Serum Free Light-Chain Ratio at Diagnosis Is Associated with Early Renal Damage in Multiple Myeloma: A Case Series Real-World Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Cohort
2.2. FLC Assay
2.3. Statistical Analysis
3. Results
3.1. Clinical Characteristics of MM Patients with Abnormal sFLC Ratio
3.2. Correlations with Clinical and Laboratory Features
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saltarella, I.; Lamanuzzi, A.; Desantis, V.; Di Marzo, L.; Melaccio, A.; Curci, P.; Annese, T.; Nico, B.; Solimando, A.G.; Bartoli, G.; et al. Myeloma cells regulate miRNA transfer from fibroblast-derived exosomes by expression of lncRNAs. J. Pathol. 2022, 256, 402–413. [Google Scholar] [CrossRef] [PubMed]
- Vincent Rajkumar, S. Multiple myeloma: 2014 Update on diagnosis; risk-stratification; and management. Am. J. Hematol. 2014, 89, 999–1009. [Google Scholar] [PubMed] [Green Version]
- Kyle, R.A.; Therneau, T.M.; Rajkumar, S.V.; Larson, D.R.; Plevak, M.F.; Melton, L.J., 3rd. Incidence of multiple myeloma in Olmsted County, Minnesota: Trend over 6 decades. Cancer 2004, 101, 2667–2674. [Google Scholar] [CrossRef] [PubMed]
- van de Donk, N.W.C.J.; Pawlyn, C.; Yong, K.L. Multiple myeloma. Lancet 2021, 397, 410–427. [Google Scholar] [CrossRef]
- Kuehl, W.M.; Bergsagel, P.L. Molecular pathogenesis of multiple myeloma and its premalignant precursor. J. Clin. Investig. 2012, 122, 3456–3463. [Google Scholar] [CrossRef]
- Bianchi, G.; Munshi, N.C. Pathogenesis beyond the cancer clone(s) in multiple myeloma. Blood 2015, 125, 3049–3058. [Google Scholar] [CrossRef] [Green Version]
- Handa, H.; Murakami, Y.; Ishihara, R.; Kimura-Masuda, K.; Masuda, Y. The Role and Function of microRNA in the Pathogenesis of Multiple Myeloma. Cancers 2019, 11, 1738. [Google Scholar] [CrossRef] [Green Version]
- Kyle, R.A.; Gertz, M.A.; Witzig, T.E.; Lust, J.A.; Lacy, M.Q.; Dispenzieri, A.; Fonseca, R.; Rajkumar, S.V.; Offord, J.R.; Larson, D.R.; et al. Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin. Proc. 2003, 78, 21–33. [Google Scholar] [CrossRef]
- Rajkumar, S.V.; Dimopoulos, M.A.; Palumbo, A.; Blade, J.; Merlini, G.; Mateos, M.V.; Kumar, S.; Hillengass, J.; Kastritis, E.; Richardson, P.; et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014, 15, e538–e548. [Google Scholar] [CrossRef]
- Schieferdecker, A.; Hörber, S.; Ums, M.; Besemer, B.; Bokemeyer, C.; Peter, A.; Weisel, K. Comparison of three different serum-free light-chain assays-implications on diagnostic and therapeutic monitoring of multiple myeloma. Blood Cancer J. 2020, 10, 2. [Google Scholar] [CrossRef]
- Rajkumar, S.V.; Kyle, R.A.; Therneau, T.M.; Melton, L.J., 3rd; Bradwell, A.R.; Clark, R.J.; Larson, D.R.; Plevak, M.F.; Dispenzieri, A.; Katzmann, J.A. Serum free light chain ratio is an independent risk factor for progression in monoclonal gammopathy of undetermined significance. Blood 2005, 106, 812–817. [Google Scholar] [CrossRef] [PubMed]
