Serum Concentrations of the Endocannabinoid, 2-Arachidonoylglycerol, in the Peri-Trauma Period Are Positively Associated with Chronic Pain Months Later
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Measures
2.4. Study Procedures
2.5. Analyses
3. Results
3.1. Demographic Results
3.2. Mechanisms of Injury
3.3. Correlational Analyses of Biomarkers and Pain
3.4. Model Incorporating Biomarkers, Demographics, and Pain Measures
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hadi, M.A.; McHugh, G.A.; Closs, S.J. Impact of Chronic Pain on Patients’ Quality of Life: A Comparative Mixed-Methods Study. J. Patient Exp. 2019, 6, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Treede, R.-D.; Rief, W.; Barke, A.; Aziz, Q.; Bennett, M.I.; Benoliel, R.; Cohen, M.; Evers, S.; Finnerup, N.B.; First, M.B.; et al. A classification of chronic pain for ICD-11. Pain 2015, 156, 1003–1007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trevino, C.M.; Essig, B.; deRoon-Cassini, T.A.; Brasel, K. Chronic pain at 4 months in hospitalized trauma patients: Incidence and life interference. J. Trauma Nurs. 2012, 19, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Kolstadbraaten, K.M.; Spreng, U.J.; Wisloeff-Aase, K.; Gaarder, C.; Naess, P.A.; Raeder, J. Incidence of chronic pain 6 y after major trauma. Acta Anaesthesiol. Scand. 2019, 63, 1074–1078. [Google Scholar] [CrossRef] [PubMed]
- Rivara, F.P.; MacKenzie, E.J.; Jurkovich, G.J.; Nathens, A.B.; Wang, J.; Scharfstein, D.O. Prevalence of Pain in Patients 1 Year After Major Trauma. Arch. Surg. 2008, 143, 282–287. [Google Scholar] [CrossRef] [Green Version]
- Cohen, S.P.; Vase, L.; Hooten, W.M. Chronic pain: An update on burden, best practices, and new advances. Lancet 2021, 397, 2082–2097. [Google Scholar] [CrossRef]
- Ballantyne, J.C.; Shin, N.S. Efficacy of opioids for chronic pain: A review of the evidence. Clin. J. Pain 2008, 24, 469–478. [Google Scholar] [CrossRef]
- Rosenblum, A.; Marsch, L.A.; Joseph, H.; Portenoy, R.K. Opioids and the treatment of chronic pain: Controversies, current status, and future directions. Exp. Clin. Psychopharmacol. 2008, 16, 405–416. [Google Scholar] [CrossRef]
- Piomelli, D.; Sasso, O. Peripheral gating of pain signals by endogenous lipid mediators. Nat. Neurosci. 2014, 17, 164–174. [Google Scholar] [CrossRef] [Green Version]
- Woodhams, S.G.; Chapman, V.; Finn, D.P.; Hohmann, A.G.; Neugebauer, V. The cannabinoid system and pain. Neuropharmacology 2017, 124, 105–120. [Google Scholar] [CrossRef] [Green Version]
- Walker, J.M.; Huang, S.M.; Strangman, N.M.; Tsou, K.; Sañudo-Peña, M.C. Pain modulation by release of the endogenous cannabinoid anandamide. Proc. Natl. Acad. Sci. USA 1999, 96, 12198–12203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arevalo-Martin, A.; Garcia-Ovejero, D.; Sierra-Palomares, Y.; Paniagua-Torija, B.; González-Gil, I.; Ortega-Gutiérrez, S.; Molina-Holgado, E. Early Endogenous Activation of CB1 and CB2 Receptors after Spinal Cord Injury Is a Protective Response Involved in Spontaneous Recovery. PLoS ONE 2012, 7, e49057. [Google Scholar] [CrossRef] [PubMed]
- Siegling, A.; Hofmann, H.A.; Denzer, D.; Mauler, F.; De Vry, J. Cannabinoid CB1 receptor upregulation in a rat model of chronic neuropathic pain. Eur. J. Pharmacol. 2001, 415, R5–R7. [Google Scholar] [CrossRef]
- Zhang, J.; Hoffert, C.; Vu, H.K.; Groblewski, T.; Ahmad, S.; O’Donnell, D. Induction of CB2 receptor expression in the rat spinal cord of neuropathic but not inflammatory chronic pain models. Eur. J. Neurosci. 2003, 17, 2750–2754. [Google Scholar] [CrossRef] [PubMed]
