Heterogeneous Maturation of Arterio-Venous Fistulas and Loop-Shaped Venous Interposition Grafts: A Histological and 3D Flow Simulation Comparison
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animals
2.2. Operative Techniques
2.3. Histological Examinations
2.4. Three-Dimensional Flow Simulation on Vessel Specimens
2.5. Statistical Analysis
3. Results
3.1. Geometry of the Fistulas and the Loops
3.2. Histomorphological Results
3.3. Results of the 3D Flow Simulation of Vessel Specimens
3.4. Comparison of Histological and 3D Flow Simulation Findings
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Keynton, R.S.; Evancho, M.M.; Sims, R.L.; Rodway, N.V.; Gobin, A.; Rittgers, S.E. Intimal hyperplasia and wall shear in arterial bypass graft distal anastomoses: An in vivo model study. J. Biomech. Eng. 2001, 123, 464–473. [Google Scholar] [CrossRef] [PubMed]
- Browne, L.D.; Bashar, K.; Griffin, P.; Kavanagh, E.G.; Walsh, S.R.; Walsh, M.T. The role of shear stress in arteriovenous fistula maturation and failure: A systematic review. PLoS ONE 2015, 10, e0145795. [Google Scholar]
- Franzoni, M.; Walsh, M.T. Towards the identification of hemodynamic parameters involved in arteriovenous fistula maturation and failure: A review. Cardiovasc. Eng. Technol. 2017, 8, 342–356. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Sadaghianloo, N.; Gorecka, J.; Liu, S.; Ono, S.; Ramachandra, A.B.; Bonnet, S.; Mazure, N.M.; Declemy, S.; Humphrey, J.D.; et al. Artery to vein configuration of arteriovenous fistula improves hemodynamics to increase maturation and patency. Sci. Transl. Med. 2020, 12, eaax7613. [Google Scholar] [CrossRef]
- Chen, Z.; Qin, H.; Liu, J.; Wu, B.; Cheng, Z.; Jiang, Y.; Liu, L.; Jing, L.; Leng, X.; Jing, J.; et al. Characteristics of wall shear stress and pressure of intracranial atherosclerosis analyzed by a computational fluid dynamics model: A pilot study. Front. Neurol. 2020, 10, 1372. [Google Scholar] [CrossRef]
- Kim, J.J.; Yang, H.; Kim, Y.B.; Oh, J.H.; Cho, K.C. The quantitative comparison between high wall shear stress and high strain in the formation of paraclinoid aneurysms. Sci. Rep. 2021, 11, 7947. [Google Scholar] [CrossRef]
- Pirozzi, N.; Mancianti, N.; Scrivano, J.; Fazzari, L.; Pirozzi, R.; Tozzi, M. Monitoring the patient following radio-cephalic arteriovenous fistula creation: Current perspectives. Vasc. Health Risk Manag. 2021, 17, 111–121. [Google Scholar] [CrossRef]
- Lee, S.J.; Park, S.H.; Lee, B.H.; Lee, J.W.; Noh, J.W.; Suh, I.S.; Jeong, H.S. Microsurgical approach for hemodialysis access: A pilot study of Brescia-Cimino fistulas constructed under microscopic guidance. Medicine 2019, 98, e14202. [Google Scholar] [CrossRef]
- Silva, G.B.; Veronesi, B.A.; Torres, L.R.; Imaguchi, R.B.; Cho, A.B.; Nakamoto, H.A. Role of arteriovenous vascular loops in microsurgical reconstruction of the extremities. Acta Ortop. Bras. 2018, 26, 127–130. [Google Scholar] [CrossRef]