- Larsen, J.T.; Kumar, S.K.; Dispenzieri, A.; Kyle, R.A.; Katzmann, J.A.; Rajkumar, S.V. Serum free light chain ratio as a biomarker for high-risk smoldering multiple myeloma. Leukemia 2013, 27, 941–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snozek, C.L.H.; Katzmann, J.A.; Kyle, R.A.; Dispenzieri, A.; Larson, D.R.; Therneau, T.M.; Rajkumar, S.V. Prognostic value of the serum free light chain ratio in newly diagnosed myeloma: Proposed incorporation into the international staging system. Leukemia 2008, 22, 1933–1937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, B.; Tang, Y.; Zhou, J.; Zhang, P.; Li, H. Disease spectrum of abnormal serum free light chain ratio and its diagnostic significance. Oncotarget 2017, 8, 82268–82279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreau, P.; Minvielle, S. Multiple myeloma: So much progress; but so many unsolved questions. Haematologica 2013, 98, 487–489. [Google Scholar] [CrossRef] [PubMed]
- Heaney, J.L.J.; Richter, A.; Bowcock, S.; Pratt, G.; Child, J.A.; Jackson, G.; Morgan, G.; Turesson, I.; Drayson, M.T. Excluding myeloma diagnosis using revised thresholds for serum free light chain ratios and M-protein levels. Haematologica 2020, 105, e169–e171. [Google Scholar] [CrossRef]
- Dispenzieri, A.; Kyle, R.; Merlini, G.; Miguel, J.S.; Ludwig, H.; Hajek, R.; Palumbo, A.; Jagannath, S.; Blade, J.; Lonial, S.; et al. International Myeloma Working Group. International Myeloma Working Group guidelines for serum-free light chain analysis in multiple myeloma and related disorders. Leukemia 2009, 23, 215–224. [Google Scholar] [CrossRef] [Green Version]
- Milani, P.; Palladini, G.; Merlini, G. Serum-free light-chain analysis in diagnosis and management of multiple myeloma and related conditions. Scand. J. Clin. Lab. Investig. Suppl. 2016, 245, S113–S118. [Google Scholar] [CrossRef]
- Markovic, U.; Leotta, V.; Tibullo, D.; Giubbolini, R.; Romano, A.; Del Fabro, V.; Parrinello, N.L.; Cannizzaro, M.T.; Di Raimondo, F.; Conticello, C. Serum free light chains and multiple myeloma: Is it time to extend their application? Clin. Case Rep. 2020, 8, 617–624. [Google Scholar] [CrossRef] [Green Version]
- Rajkumar, S.V. Multiple myeloma: 2018 update on diagnosis; risk-stratification; and management. Am. J. Hematol. 2018, 93, 981–1114. [Google Scholar] [CrossRef] [Green Version]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajkumar, S.V.; Landgren, O.; Mateos, M.V. Smoldering multiple myeloma. Blood 2015, 125, 3069–3075. [Google Scholar] [CrossRef] [PubMed]