- Pernà a-Andrade, A.J.; Kato, A.; Witschi, R.; Nyilas, R.; Katona, I.; Freund, T.F.; Watanabe, M.; Filitz, J.; Koppert, W.; Schüttler, J.; et al. Spinal endocannabinoids and CB1 receptors mediate C-fiber-induced heterosynaptic pain sensitization. Science 2009, 325, 760–764. [Google Scholar] [CrossRef] [Green Version]
- Stensson, N.; Ghafouri, N.; Ernberg, M.; Mannerkorpi, K.; Kosek, E.; Gerdle, B.; Ghafouri, B. The Relationship of Endocannabinoidome Lipid Mediators with Pain and Psychological Stress in Women with Fibromyalgia: A Case-Control Study. J. Pain 2018, 19, 1318–1328. [Google Scholar] [CrossRef]
- Fichna, J.; Wood, J.T.; Papanastasiou, M.; Vadivel, S.K.; Oprocha, P.; Sałaga, M.; Sobczak, M.; Mokrowiecka, A.; Cygankiewicz, A.I.; Zakrzewski, P.K.; et al. Endocannabinoid and Cannabinoid-like Fatty Acid Amide Levels Correlate with Pain-Related Symptoms in Patients with IBS-D and IBS-C: A Pilot Study. PLoS ONE 2013, 8, e85073. [Google Scholar] [CrossRef] [Green Version]
- Pellkofer, H.L.; Havla, J.; Hauer, D.; Schelling, G.; Azad, S.C.; Kuempfel, T.; Magerl, W.; Huge, V. The Major Brain Endocannabinoid 2-AG Controls Neuropathic Pain and Mechanical Hyperalgesia in Patients with Neuromyelitis Optica. PLoS ONE 2013, 8, e71500. [Google Scholar] [CrossRef]
- Kaufmann, I.; Schelling, G.; Eisner, C.; Richter, H.P.; Krauseneck, T.; Vogeser, M.; Hauer, D.; Campolongo, P.; Chouker, A.; Beyer, A.; et al. Anandamide and neutrophil function in patients with fibromyalgia. Psychoneuroendocrinology 2008, 33, 676–685. [Google Scholar] [CrossRef]
- Kaufmann, I.; Hauer, D.; Huge, V.; Vogeser, M.; Campolongo, P.; Chouker, A.; Thiel, M.; Schelling, G. Enhanced Anandamide Plasma Levels in Patients with Complex Regional Pain Syndrome following Traumatic Injury: A Preliminary Report. Eur. Surg. Res. 2009, 43, 325–329. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, A.M.; Cioffi, R.; Viganò, P.; Candiani, M.; Verde, R.; Piscitelli, F.; Di Marzo, V.; Garavaglia, E.; Panina-Bordignon, P. Elevated Systemic Levels of Endocannabinoids and Related Mediators Across the Menstrual Cycle in Women with Endometriosis. Reprod. Sci. 2016, 23, 1071–1079. [Google Scholar] [CrossRef] [PubMed]
- Ehlert, U.; Gaab, J.; Heinrichs, M. Psychoneuroendocrinological contributions to the etiology of depression, posttraumatic stress disorder, and stress-related bodily disorders: The role of the hypothalamus–pituitary–adrenal axis. Biol. Psychol. 2001, 57, 141–152. [Google Scholar] [CrossRef]
- Tsigos, C.; Chrousos, G.P. Hypothalamic–pituitary–adrenal axis, neuroendocrine factors and stress. J. Psychosom. Res. 2002, 53, 865–871. [Google Scholar] [CrossRef] [Green Version]
- Fries, E.; Hesse, J.; Hellhammer, J.; Hellhammer, D.H. A new view on hypocortisolism. Psychoneuroendocrinology 2005, 30, 1010–1016. [Google Scholar] [CrossRef]
- Bali, A.; Jaggi, A.S. Clinical experimental stress studies: Methods and assessment. Rev. Neurosci. 2015, 26, 555–579. [Google Scholar] [CrossRef]
- McBeth, J.; Silman, A.J.; Gupta, A.; Chiu, Y.H.; Ray, D.; Morriss, R.; Dickens, C.; King, Y.; Macfarlane, G. Moderation of psychosocial risk factors through dysfunction of the hypothalamic–pituitary–adrenal stress axis in the onset of chronic widespread musculoskeletal pain: Findings of a population-based prospective cohort study. Arthritis Care Res. 2007, 56, 360–371. [Google Scholar] [CrossRef] [PubMed]