- Threlfall, G.N.; Little, J.M.; Cummine, J. Free flap transfer-preliminary establishment of an arteriovenous fistula: A case report. Aust. N. Z. J. Surg. 1982, 52, 182–184. [Google Scholar] [CrossRef]
- Grenga, T.E.; Yetman, R.J. Temporary arteriovenous shunt prior to free myoosseous flap transfer. Microsurgery 1987, 8, 2–4. [Google Scholar] [CrossRef] [PubMed]
- Oswald, T.M.; Stover, S.A.; Gerzenstein, J.; Lei, M.P.; Zhang, F.; Muskett, A.; Hu, E.; Angel, M.F.; Lineaweaver, W.C. Immediate and delayed use of arteriovenous fistulae in microsurgical flap procedures: A clinical series and review of published cases. Ann. Plast. Surg. 2007, 58, 61–63. [Google Scholar] [CrossRef] [PubMed]
- Demiri, E.C.; Hatzokos, H.; Dionyssiou, D.; Megalopoulos, A.; Pitoulias, G.; Papadimitriou, D. Single stage arteriovenous short saphenous loops in microsurgical reconstruction of the lower extremity. Arch. Orthop. Trauma Surg. 2009, 129, 521–524. [Google Scholar] [CrossRef] [PubMed]
- Taeger, C.D.; Horch, R.E.; Arkudas, A.; Schmitz, M.; Stübinger, A.; Lang, W.; Meyer, A.; Seitz, T.; Weyand, M.; Beier, J.P. Combined free flaps with arteriovenous loops for reconstruction of extensive thoracic defects after sternal osteomyelitis. Microsurgery 2016, 36, 121–127. [Google Scholar] [CrossRef]
- Gurunluoglu, R.; Rosen, M.J. Recipient vessels for microsurgical flaps to the abdomen: A systematic review. Microsurgery 2017, 37, 707–716. [Google Scholar] [CrossRef]
- Knackstedt, R.; Aliotta, R.; Gatherwright, J.; Djohan, R.; Gastman, B.; Schwarz, G.; Hendrickson, M.; Gurunluoglu, R. Single-stage versus two-stage arteriovenous loop microsurgical reconstruction: A meta-analysis of the literature. Microsurgery 2018, 38, 706–717. [Google Scholar] [CrossRef]
- Arkudas, A.; Horch, R.E.; Regus, S.; Meyer, A.; Lang, W.; Schmitz, M.; Boos, A.M.; Ludolph, I.; Beier, J.P. Retrospective cohort study of combined approach for trunk reconstruction using arteriovenous loops and free flaps. J. Plast. Reconstr. Aesthet. Surg. 2018, 71, 394–401. [Google Scholar] [CrossRef]
- Momeni, A.; Lanni, M.A.; Levin, L.S.; Kovach, S.J. Does the use of arteriovenous loops increase complications rates in posttraumatic microsurgical lower extremity reconstruction? A matched-pair analysis. Microsurgery 2018, 38, 605–610. [Google Scholar] [CrossRef]
- Matschke, J.; Armbruster, R.; Reeps, C.; Weitz, J.; Dragu, A. AV loop free flap: An interdisciplinary approach for perineal and sacral defect reconstruction after radical oncological exenteration and radiation in a colorectal cancer patient. World J. Surg. Oncol. 2019, 17, 154. [Google Scholar] [CrossRef] [Green Version]
- Ali, H.; Elbadawy, A.; Saleh, M. Midterm outcomes of brachial arterio-arterial prosthetic loop as permanent hemodialysis access. J. Vasc. Surg. 2020, 72, 181–187. [Google Scholar] [CrossRef]
