HDL-apoA-II Is Strongly Associated with 1-Year Mortality in Acute Heart Failure Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patients
2.2. Laboratory Procedures
2.3. Lipoprotein Profiling via Nuclear Magnetic Resonance (NMR) Spectroscopy
2.4. Statistics
3. Results
3.1. Clinical Characteristics and Medication
3.2. Laboratory Parameters
3.3. Association between HDL Parameters and 1-Year Mortality in AHF Patients
3.4. Correlation Analyses of HDL-apoA-II, HDL2-apoA-II, and HDL3-apoA-II with Clinical and Laboratory Parameters
3.5. Differences in HDL-apoA-II, HDL2-apoA-II, and HDL3-apoA-II in Various Groups of AHF Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roger, V.L.; Weston, S.A.; Redfield, M.M.; Hellermann-Homan, J.P.; Killian, J.; Yawn, B.P.; Jacobsen, S.J. Trends in heart failure incidence and survival in a community-based population. JAMA 2004, 292, 344–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.; Gonzalez-Juanatey, J.R.; Harjola, V.P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Rev. Esp. Cardiol. 2016, 69, 1167. [Google Scholar] [PubMed] [Green Version]
- Wende, A.R.; Brahma, M.K.; McGinnis, G.R.; Young, M.E. Metabolic Origins of Heart Failure. JACC Basic Transl. Sci. 2017, 2, 297–310. [Google Scholar] [CrossRef] [PubMed]
- Mentz, R.J.; O’Connor, C.M. Pathophysiology and clinical evaluation of acute heart failure. Nat. Rev. Cardiol. 2016, 13, 28–35. [Google Scholar] [CrossRef]
- Gnanaraj, J.F.; von Haehling, S.; Anker, S.D.; Raj, D.S.; Radhakrishnan, J. The relevance of congestion in the cardio-renal syndrome. Kidney Int. 2013, 83, 384–391. [Google Scholar] [CrossRef] [Green Version]
- Mullens, W.; Abrahams, Z.; Francis, G.S.; Sokos, G.; Taylor, D.O.; Starling, R.C.; Young, J.B.; Tang, W.H. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J. Am. Coll. Cardiol. 2009, 53, 589–596. [Google Scholar] [CrossRef] [Green Version]
- Hunter, W.G.; Kelly, J.P.; McGarrah, R.W., 3rd; Kraus, W.E.; Shah, S.H. Metabolic Dysfunction in Heart Failure: Diagnostic, Prognostic, and Pathophysiologic Insights From Metabolomic Profiling. Curr. Heart Fail. Rep. 2016, 13, 119–131. [Google Scholar] [CrossRef] [Green Version]
- De Goma, E.M.; Rader, D.J. High-density lipoprotein particle number: A better measure to quantify high-density lipoprotein? J. Am. Coll. Cardiol. 2012, 60, 517–520. [Google Scholar] [CrossRef] [Green Version]
- Kontush, A. HDL particle number and size as predictors of cardiovascular disease. Front. Pharmacol. 2015, 6, 218. [Google Scholar] [CrossRef] [Green Version]
- Rosenson, R.S.; Brewer, H.B., Jr.; Chapman, M.J.; Fazio, S.; Hussain, M.M.; Kontush, A.; Krauss, R.M.; Otvos, J.D.; Remaley, A.T.; Schaefer, E.J. HDL measures, particle heterogeneity, proposed nomenclature, and relation to atherosclerotic cardiovascular events. Clin. Chem. 2011, 57, 392–410. [Google Scholar] [CrossRef] [Green Version]
- Alaupovic, P. Apoliproproteins and lipoproteins. Atherosclerosis 1971, 13, 141–146. [Google Scholar] [CrossRef]