- Paananen, M.; O’Sullivan, P.; Straker, L.; Beales, D.; Coenen, P.; Karppinen, J.; Pennell, C.; Smith, A. A low cortisol response to stress is associated with musculoskeletal pain combined with increased pain sensitivity in young adults: A longitudinal cohort study. Arthritis Res. Ther. 2015, 17, 355. [Google Scholar] [CrossRef] [Green Version]
- Riva, R.; Mork, P.J.; Westgaard, R.H.; Lundberg, U. Comparison of the cortisol awakening response in women with shoulder and neck pain and women with fibromyalgia. Psychoneuroendocrinology 2012, 37, 299–306. [Google Scholar] [CrossRef]
- Muhtz, C.; Rodriguez-Raecke, R.; Hinkelmann, K.; Moeller-Bertram, T.; Kiefer, F.; Wiedemann, K.; May, A.; Otte, C. Cortisol Response to Experimental Pain in Patients with Chronic Low Back Pain and Patients with Major Depression. Pain Med. 2013, 14, 498–503. [Google Scholar] [CrossRef] [Green Version]
- McEwen, B.S.; Stellar, E. Stress and the individual. Mechanisms leading to disease. Arch. Intern. Med. 1993, 153, 2093–2101. [Google Scholar] [CrossRef]
- Hillard, C.J.; Beatka, M.; Sarvaideo, J. Endocannabinoid signaling and the hypothalamic-pituitary-adrenal axis. Compr. Physiol. 2016, 7, 1. [Google Scholar] [PubMed] [Green Version]
- Fitzgerald, J.M.; Chesney, S.A.; Lee, T.S.; Brasel, K.; Larson, C.L.; Hillard, C.J.; Deroon-Cassini, T.A. Circulating endocannabinoids and prospective risk for depression in trauma-injury survivors. Neurobiol. Stress 2021, 14, 100304. [Google Scholar] [CrossRef] [PubMed]
- Deroon-Cassini, T.A.; Bergner, C.L.; Chesney, S.A.; Schumann, N.R.; Lee, T.S.; Brasel, K.J.; Hillard, C.J. Circulating endocannabinoids and genetic polymorphisms as predictors of posttraumatic stress disorder symptom severity: Heterogeneity in a community-based cohort. Transl. Psychiatry 2022, 12, 48. [Google Scholar] [CrossRef] [PubMed]
- Dworkin, R.H.; Turk, D.C.; Farrar, J.T.; Haythornthwaite, J.A.; Jensen, M.P.; Katz, N.P.; Kerns, R.D.; Stucki, G.; Allen, R.R.; Bellamy, N.; et al. Core outcome measures for chronic pain clinical trials: IMMPACT recommendations. Pain 2005, 113, 9–19. [Google Scholar] [CrossRef]
- Baker, S.P.; O’Neill, B.; Haddon, W., Jr.; Long, W.B. The injury severity score: A method for describing patients with multiple injuries and evaluating emergency care. J. Trauma Acute Care 1974, 14, 187–196. [Google Scholar] [CrossRef]
- Cleeland, C.S.; Ryan, K.M. Pain assessment: Global use of the Brief Pain Inventory. Ann. Acad. Med. Singap. 1994, 23, 129–138. [Google Scholar]
- Boonstra, A.M.; Stewart, R.E.; Köke, A.J.A.; Oosterwijk, R.F.A.; Swaan, J.L.; Schreurs, K.M.G.; Preuper, H.R.S. Cut-Off Points for Mild, Moderate, and Severe Pain on the Numeric Rating Scale for Pain in Patients with Chronic Musculoskeletal Pain: Variability and Influence of Sex and Catastrophizing. Front. Psychol. 2016, 7, 1466. [Google Scholar] [CrossRef] [Green Version]
- Crombie, K.; Brellenthin, A.G.; Hillard, C.J.; Koltyn, K.F. Psychobiological Responses to Aerobic Exercise in Individuals with Posttraumatic Stress Disorder. J. Trauma Stress 2018, 31, 134–145. [Google Scholar] [CrossRef]
- Yung, Y.F.; Zhang, W. Making Use of Incomplete Observations in the Analysis of Structural Equation Models: The CALIS Procedure’s Full Information Maximum Likelihood Method in SAS/STAT 9.3. In Proceedings of the SAS Global Forum 2011 Conference; SAS Institute Inc.: Cary, NC, USA, 2011; Available online: http://support.sas.com/resources/papers/proceedings11/333-2011.pdf (accessed on 1 January 2019).