- Bünger, C.M.; Kröger, J.; Kock, L.; Henning, A.; Klar, E.; Schareck, W. Axillary-axillary interarterial chest loop conduit as an alternative for chronic hemodialysis access. J. Vasc. Surg. 2005, 42, 290–295. [Google Scholar] [CrossRef] [Green Version]
- Stephenson, M.A.; Norris, J.M.; Mistry, H.; Valenti, D. Axillary-axillary interarterial chest loop graft for successful early hemodialysis access. J. Vasc. Access 2013, 14, 291–294. [Google Scholar] [CrossRef]
- Coppola, G.; Caro, C. Arterial geometry, flow pattern, wall shear and mass transport: Potential physiological significance. J. R. Soc. Interface 2009, 6, 519–528. [Google Scholar] [CrossRef] [Green Version]
- Sigovan, M.; Rayz, V.; Gasper, W.; Alley, H.F.; Owens, C.D.; Saloner, D. Vascular remodeling in autogenous arterio-venous fistulas by MRI and CFD. Ann. Biomed. Eng. 2013, 41, 657–668. [Google Scholar] [CrossRef] [Green Version]
- Jodko, D.; Obidowski, D.; Reorowicz, P.; Jóźwik, K. Simulations of the blood flow in the arterio-venous fistula for haemodialysis. Acta Bioeng. Biomech. 2014, 16, 69–74. [Google Scholar]
- Iori, F.; Grechy, L.; Corbett, R.W.; Gedroyc, W.; Duncan, N.; Caro, C.G.; Vincent, P.E. The effect of in-plane arterial curvature on blood flow and oxygen transport in arterio-venous fistulae. Phys. Fluids 2015, 27, 031903. [Google Scholar] [CrossRef]
- Hossler, F.E.; Douglas, J.E. Vascular corrosion casting: Review of advantages and limitations in the application of some simple quantitative methods. Microsc. Microanal. 2001, 7, 253–264. [Google Scholar] [CrossRef]
- Krucker, T.; Lang, A.; Meyer, E.P. New polyurethane-based material for vascular corrosion casting with improved physical and imaging characteristics. Microsc. Res. Tech. 2006, 69, 138–147. [Google Scholar] [CrossRef]
- Van Steenkiste, C.; Trachet, B.; Casteleyn, C.; van Loo, D.; Van Hoorebeke, L.; Segers, P.; Geerts, A.; Van Vlierberghe, H.; Colle, I. Vascular corrosion casting: Analyzing wall shear stress in the portal vein and vascular abnormalities in portal hypertensive and cirrhotic rodents. Lab. Investig. 2010, 90, 1558–1572. [Google Scholar] [CrossRef] [Green Version]
- Nemeth, N. Vascular anastomoses, hemodynamics and hemorheology: Some general thoughts and open questions. J. Series Biomech. 2022, 36, 70–74. [Google Scholar] [CrossRef]
- Pandya, A.N.; Vaingankar, N.; Grant, I.; James, N.K. End-to-side venous anastomoses… a patency test. Br. J. Plast. Surg. 2003, 56, 810–811. [Google Scholar] [CrossRef]
- Adamson, R.H. Microvascular endothelial cell shape and size in situ. Microvasc. Res. 1993, 46, 77–88. [Google Scholar] [CrossRef]
- Garipcan, B.; Maenz, S.; Pham, T.; Settmacher, U.; Jandt, K.D.; Zanow, J.; Bossert, J. Image analysis of endothelial microstructure and endothelial cell dimensions of human arteries—A preliminary study. Adv. Eng. Mater. 2011, 13, B54–B57. [Google Scholar] [CrossRef]
- Rubanyi, G.M.; Romero, J.C.; Vanhoutte, P.M. Flow-induced release of endothelium-derived relaxing factor. Am. J. Physiol. 1986, 250, H1145–H1149. [Google Scholar] [CrossRef]