- Richardson, P.G.; Weller, E.; Lonial, S.; Jakubowiak, A.J.; Jagannath, S.; Raje, N.S.; Avigan, D.E.; Xie, W.; Ghobrial, I.M.; Schlossman, R.L.; et al. Lenalidomide, bortezomib, and dexamethasone combination therapy in patients with newly diagnosed multiple myeloma. Blood 2010, 116, 679–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavo, M.; Pantani, L.; Petrucci, M.T.; Patriarca, F.; Zamagni, E.; Donnarumma, D.; Crippa, C.; Boccadoro, M.; Perrone, G.; Falcone, A.; et al. GIMEMA (Gruppo Italiano Malattie Ematologiche dell’Adulto) Italian Myeloma Network. Bortezomib-thalidomide-dexamethasone is superior to thalidomide-dexamethasone as consolidation therapy after autologous hematopoietic stem cell transplantation in patients with newly diagnosed multiple myeloma. Blood 2012, 120, 9–19. [Google Scholar]
- Katzmann, J.A.; Abraham, R.S.; Dispenzieri, A.; Lust, J.A.; Kyle, R.A. Diagnostic performance of quantitative kappa and lambda free light chain assays in clinical practice. Clin. Chem. 2005, 51, 878–881. [Google Scholar] [CrossRef] [Green Version]
- Velthuis, H.T.; Knop, I.; Stam, P.; van den Broek, M.; Bos, H.K.; Hol, S.; Teunissen, E.; Fischedick, K.S.; Althaus, H.; Schmidt, B.; et al. N Latex FLC—New monoclonal high-performance assays for the determination of free light chain kappa and lambda. Clin. Chem. Lab. Med. 2011, 49, 1323–1332. [Google Scholar] [CrossRef]
- Katzmann, J.A.; Clark, R.J.; Abraham, R.S.; Bryant, S.; Lymp, J.F.; Bradwell, A.R.; Kyle, R.A. Serum reference intervals and diagnostic ranges for free kappa and free lambda immunoglobulin light chains: Relative sensitivity for detection of monoclonal light chains. Clin. Chem. 2002, 48, 1437–1444. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Anglada, L.; Cueto-Felgueroso, C.; Rosiñol, L.; Oriol, A.; Teruel, A.I.; Lopez de la Guia, A.; Bengoechea, E.; Palomera, L.; de Arriba, F.; Hernandez, J.M.; et al. GEM (Grupo Español de MM)/PETHEMA (Programa para el Estudio de la Terapéutica en Hemopatías Malignas) Cooperative Study Group. Prognostic utility of serum free light chain ratios and heavy-light chain ratios in multiple myeloma in three PETHEMA/GEM phase III clinical trials. PLoS ONE 2018, 13, e0203392. [Google Scholar]
- Klein, E.M.; Tichy, D.; Salwender, H.J.; Mai, E.K.; Duerig, J.; Weisel, K.C.; Benner, A.; Bertsch, U.; Akhavanpoor, M.; Besemer, B.; et al. Prognostic Impact of Serum Free Light Chain Ratio Normalization in Patients with Multiple Myeloma Treated within the GMMG-MM5 Trial. Cancers 2021, 13, 4856. [Google Scholar] [CrossRef]
- Dimopoulos, M.A.; Kastritis, E.; Rosinol, L.; Bladé, J.; Ludwig, H. Pathogenesis and treatment of renal failure in multiple myeloma. Leukemia 2008, 22, 1485–1493. [Google Scholar] [CrossRef] [Green Version]
- Bladé, J.; Rosiñol, L. Renal, hematologic and infectious complications in multiple myeloma. Best Pract. Res. Clin. Haematol. 2005, 18, 635–652. [Google Scholar] [CrossRef] [PubMed]
- Kellum, J.A. Diagnostic Criteria for Acute Kidney Injury: Present and Future. Crit. Care Clin. 2015, 31, 621–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaitonde, D.Y.; Cook, D.L.; Rivera, I.M. Chronic Kidney Disease: Detection and Evaluation. Am. Fam. Physician 2017, 96, 776–783. [Google Scholar]