- Orlas, C.P.; Herrera-Escobar, J.P.; Hau, K.M.; Velmahos, A.; Patel, N.; Sanchez, S.; Kaafarani, H.M.; Salim, A.; Nehra, D. Perceived social support is strongly associated with recovery after injury. J. Trauma Acute Care Surg. 2021, 91, 552–558. [Google Scholar] [CrossRef]
- Mills, S.E.; Nicolson, K.P.; Smith, B.H. Chronic pain: A review of its epidemiology and associated factors in population-based studies. Br. J. Anaesth. 2019, 123, e273–e283. [Google Scholar] [CrossRef]
- Mogil, J.S. Qualitative sex differences in pain processing: Emerging evidence of a biased literature. Nat. Rev. Neurosci. 2020, 21, 353–365. [Google Scholar] [CrossRef] [PubMed]
- Kuner, R.; Kuner, T. Cellular Circuits in the Brain and Their Modulation in Acute and Chronic Pain. Physiol. Rev. 2021, 101, 213–258. [Google Scholar] [CrossRef] [PubMed]
- Trevino, C.M.; deRoon-Cassini, T.A.; Brasel, K. Does opiate use in traumatically injured individuals worsen pain and psychological outcomes? J. Pain 2013, 14, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Herbert, M.S.; Goodin, B.R.; Bulls, H.; Sotolongo, A.; Petrov, M.; Edberg, J.C.; Bradley, L.A.; Fillingim, R. Ethnicity, Cortisol, and Experimental Pain Responses Among Persons with Symptomatic Knee Osteoarthritis. Clin. J. Pain 2017, 33, 820–826. [Google Scholar] [CrossRef]
- Tak, L.M.; Rosmalen, J. Dysfunction of stress responsive systems as a risk factor for functional somatic syndromes. J. Psychosom. Res. 2010, 68, 461–468. [Google Scholar] [CrossRef] [Green Version]
- Quartana, P.J.; Buenaver, L.F.; Edwards, R.R.; Klick, B.; Haythornthwaite, J.A.; Smith, M.T. Pain catastrophizing and salivary cortisol responses to laboratory pain testing in temporoman-dibular disorder and healthy participants. J. Pain 2010, 11, 186–194. [Google Scholar] [CrossRef] [Green Version]
- Hannibal, K.E.; Bishop, M. Chronic Stress, Cortisol Dysfunction, and Pain: A Psychoneuroendocrine Rationale for Stress Management in Pain Rehabilitation. Phys. Ther. 2014, 94, 1816–1825. [Google Scholar] [CrossRef]
- Hill, M.N.; McLaughlin, R.; Pan, B.; Fitzgerald, M.L.; Roberts, C.; Lee, T.T.-Y.; Karatsoreos, I.N.; Mackie, K.; Viau, V.; Pickel, V.M.; et al. Recruitment of Prefrontal Cortical Endocannabinoid Signaling by Glucocorticoids Contributes to Termination of the Stress Response. J. Neurosci. 2011, 31, 10506–10515. [Google Scholar] [CrossRef]
- Bowles, N.P.; Karatsoreos, I.N.; Li, X.; Vemuri, V.K.; Wood, J.-A.; Li, Z.; Tamashiro, K.L.K.; Schwartz, G.J.; Makriyannis, A.M.; Kunos, G.; et al. A peripheral endocannabinoid mechanism contributes to glucocorticoid-mediated metabolic syndrome. Proc. Natl. Acad. Sci. USA 2015, 112, 285–290. [Google Scholar] [CrossRef] [Green Version]
- Stensson, N.; Ghafouri, B.; Gerdle, B.; Ghafouri, N. Alterations of anti-inflammatory lipids in plasma from women with chronic widespread pain—A case control study. Lipids Health Dis. 2017, 16, 112. [Google Scholar] [CrossRef] [Green Version]