- Lipowsky, H.H. Shear stress in the circulation. In Flow Dependent Regulation of Vascular Function; Bevan, J., Kaley, G., Eds.; Clinical Physiology Series; Oxford University Press: New York, NY, USA, 1995; pp. 28–45. [Google Scholar]
- Weinbaum, S.; Zhang, X.; Han, Y.; Vink, H.; Cowin, S.C. Mechanotransduction and flow accross the endothelial glycocalyx. Proc. Natl. Acad. Sci. USA 2003, 100, 7988–7995. [Google Scholar] [CrossRef] [Green Version]
- Baeyens, N.; Bandyopadhyay, C.; Coon, B.G.; Yun, S.; Schwartz, M.A. Endothelial fluid shear stress sensing in vascular health and disease. J. Clin. Investig. 2016, 126, 821–828. [Google Scholar] [CrossRef]
- Chistiakov, D.A.; Orekhov, A.N.; Bobryshev, Y.V. Effects of shear stress on endothelial cells: Go with the flow. Acta Physiol. 2017, 219, 382–408. [Google Scholar] [CrossRef]
- Souilhol, C.; Serbanovic-Canic, J.; Fragiadaki, M.; Chico, T.J.; Ridger, V.; Roddie, H.; Evans, P.C. Endothelial responses to shear stress in atherosclerosis: A novel role for developmental genes. Nat. Rev. Cardiol. 2020, 17, 52–63. [Google Scholar] [CrossRef]
- Jia, L.; Wang, L.; Wei, F.; Yu, H.; Dong, H.; Wang, B.; Lu, Z.; Sun, G.; Chen, H.; Meng, J.; et al. Effects of wall shear stress in venous neointimal hyperplasia of arteriovenous fistulae. Nephrology 2015, 20, 335–342. [Google Scholar] [CrossRef]
- Carroll, G.T.; McGloughlin, T.M.; Burke, P.E.; Egan, M.; Wallis, F.; Walsh, M.T. Wall shear stresses remain elevated in mature arteriovenous fistulas: A case study. J. Biomech. Eng. 2011, 133, 021003. [Google Scholar] [CrossRef]
- Carroll, G.T.; McGloughlin, T.M.; O’Keeffe, L.M.; Callanan, A.; Walsh, M.T. Realistic temporal variations of shear stress modulate MMP-2 and MCP-1 expression in arteriovenous vascular access. Cell. Mol. Bioeng. 2009, 2, 591. [Google Scholar] [CrossRef]
- Carlier, S.G.; van Damme, L.C.A.; Blommerde, C.P.; Wentzel, J.J.; van Langehove, G.; Verheye, S.; Kockx, M.M.; Knaapen, M.W.; Cheng, C.; Gijsen, F.; et al. Augmentation of wall shear stress inhibits neointimal hyperplasia after stent implantation: Inhibition through reduction of inflammation? Circulation 2003, 107, 2741–2746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnamoorthy, M.K.; Banerjee, R.K.; Wang, Y.; Zhang, J.; Sinha Roy, A.; Khoury, S.F.; Arend, L.J.; Rudich, S.; Roy-Chaudhury, P. Hemodynamic wall shear stress profiles influence the magnitude and pattern of stenosis in a pig AV fistula. Kidney Int. 2008, 74, 1410–1419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, M.R.; Pasterkamp, G.; Yeung, A.C.; Borst, C. Arterial remodeling. Mechanisms and clinical implications. Circulation 2000, 102, 1186–1191. [Google Scholar] [CrossRef]
- Subbotin, V.M. Analysis of arterial intimal hyperplasia: Review and hypothesis. Theor. Biol. Med. Model. 2007, 4, 41. [Google Scholar] [CrossRef] [Green Version]