- Yadav, P.; Cockwell, P.; Cook, M.; Pinney, J.; Giles, H.; Aung, Y.S.; Cairns, D.; Owen, R.G.; Davies, F.E.; Jackson, G.H.; et al. Serum free light chain levels and renal function at diagnosis in patients with multiple myeloma. BMC Nephrol. 2018, 19, 178. [Google Scholar] [CrossRef] [PubMed]
- Abe, Y.; Narita, K.; Kobayashi, H.; Kitadate, A.; Takeuchi, M.; Matsue, K. Normalization of the Serum Free Light Chain Ratio in Patients with Intact Immunoglobulin Multiple Myeloma Who Achieve Less Than Complete Response. Blood 2017, 130, 5380. [Google Scholar]
- Kastritis, E.; Anagnostopoulos, A.; Roussou, M.; Gika, D.; Matsouka, C.; Barmparousi, D.; Grapsa, I.; Psimenou, E.; Bamias, A.; Dimopoulos, M.A. Reversibility of renal failure in newly diagnosed multiple myeloma patients treated with high dose dexamethasone-containing regimens and the impact of novel agents. Haematologica 2007, 92, 546–549. [Google Scholar] [CrossRef]
- Chanan-Khan, A.A.; Kaufman, J.L.; Mehta, J.; Richardson, P.G.; Miller, K.C.; Lonial, S.; Munshi, N.C.; Schlossman, R.; Tariman, J.; Singhal, S. Activity and safety of bortezomib in multiple myeloma patients with advanced renal failure: A multicenter retrospective study. Blood 2007, 109, 2604–2606. [Google Scholar] [CrossRef]
- Capra, M.; Martin, T.; Moreau, P.; Baker, R.; Pour, L.; Min, C.K.; Leleu, X.; Mohty, M.; Segura, M.R.; Turgut, M.; et al. Isatuximab plus carfilzomib and dexamethasone versus carfilzomib and dexamethasone in relapsed multiple myeloma patients with renal impairment: IKEMA subgroup analysis. Haematologica 2022, 107, 1397–1409. [Google Scholar]
- Wanchoo, R.; Abudayyeh, A.; Doshi, M.; Edeani, A.; Glezerman, I.G.; Monga, D.; Rosner, M.; Jhaveri, K.D. Renal Toxicities of Novel Agents Used for Treatment of Multiple Myeloma. Clin. J. Am. Soc. Nephrol. 2017, 12, 176–189. [Google Scholar] [CrossRef]
- Argyropoulos, C.P.; Chen, S.S.; Ng, Y.H.; Roumelioti, M.E.; Shaffi, K.; Singh, P.P.; Tzamaloukas, A.H. Rediscovering Beta-2 Microglobulin As a Biomarker across the Spectrum of Kidney Diseases. Front. Med. 2017, 4, 73. [Google Scholar] [CrossRef] [Green Version]
- Rossi, D.; Fangazio, M.; De Paoli, L.; Puma, A.; Riccomagno, P.; Pinto, V.; Zigrossi, P.; Ramponi, A.; Monga, G.; Gaidano, G. Beta-2-microglobulin is an independent predictor of progression in asymptomatic multiple myeloma. Cancer 2010, 116, 2188–2200. [Google Scholar] [CrossRef] [PubMed]
- Wallington-Beddoe, C.T.; Mynott, R.L. Prognostic and predictive biomarker developments in multiple myeloma. J. Hematol. Oncol. 2021, 14, 151. [Google Scholar] [CrossRef] [PubMed]