- Schlosburg, J.E.; Blankman, J.L.; Long, J.Z.; Nomura, D.K.; Pan, B.; Kinsey, S.G.; Nguyen, P.T.; Ramesh, D.; Booker, L.; Burston, J.J.; et al. Chronic monoacylglycerol lipase blockade causes functional antagonism of the endocannabinoid system. Nat. Neurosci. 2010, 13, 1113–1119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trevino, C.; Harl, F.; Deroon-Cassini, T.; Brasel, K.; Litwack, K. Predictors of Chronic Pain in Traumatically Injured Hospitalized Adult Patients. J. Trauma Nurs. 2014, 21, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Hillard, C.J. The endocannabinoid signaling system in the CNS: A primer. Int. Rev. Neurobiol. 2015, 125, 1–47. [Google Scholar] [PubMed]
- Deroon-Cassini, T.A.; Stollenwerk, T.M.; Beatka, M.; Hillard, C.J. Meet Your Stress Management Professionals: The Endocannabinoids. Trends Mol. Med. 2020, 26, 953–968. [Google Scholar] [CrossRef]
- Hill, M.; Miller, G.; Ho, W.-S.; Gorzalka, B.; Hillard, C. Serum Endocannabinoid Content is Altered in Females with Depressive Disorders: A Preliminary Report. Pharmacopsychiatry 2008, 41, 48–53. [Google Scholar] [CrossRef] [Green Version]
- Dlugos, A.; Childs, E.; Stuhr, K.L.; Hillard, C.J.; de Wit, H. Acute Stress Increases Circulating Anandamide and Other N-Acylethanolamines in Healthy Humans. Neuropsychopharmacology 2012, 37, 2416–2427. [Google Scholar] [CrossRef] [Green Version]
- Hanlon, E.C.; Tasali, E.; Leproult, R.; Stuhr, K.L.; Doncheck, E.; De Wit, H.; Hillard, C.J.; Van Cauter, E. Circadian Rhythm of Circulating Levels of the Endocannabinoid 2-Arachidonoylglycerol. J. Clin. Endocrinol. Metab. 2015, 100, 220–226. [Google Scholar] [CrossRef] [Green Version]
- Freitas, M.; Vasconcelos, A.; Gonçalves, E.; Ferrarini, E.; Vieira, G.; Cicia, D.; Cola, M.; Capasso, R.; Dutra, R. Involvement of Opioid System and TRPM8/TRPA1 Channels in the Antinociceptive Effect of Spirulina platensis. Biomolecules 2021, 11, 592. [Google Scholar] [CrossRef]
- Vieira, G.; Cavalli, J.; Gonçalves, E.C.D.; Braga, S.F.P.; Ferreira, R.S.; Santos, A.R.S.; Cola, M.; Raposo, N.R.B.; Capasso, R.; Dutra, R.C. Antidepressant-Like Effect of Terpineol in an Inflammatory Model of Depression: Involvement of the Cannabinoid System and D2 Dopamine Receptor. Biomolecules 2020, 10, 792. [Google Scholar] [CrossRef]
- Gonçalves, E.C.D.; Baldasso, G.M.; Bicca, M.A.; Paes, R.S.; Capasso, R.; Dutra, R.C. Terpenoids, Cannabimimetic Ligands, beyond the Cannabis Plant. Molecules 2020, 25, 1567. [Google Scholar] [CrossRef] [Green Version]
Goodness-of-Fit Measure | Guideline for Acceptable Fit | Initial Model | Reduced Model |
---|---|---|---|
Χ2/df | <3 | 14.9/11 = 1.3 | 20.9/23 = 0.91 |
Standardized root mean square residual (SRMR) | <0.080 | 0.041 | 0.049 |
Root mean square error of approximation (RMSEA) with 90% confidence interval | <0.06, upper limit < 0.08 | 0.05 (0.0–0.11) | 0.0 (0.0–0.06) |