- Davies, P.F. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat. Clin. Pract. Cardiovasc. Med. 2009, 6, 16–26. [Google Scholar] [CrossRef] [Green Version]
- Muto, A.; Model, L.; Ziegler, K.; Eghbalieh, S.D.D.; Dardik, A. Mechanisms of vein graft adaptation to the arterial circulation: Insights into the neointimal algorithm and management strategies. Circ. J. 2010, 74, 1501–1512. [Google Scholar] [CrossRef] [Green Version]
- Nemeth, N.; Peto, K.; Magyar, Z.; Klarik, Z.; Varga, G.; Oltean, M.; Mantas, A.; Czigany, Z.; Tolba, R.H. Hemorheological and microcirculatory factors in liver ischemia-reperfusion injury-an update on pathophysiology, molecular mechanisms and protective strategies. Int. J. Mol. Sci. 2021, 22, 1864. [Google Scholar] [CrossRef]
- Saunders, P.C.; Pintucci, G.; Bizekis, C.S.; Sharony, R.; Hyman, K.M.; Saponara, F.; Baumann, F.G.; Grossi, E.A.; Colvin, S.B.; Mignatti, P.; et al. Vein graft arterialization causes differential activation of mitogen-activated protein kinases. J. Thorac. Cardiovasc. Surg. 2004, 127, 1276–1284. [Google Scholar] [CrossRef] [Green Version]
- Wallner, K.; Li, C.; Fishbein, M.C.; Shah, P.K.; Sharifi, B.G. Arterialization of human vein grafts is associated with tenascin-C expression. J. Am. Coll. Cardiol. 1999, 34, 871–875. [Google Scholar] [CrossRef] [Green Version]
- Westerband, A.; Crouse, D.; Richter, L.C.; Aguirre, M.L.; Wixon, C.C.; James, D.C.; Mills, J.L.; Hunter, G.C.; Heimark, R.L. Vein adaptation to arterialization in an experimental model. J. Vasc. Surg. 2001, 33, 561–569. [Google Scholar] [CrossRef] [Green Version]
- Curtis, J.J.; Stoney, W.S.; Alford, W.C.; Burrus, G.R.; Thomas, C.S. Intimal hyperplasia. A cause of radial artery aortocoronary bypass graft failure. Ann. Thorac. Surg. 1975, 20, 628–635. [Google Scholar] [CrossRef]
- Paszkowiak, J.J.; Dardik, A. Arterial wall shear stress: Observations from the bench to the bedside. Vasc. Endovasc. Surg. 2003, 37, 47–57. [Google Scholar] [CrossRef]
- Tansey, E.A.; Montgomery, L.E.A.; Quinn, J.G.; Roe, S.M.; Johnson, C.D. Understanding basic vein physiology and venous blood pressure through simple physical assessments. Adv. Physiol. Educ. 2019, 43, 423–429. [Google Scholar] [CrossRef] [Green Version]
- Tolba, R.H.; Czigány, Z.; Osorio Lujan, S.; Oltean, M.; Axelsson, M.; Akelina, Y.; Di Cataldo, A.; Miko, I.; Furka, I.; Dahmen, U.; et al. Defining Standards in Experimental Microsurgical Training: Recommendations of the European Society for Surgical Research (ESSR) and the International Society for Experimental Microsurgery (ISEM). Eur. Surg. Res. 2017, 58, 246–262. [Google Scholar] [CrossRef] [Green Version]
Group | Time | O.D. at the Proximal Anastomosis | O.D. at the Curvature | O.D. at the Distal Anastomosis | Graft Length | H/V Loop Axis Ratio |
---|---|---|---|---|---|---|
AVF | Operation | 0.99 ± 0.11 | 1.25 ± 0.25 | 1.12 ± 0.25 | 18.35 ± 2.5 | 0.74 ± 0.08 |
5th p.o. week | 1.40 ± 0.22 | 3.04 ± 0.71 | 2.67 ± 0.55 | 25.08 ± 3.21 | 1.16 ± 0.42 | |