- Greipp, P.R.; San Miguel, J.; Durie, B.G.; Crowley, J.J.; Barlogie, B.; Bladé, J.; Boccadoro, M.; Child, J.A.; Avet-Loiseau, H.; Kyle, R.A.; et al. International staging system for multiple myeloma. J. Clin. Oncol. 2005, 23, 3412–3420. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, A.; Avet-Loiseau, H.; Oliva, S.; Lokhorst, H.M.; Goldschmidt, H.; Rosinol, L.; Richardson, P.; Caltagirone, S.; Lahuerta, J.J.; Facon, T.; et al. Revised International Staging System for Multiple Myeloma: A Report From International Myeloma Working Group. J. Clin. Oncol. 2015, 33, 2863–2869. [Google Scholar] [CrossRef] [PubMed]
- Heaney, J.L.J.; Campbell, J.P.; Griffin, A.E.; Birtwistle, J.; Shemar, M.; Child, J.A.; Gregory, W.M.; Cairns, D.A.; Morgan, G.; Jackson, G.; et al. Diagnosis and monitoring for light chain only and oligosecretory myeloma using serum free light chain tests. Br. J. Haematol. 2017, 178, 220–230. [Google Scholar] [CrossRef] [PubMed]
- Dispenzieri, A.; Kyle, R.A.; Katzmann, J.A.; Therneau, T.M.; Larson, D.; Benson, J.; Clark, R.J.; Melton, L.J., 3rd; Gertz, M.A.; Kumar, S.K.; et al. Immunoglobulin free light chain ratio is an independent risk factor for progression of smoldering (asymptomatic) multiple myeloma. Blood 2008, 111, 785–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdallah, N.; Kapoor, P.; Murray, D.L.; Buadi, F.K.; Dingli, D.; Dispenzieri, A.; Gertz, M.A.; Go, R.S.; Gonsalves, W.I.; Hayman, S.R.; et al. Utility of serum free light chain ratio in response definition in patients with multiple myeloma. Blood Adv. 2020, 4, 322–326. [Google Scholar] [CrossRef]
- Abbi, K.K.; Silverman, M.; Farooq, U.; Tricot, A.; Dozeman, L.; Nadiminti, K.; Krasowski, M.D.; Tricot, G.J. Potential pitfalls of serum free light chain analysis to assess treatment response for multiple myeloma. Br. J. Haematol. 2016, 174, 536–540. [Google Scholar] [CrossRef]
- Kumar, S.; Paiva, B.; Anderson, K.C.; Durie, B.; Landgren, O.; Moreau, P.; Munshi, N.; Lonial, S.; Bladé, J.; Mateos, M.V.; et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016, 17, e328–e346. [Google Scholar] [CrossRef]
- Goicoechea, I.; Puig, N.; Cedena, M.T.; Burgos, L.; Cordón, L.; Vidriales, M.B.; Flores-Montero, J.; Gutierrez, N.C.; Calasanz, M.J.; Ramos, M.M.; et al. Deep MRD profiling defines outcome and unveils different modes of treatment resistance in standard- and high-risk myeloma. Blood 2021, 137, 49–60. [Google Scholar] [CrossRef]
- Brioli, A.; Giles, H.; Pawlyn, C.; Campbell, J.P.; Kaiser, M.F.; Melchor, L.; Jackson, G.H.; Gregory, W.M.; Owen, R.G.; Child, J.A.; et al. Serum free immunoglobulin light chain evaluation as a marker of impact from intraclonal heterogeneity on myeloma outcome. Blood 2014, 123, 3414–3419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tacchetti, P.; Cavo, M.; Rocchi, S.; Pezzi, A.; Pantani, L.; Brioli, A.; Testoni, N.; Terragna, C.; Zannetti, B.A.; Mancuso, K.; et al. Prognostic impact of serial measurements of serum-free light chain assay throughout the course of newly diagnosed multiple myeloma treated with bortezomib-based regimens. Leuk. Lymphoma 2016, 57, 2058–2564. [Google Scholar] [CrossRef] [PubMed]