Comparative fit index (CFI) | >0.95 | 0.98 | 1.0 |
Bayesian information criterion (BIC) | Lower value implies more parsimonious fit | 228.6 | 175.9 |
Parameter | Total Sample | NCP (NPS Score < 4) | CP (NPS Score ≥ 4) | p-Value (NCP Compared to CP) |
---|---|---|---|---|
N | 147 | 97 | 50 (34%) | |
Mean Age (SD, range) | 42.5 (16.4, 18–89) | 42.2 (17.5, 18–89) | 42.9 (14.0, 20–74) | p > 0.1 |
Sex | p > 0.1 | |||
Female (percent) | 45 (30.6) | 28 (28.9) | 17 (34.0) | |
Male (percent) | 102 (69.4) | 69 (71.1) | 33 (66.0) | |
Race/Ethnicity | 0.09 | |||
Non-Hispanic White | 68 (46.3) | 52 (53.6) | 16 (32.0) | |
Black or African American | 66 (44.9) | 37 (38.1) | 29 (58.0) | |
Hispanic or Latino | 11 (7.5) | 7 (7.2) | 4 (8.0) | |
Native American/Alaskan Native | 2 (1.4) | 1 (1) | 1 (2) | |
Highest Educational Level Completed | 0.09 | |||
Advanced degree (master’s or higher) | 10 (6.8) | 10 (10.3) | 0 (0.0) | |
College graduate | 24 (16.3) | 15 (15.5) | 9 (18.0) | |
Graduated high school, some college | 52 (35.4) | 37 (38.1) | 15 (30.0) | |
High school graduate, no college | 36 (24.4) | 20 (20.6) | 16 (32.0) | |
Less than high school | 25 (17.0) | 15 (15.5) | 10 (20.0) | |
In a committed relationship | 0.056 | |||
No | 57 (39.3) | 32 (33.7) | 25 (50.0) | |
Yes | 88 (60.7) | 63 (66.3) | 25 (50.0) | |
Time between injury and follow-up assessment for chronic pain and blood draw (SD, range) | 192 days (22, 156–286) | 191 (19, 156–240) | 194 (26, 160–286) | p > 0.1 |
Injury severity score (ISS; SD, range) | 10.1 (5.9, 0–29) | 9.1 (5.2, 0–24) | 12.2 (6.6, 0–29) | 0.002 |
Numerical pain score at hospitalization (SD, range) | 5.8 (2.4, 0–10) | 5.2 (2.3, 0–10) | 6.9 (2.3, 1–10) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trevino, C.M.; Hillard, C.J.; Szabo, A.; deRoon-Cassini, T.A. Serum Concentrations of the Endocannabinoid, 2-Arachidonoylglycerol, in the Peri-Trauma Period Are Positively Associated with Chronic Pain Months Later. Biomedicines 2022, 10, 1599. https://doi.org/10.3390/biomedicines10071599
Trevino CM, Hillard CJ, Szabo A, deRoon-Cassini TA. Serum Concentrations of the Endocannabinoid, 2-Arachidonoylglycerol, in the Peri-Trauma Period Are Positively Associated with Chronic Pain Months Later. Biomedicines. 2022; 10(7):1599. https://doi.org/10.3390/biomedicines10071599
Chicago/Turabian StyleTrevino, Colleen M., Cecilia J. Hillard, Aniko Szabo, and Terri A. deRoon-Cassini. 2022. "Serum Concentrations of the Endocannabinoid, 2-Arachidonoylglycerol, in the Peri-Trauma Period Are Positively Associated with Chronic Pain Months Later" Biomedicines 10, no. 7: 1599. https://doi.org/10.3390/biomedicines10071599
APA StyleTrevino, C. M., Hillard, C. J., Szabo, A., & deRoon-Cassini, T. A. (2022). Serum Concentrations of the Endocannabinoid, 2-Arachidonoylglycerol, in the Peri-Trauma Period Are Positively Associated with Chronic Pain Months Later. Biomedicines, 10(7), 1599. https://doi.org/10.3390/biomedicines10071599