p-Value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.006 | |
Loop | Operation | 1.05 ± 0.08 | 1.38 ± 0.09 | 1.09 ± 0.08 | 19.04 ± 1.4 | 1.03 ± 0.09 |
5th p.o. week | 1.03 ± 0.1 | 1.37 ± 0.17 | 1.19 ± 0.09 | 16.13 ± 2.03 | 0.56 ± 0.15 | |
p-Value | 0.759 | 0.921 | 0.022 | 0.002 | <0.0001 |
Group | Localization | Site (Location in (Figure 3)) | Wall Shear Stress (Pa) | Pressure (mmHg) |
---|---|---|---|---|
AVF | Artery, proximally to the anastomoses | (a) | 24.61 ± 2.72 + | 21.39 ± 2.92 + |
Artery, distally to the anastomoses | (b) | 3.63 ± 0.49 *+ | 20.89 ± 3.23 + | |
Arterio-venous anastomosis Arterial side | Upper (c) | 40.74 ± 8.95 *+ | 17.01 ± 1.8 *+ | |
Lower (d) | 4.16 ± 1.92 *+× | 18.3 ± 1.85 *+ | ||
Vein graft, proximal branch first mm | Upper (e) | 41.04 ± 12.4 *+ | 15.5 ± 1.71 *+ | |
Lower (f) | 6.23 ± 4.17 *+× | 15.6 ± 2.03 *+ | ||
Vein graft, middle (curvature) | Convex (g) | 6.34 ± 1.02 *+ | 13.13 ± 1.19 *+ | |
Concave (h) | 3.8 ± 0.55 *+# | 13.06 ± 1.13 *+ | ||
Venous junction (f) | SIEV (i) | 0.28 ± 0.09 *+ | 12.33 ± 0.27 * | |
Opposite (j) | 2.28 ± 0.68 *+× | 12.46 ± 0.56 * | ||
Vein, proximally to the anastomoses | (k) | 0.49 ± 0.14 * | 12.34 ± 0.22 * | |
Vein, distally to the anastomoses | (l) | 0.35 ± 0.13 *+ | 12.2 ± 0.12 * | |
Loop | Artery, proximally to the anastomoses | (a) | 0.99 ± 0.13 | 57.89 ± 0.54 |
Vein graft, proximal branch | Convex (b) | 0.75 ± 0.27 * | 57.98 ± 0.31 | |
Concave (c) | 0.53 ± 0.06 *# | 58.06 ± 0.26 | ||
Vein graft, middle (curvature) | Convex (d) | 0.23 ± 0.03 * | 58.12 ± 0.21 | |
Concave (e) | 0.18 ± 0.05 *# | 58.12 ± 0.2 | ||
Vein graft, distal branch | Convex (f) | 0.3 ± 0.03 * | 58.19 ± 0.13 | |
Concave (g) | 0.31 ± 0.04 * | 58.2 ± 0.15 | ||
Artery, distally to the anastomoses | (h) | 0.72 ± 0.17 * | 58.22 ± 0.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szabo, B.; Gasz, B.; Fazekas, L.A.; Varga, A.; Kiss-Papai, L.; Matolay, O.; Rezsabek, Z.; Al-Smadi, M.W.; Nemeth, N. Heterogeneous Maturation of Arterio-Venous Fistulas and Loop-Shaped Venous Interposition Grafts: A Histological and 3D Flow Simulation Comparison. Biomedicines 2022, 10, 1508. https://doi.org/10.3390/biomedicines10071508
Szabo B, Gasz B, Fazekas LA, Varga A, Kiss-Papai L, Matolay O, Rezsabek Z, Al-Smadi MW, Nemeth N. Heterogeneous Maturation of Arterio-Venous Fistulas and Loop-Shaped Venous Interposition Grafts: A Histological and 3D Flow Simulation Comparison. Biomedicines. 2022; 10(7):1508. https://doi.org/10.3390/biomedicines10071508
Chicago/Turabian StyleSzabo, Balazs, Balazs Gasz, Laszlo Adam Fazekas, Adam Varga, Levente Kiss-Papai, Orsolya Matolay, Zsofia Rezsabek, Mohammad W. Al-Smadi, and Norbert Nemeth. 2022. "Heterogeneous Maturation of Arterio-Venous Fistulas and Loop-Shaped Venous Interposition Grafts: A Histological and 3D Flow Simulation Comparison" Biomedicines 10, no. 7: 1508. https://doi.org/10.3390/biomedicines10071508