- Hanbali, A.; Hassanein, M.; Rasheed, W.; Aljurf, M.; Alsharif, F. The Evolution of Prognostic Factors in Multiple Myeloma. Adv. Hematol. 2017, 2017, 4812637. [Google Scholar] [CrossRef] [Green Version]
- Mailankody, S.; Korde, N.; Lesokhin, A.M.; Lendvai, N.; Hassoun, H.; Stetler-Stevenson, M.; Landgren, O. Minimal residual disease in multiple myeloma: Bringing the bench to the bedside. Nat. Rev. Clin. Oncol. 2015, 12, 286–295. [Google Scholar] [CrossRef]
- Van de Wyngaert, Z.; Boyle, E.M. Multiparameter flow cytometry in plasma cell disorders: When in doubt; go with the flow. Br. J. Haematol. 2022, 196, 1132–1133. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Hieber, M.; Pérez-Andrés, M.; Paiva, B.; Flores-Montero, J.; Perez, J.J.; Gutierrez, N.C.; Vidriales, M.B.; Matarraz, S.; San Miguel, J.F.; Orfao, A. CD117 expression in gammopathies is associated with an altered maturation of the myeloid and lymphoid hematopoietic cell compartments and favorable disease features. Haematologica 2011, 96, 328–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arana, P.; Paiva, B.; Cedena, M.T.; Puig, N.; Cordon, L.; Vidriales, M.B.; Gutierrez, N.C.; Chiodi, F.; Burgos, L.; Anglada, L.L.; et al. Prognostic value of antigen expression in multiple myeloma: A PETHEMA/GEM study on 1265 patients enrolled in four consecutive clinical trials. Leukemia 2018, 32, 971–978. [Google Scholar] [CrossRef] [PubMed]
- Dispenzieri, A.; Rajkumar, S.V.; Gertz, M.A.; Fonseca, R.; Lacy, M.Q.; Bergsagel, P.L.; Kyle, R.A.; Greipp, P.R.; Witzig, T.E.; Reeder, C.B.; et al. Treatment of newly diagnosed multiple myeloma based on Mayo Stratification of Myeloma and Risk-adapted Therapy (mSMART): Consensus statement. Mayo Clin. Proc. 2007, 82, 323–341. [Google Scholar] [CrossRef] [Green Version]
Characteristics | n = 34 |
---|---|
Median age, years (range) | 60.5 (39–73) |
M/F | 18/16 |
ECOG Performance status | |
0 | 18 (53%) |
1 | 13 (38.2%) |
2 | 3 (8.8%) |
M-protein type | |
IgG | 20 (58.8%) |
Light chain | 5 (14.7%) |
IgD | 1 (2.9%) |
IgA | 7 (20.6%) |
Not specified | 1 (2.9%) |
Type of free light chains | |
κ/λ | 17 (50%)/17 (50%) |
R-ISS stage | |
1 | 14 (41.2%) |
2 | 12 (35.3%) |
3 | 8 (23.5%) |
Cytogenetic abnormalities | |
del(17p) | 4 (11.8%) |
Normal | 15 (44.1%) |
Others | 6 (17.6%) |
Not performed | 9 (26.5%) |
Median BM plasma cells, % (range) | 46 (10–80) |
Median M-protein, g/dL (range) | 2.68 (0–5.9) |
Median involved chain, mg/L (range) | 128 (7.9–19,300) |
Median uninvolved chain, mg/L (range) | 9.1 (1.8–54.6) |
Median FLC ratio | 16.15 (1–3641) |
Increased FLC ratio | 28/34 (82%) |
Presence of urinary Bence Jones protein | 20/34 (58.8%) |
Median β2-microglobulin, mg/dL (range) | 3.3 (1.4–19) |
Median LDH, U/L (range) | 395 (217–901) |
Median albumin, g/dL (range) | 3.35 (2–4.9) |
n = 34 | |
---|---|
First line therapy | |
PAD | 2 (5.9%) |
