina, infarct location, Killip class, diabetes, smoking status, no extramyocardial factors, altered sensorium, cold clammy skin, oliguria, arrhythmia, ventricular septal defect, ventricular rupture. With right heart catheterization: Age, mean arterial pressure during shock, heart rate during shock, lowest cardiac output, highest pulmonary capillary wedge pressure, | 30-day mortality risk (10–90%) Range 103–227 points without right heart catheterization Range 138–260 points with right heart catheterization |
Cheng et al. [15] | Initial serum lactate (<1.7, 1.7–5.1, 5.1–8.5, >8.5) Age (<55, 55–65, 65–75, >75) Initial creatinine (above normal, >115 umol/L in men, >90 umol/L in women) | 30-day mortality risk (8–89%) Two charts stratified by age, lactate (mmol/L), and serum creatinine (umol/L) |
Garcia-Alvarez et al. [16] | Age > 75 years (1 point) Left main coronary occlusion (1 point) Left ventricular ejection fraction <25% (1 point) TIMI flow grade < 3 after PCI (1 point) | 1-year survival risk Score 0–83% Score 1–19% Score > 2–6% |
CLIP stratification score Ceglarek et al. [17] | Cystatin C Lactate Interleukin-6 NT pro brain natriuretic peptide | 30-day mortality risk can be calculated from serum levels of these biomarkers, with the equation of the CLIP score |
Effects of Hyperglycemia | Mechanism |
---|---|
Metabolic derangement - higher levels of free fatty acids - insulin secretion - glycolysis - glucose oxidation Effects on myocardial ischemia and arrhythmias | Hyperglycemia in patients with STEMI is associated with higher concentrations of free fatty acid, myocardial glucose use impairment, and insulin resistance. These metabolic derangements are increasing consumption of oxygen leading to worsening of ischemia and resulting in acute heart failure development. |
Promotion of inflammatory processes Prothrombotic effects | Increased release of inflammatory and vasoconstrictive factors leads to coronary endothelial dysfunction, contributing to oxidative stress and high platelet aggregation. |
Predictive Value of Lactate in CS-AMI | No of Patients | Authors |
---|---|---|
Baseline lactate as well as change at 6, 12 and 24 h after admission is a powerful predictor of 30-day mortality | 219 | CardShock study [33] |
Lactate above 6.5 mmol/L is an independent predictor of in-hospital mortality | 45 | Valente et al. [34] |
Level of lactate along with creatinine and epinephrine dose is a significant univariate predictor of in-hospital mortality in patients with acute renal failure developed during the first 24 h of CS-AMI onset | 118 | Koreny et al. [35] |
Admission lactate level above 3.8 mmol/L is a predictor of 30-day mortality | 120 | Lauten et al. [36] |
Established Biomarkers | |||
Laboratory Markers | Authors | No of Patients | Studied Prognostic Markers |
Serum creatinine level | Katz et al. [9] | 396 | Creatinine > 3.0 mg/dL (264 μmol/L) |
Klein et al. [10] | 483 | Creatinine > 2.0 mg/dL | |
Bataille et al. [11] | 2020 | Creatine clearance < 60 mL/min | |
Glucose serum levels | Liu et al. [23] | 7485 | Hyperglycaemia |
Serum lactate levels | Valente et al. [34] | 45 | Lactate > 6.5 mmol/L |
Koreny et al. [35] | 118 | Hyperlactatemie + acute renal failure | |
Attana et al. [38] | 51 | Lactate clearance < 10% | |
Lauten et al. [36] | 120 | Lactate level >3.8 mmol/L at admission | |
Hemoglobin concentration | Xu et al. [42] | 211 | Hemoglobin concentration < 112 g/L |
Hypoalbuminemia | Jäntti et al. [43] | 178 | Hypoalbuminemia < 34 g/L |
Novel biomarkers | |||
Laboratory Markers | Authors | No of Patients | Studied Prognostic Markers |
Systemic inflammation markers: Interleukin-6,7,8,10 (IL-6,7,8,10) Interferon-gamma (INF-γ) Tumor necrosis factor alfa (TNF-α) Macrophage inflammatory protein-1β (MIP-1β) Granulocyte-colony stimulating factor (G-CSF) Monocyte chemoattractant protein-1β (MCP-1β) | Geppert et al. [50,51] | 38 | IL-6 > 200 pg/mL |
Prondzinsky et al. [52] | 40 | IL-8 (0.80 ± 0.08); IL-6 (0.79 ± 0.08); IL-10 (0.76 ± 0.08); IL-7 (0.69 ± 0.08) | |
Prondzinsky et al. [53] | 40 | INF-γ, TNF-α, MIP-1β, G-CSF, and MCP-1β | |
Fellner et al. [54] | 58 | Lower levels of activated protein C, inverse correlation with IL-6 | |
Catalytic iron | Fuernau et al. [55] | 600 | High levels of catalytic iron |
NT pro brain natriuretic peptide (NT-proBNP) | Radwan et al. [44] | 560 | High levels of NT-proBNP (>474 pg/mL) |
Jarai et al. [45] | 58 | Massive elevations of NT-proBNP (>12,782 pg/mL) | |
Osteoprotegerin (OPG) and Growth-differentiation factor 15 (GDF-15) | Fuernau et al. [57,58] | 600 | GDF-15 and OPG levels greater than the median |
Fibroblast growth factor 23 (FGF-23) | Fuernau et al. [59] | 600 | FGF-23 levels above the median (395 RU/mL) |
Angiopoietin-2 (Ang-2) | Pöss et al. [63] | 600 | High levels of Ang-2 |
Link et al. [64] | 1594 | Ang-2 > 2500 pg/mL |
Laboratory Biomarkers | Cardiogenic Shock Stage | ||||
---|---|---|---|---|---|
A “At Risk“ | B “Begining“ | C “Classic“ | D “Deteriorating“ | E “Extremis“ | |
Lactate | + | + | + | + | + |
Creatinine clearence | + | + | + | + | + |
Glucose serum level | + | + | |||
Hemoglobin | + | + | + | ||
Hypoalbuminemia | + | ||||
NT-proBNP | + | + | + | ||
Systemic inflammation markers | + | + | + | ||
Catalytic iron | + | ||||
OPG | + | + | |||
GDF-15 | + | + | |||
FGF23 | + | + | |||
Ang2 | + | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muzafarova, T.; Motovska, Z. Laboratory Predictors of Prognosis in Cardiogenic Shock Complicating Acute Myocardial Infarction. Biomedicines 2022, 10, 1328. https://doi.org/10.3390/biomedicines10061328
Muzafarova T, Motovska Z. Laboratory Predictors of Prognosis in Cardiogenic Shock Complicating Acute Myocardial Infarction. Biomedicines. 2022; 10(6):1328. https://doi.org/10.3390/biomedicines10061328
Chicago/Turabian StyleMuzafarova, Tamilla, and Zuzana Motovska. 2022. "Laboratory Predictors of Prognosis in Cardiogenic Shock Complicating Acute Myocardial Infarction" Biomedicines 10, no. 6: 1328. https://doi.org/10.3390/biomedicines10061328
APA StyleMuzafarova, T., & Motovska, Z. (2022). Laboratory Predictors of Prognosis in Cardiogenic Shock Complicating Acute Myocardial Infarction. Biomedicines, 10(6), 1328. https://doi.org/10.3390/biomedicines10061328