VD | 1 (2.9%) |
VRD | 15 (44.1%) |
VTD | 16 (47.1%) |
Auto-HSCT | |
Single/tandem | 28 (82%)/6 (18%) |
Post-HSCT treatment | 12/34 (35.3%) |
Daratumumab + RD | 2 (16.7%) |
Lenalidomide | 5 (41.6%) |
VTD/VRD | 2 (16.7%) |
>2 lines | 3 (25%) |
Maintenance treatment | 19/34 (55.9%) |
Relapse | 7/34 (20.6%) |
Best response | |
SD | 2 (5.9%) |
PR | 2 (5.9%) |
VgPR | 9 (26.5%) |
CR/sCR | 21 (61.7%) |
Deaths | 9 (26.5%) |
Median follow-up, months (range) | 42.4 (10.4–103.9) |
Characteristics | Normal sFLC Ratio | Abnormal sFLC Ratio | p Value |
---|---|---|---|
n = 5 | n = 29 | ||
Median age, years (range) | 57 (52–65) | 62 (39–73) | 0.8121 |
M/F | 2/3 | 16/13 | 0.6481 |
ECOG Performance Status | 0.3894 | ||
0–1 | 4 | 27 | |
2 | 1 | 2 | |
Presence of comorbidities | 1/5 | 17/29 | 0.1642 |
M-protein type | 0.6253 | ||
IgG/Others | 4/1 | 16/13 | |
Type of free light chains | >0.9999 | ||
κ/λ | 2/3 | 15/14 | |
R-ISS stage | 0.3086 | ||
1–2 | 5 | 21 | |
3 | 0 | 8 | |
Cytogenetic abnormalities | 0.2500 | ||
Normal/others | 3/0 | 12/10 | |
Not performed | 2 | 7 | |
Presence of del(17p)/absence of del(17p) | 0/3 | 4/22 | >0.9999 |
Not performed | 2 | 3 | |
Median M-protein, g/dL (range) | 3.12 (2.75–5.23) | 1.89 (0–5.9) | 0.1024 |
Median involved chain, mg/L (range) | 9.8 (7.9–14.9) | 163 (15.6–19, 300) | 0.3684 |
Median uninvolved chain, mg/L (range) | 8 (6.1–10.9) | 9.4 (1.8–54.6) | 0.4170 |
Median FLC ratio | 1.3 (1–1.5) | 18.5 (2.4–3641) | 0.4598 |
Presence of urinary Bence Jones protein | 1/5 | 19/29 | 0.1349 |
Median β2-microglobulin, mg/dL (range) | 3.3 (2.92–3.8) | 3.3 (1.4–19) | 0.9874 |
Abnormal/normal β2-microglobulin | 5/0 | 23/6 | 0.5585 |
Median LDH, U/L (range) | 402 (364–901) | 394 (217–755) | 0.1959 |
Median albumin, g/dL (range) | 2.9 (2.7–3.8) | 3.4 (2–4.9) | 0.2878 |
Median GFR, mL/min (range) | 112 (55–115) | 90 (4–123) | 0.2214 |
Abnormal GFR | 1/5 | 7/29 | >0.9999 |
Presence of renal failure | 1/5 | 8/29 | >0.9999 |
Presence of osteolytic lesions | 3/5 | 17/29 | 0.6343 |
More than 2 osteolytic lesions | 1/5 | 13/29 | >0.9999 |
Presence of hypercalcemia | 1/5 | 2/29 | 0.3894 |
Presence of anemia | 3/5 | 20/29 | >0.9999 |
Pre-HSCT renal failure | 1/5 | 7/29 | >0.9999 |
Pre-HSCT status | >0.9999 >0.9999 | ||
CR | 4 | 19 | |
SD/PR | 1 | 10 | |
Auto-HSCT | |||
Single/tandem | 4/1 | 24/5 | |
Maintenance treatment | 2/5 | 17/29 | 0.6343 |
Relapse | 2/5 | 5/29 | 0.2684 |
Best response | 0.1317 | ||
SD | 0 | 2 | |
PR | 0 | 2 | |
VgPR | 0 | 9 | |
CR/sCR | 5 | 16 | |
Deaths | 1/5 | 8/29 | >0.9999 |
Median OS, months (range) | 68.9 (23.9–73.9) | 41.9 (10.4–103.9) | 0.8415 |
Median PFS, months (range) | 67 (20–73.9) | 40.6 (6.9–103.9) | 0.7238 |
Characteristics | Normal sFLC Ratio n = 5 | Abnormal sFLC Ratio n = 29 | p Value |
---|---|---|---|
Median CD38+CD138+ plasma cells, % (range) | 2 (0.6–15) | 12.2 (0.1–41) | 0.1751 |
Median lymphocytes, % (range) | 16 (9–35) | 18 (1–35) | 0.9429 |
Median monocytes, % (range) | 4 (3–7) | 5 (1–11) | 0.8151 |
Median granulocytes, % (range) | 68 (54–79) | 64 (28–72) | 0.2600 |
Median CD34+ cells, % (range) | 0.6 (0–1.1) | 0.6 (0.2–1.4) | 0.7571 |
Plasma cells/residual hemopoiesis | 1.43 (0.2–1.95) | 2.14 (0.3–38.6) | 0.1812 |
CD56+ plasma cells | 5/5 | 25/27 | >0.9999 |
CD19+ plasma cells | 2/5 | 4/27 | 0.2779 |
CD45+ plasma cells | 2/5 | 10/27 | >0.9999 |
CD56+CD19+CD45+ plasma cells | 1/5 | 0/27 | 0.1562 |
Double positive plasma cells | 2/5 | 13/27 | >0.9999 |
Univariate | |||
---|---|---|---|
β Coefficient | 95% CI | p Value | |
β-2 microglobulin | 0.75 | 99.9–192.7 | <0.005 |
Gender (male) | −0.19 | −723.5/220.1 | 0.28 |
Age | −0.05 | −36/26.1 | 0.75 |
MM type (light chain) | 0.61 | 653.5/1827.3 | <0.005 |
M-protein at diagnosis | −0.33 | −238.3/2 | 0.54 |
Light-chain type (lambda) | 0.17 | −248.4/695.4 | 0.34 |
LDH | 0.07 | −1.2/1.8 | 0.66 |
Albumin | 0.004 | −394.5/404.2 | 0.98 |
% BM plasma cells | −0.09 | −30.9/18.8 | 0.62 |
Extramedullary disease (yes) | −0.05 | −671.4/497.9 | 0.76 |
Multivariate | |||
β coefficient | 95% CI | p value | |
MM type (light chain) | 0.28 | −2.5/1128.1 | 0.05 |
M-protein at diagnosis | −0.11 | −131.3/50.6 | 0.37 |
β-2 microglobulin | 0.6 | 67.7/166.3 | <0.005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Novellis, D.; Fontana, R.; Carobene, A.; Serio, B.; Ferrara, I.; Martorelli, M.C.; Mettivier, L.; Guariglia, R.; Luponio, S.; Ruggiero, I.; et al. Serum Free Light-Chain Ratio at Diagnosis Is Associated with Early Renal Damage in Multiple Myeloma: A Case Series Real-World Study. Biomedicines 2022, 10, 1657. https://doi.org/10.3390/biomedicines10071657
De Novellis D, Fontana R, Carobene A, Serio B, Ferrara I, Martorelli MC, Mettivier L, Guariglia R, Luponio S, Ruggiero I, et al. Serum Free Light-Chain Ratio at Diagnosis Is Associated with Early Renal Damage in Multiple Myeloma: A Case Series Real-World Study. Biomedicines. 2022; 10(7):1657. https://doi.org/10.3390/biomedicines10071657
Chicago/Turabian StyleDe Novellis, Danilo, Raffaele Fontana, Angela Carobene, Bianca Serio, Idalucia Ferrara, Maria Carmen Martorelli, Laura Mettivier, Roberto Guariglia, Serena Luponio, Immacolata Ruggiero, and et al. 2022. "Serum Free Light-Chain Ratio at Diagnosis Is Associated with Early Renal Damage in Multiple Myeloma: A Case Series Real-World Study" Biomedicines 10, no. 7: 1657. https://doi.org/10.3390/biomedicines10071657
APA StyleDe Novellis, D., Fontana, R., Carobene, A., Serio, B., Ferrara, I., Martorelli, M. C., Mettivier, L., Guariglia, R., Luponio, S., Ruggiero, I., D’Addona, M., Di Leo, T., Giudice, V., & Selleri, C. (2022). Serum Free Light-Chain Ratio at Diagnosis Is Associated with Early Renal Damage in Multiple Myeloma: A Case Series Real-World Study. Biomedicines, 10(7), 1657. https://doi.org/10.3390/biomedicines10071657