- Bekaert, E.D.; Alaupovic, P.; Knight-Gibson, C.; Norum, R.A.; Laux, M.J.; Ayrault-Jarrier, M. Isolation and partial characterization of lipoprotein A-II (LP-A-II) particles of human plasma. Biochim. Biophys. Acta 1992, 1126, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Cheung, M.C.; Albers, J.J. Characterization of lipoprotein particles isolated by immunoaffinity chromatography. Particles containing A-I and A-II and particles containing A-I but no A-II. J. Biol. Chem. 1984, 259, 12201–12209. [Google Scholar] [CrossRef]
- James, R.W.; Hochstrasser, D.; Tissot, J.D.; Funk, M.; Appel, R.; Barja, F.; Pellegrini, C.; Muller, A.F.; Pometta, D. Protein heterogeneity of lipoprotein particles containing apolipoprotein A-I without apolipoprotein A-II and apolipoprotein A-I with apolipoprotein A-II isolated from human plasma. J. Lipid Res. 1988, 29, 1557–1571. [Google Scholar] [CrossRef]
- Maiga, S.F.; Kalopissis, A.D.; Chabert, M. Apolipoprotein A-II is a key regulatory factor of HDL metabolism as appears from studies with transgenic animals and clinical outcomes. Biochimie 2014, 96, 56–66. [Google Scholar] [CrossRef]
- Gao, X.; Yuan, S.; Jayaraman, S.; Gursky, O. Role of apolipoprotein A-II in the structure and remodeling of human high-density lipoprotein (HDL): Protein conformational ensemble on HDL. Biochemistry 2012, 51, 4633–4641. [Google Scholar] [CrossRef] [Green Version]
- Barbaras, R.; Puchois, P.; Fruchart, J.C.; Ailhaud, G. Cholesterol efflux from cultured adipose cells is mediated by LpAI particles but not by LpAI:AII particles. Biochem. Biophys. Res. Commun. 1987, 142, 63–69. [Google Scholar] [CrossRef]
- De Beer, M.C.; Castellani, L.W.; Cai, L.; Stromberg, A.J.; de Beer, F.C.; van der Westhuyzen, D.R. ApoA-II modulates the association of HDL with class B scavenger receptors SR-BI and CD36. J. Lipid Res. 2004, 45, 706–715. [Google Scholar] [CrossRef] [Green Version]
- Kido, T.; Kurata, H.; Kondo, K.; Itakura, H.; Okazaki, M.; Urata, T.; Yokoyama, S. Bioinformatic Analysis of Plasma Apolipoproteins A-I and A-II Revealed Unique Features of A-I/A-II HDL Particles in Human Plasma. Sci. Rep. 2016, 6, 31532. [Google Scholar] [CrossRef] [Green Version]
- Gomaraschi, M.; Ossoli, A.; Castelnuovo, S.; Simonelli, S.; Pavanello, C.; Balzarotti, G.; Arca, M.; Di Costanzo, A.; Sampietro, T.; Vaudo, G.; et al. Depletion in LpA-I:A-II particles enhances HDL-mediated endothelial protection in familial LCAT deficiency. J. Lipid Res. 2017, 58, 994–1001. [Google Scholar] [CrossRef] [Green Version]
- Gomaraschi, M.; Sinagra, G.; Serdoz, L.V.; Pitzorno, C.; Fonda, M.; Cattin, L.; Calabresi, L.; Franceschini, G. The plasma concentration of Lpa-I:A-II particles as a predictor of the inflammatory response in patients with ST-elevation myocardial infarction. Atherosclerosis 2009, 202, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Weng, W.; Brandenburg, N.A.; Zhong, S.; Halkias, J.; Wu, L.; Jiang, X.C.; Tall, A.; Breslow, J.L. ApoA-II maintains HDL levels in part by inhibition of hepatic lipase. Studies In apoA-II and hepatic lipase double knockout mice. J. Lipid Res. 1999, 40, 1064–1070. [Google Scholar] [CrossRef]
- Castellani, L.W.; Navab, M.; van Lenten, B.J.; Hedrick, C.C.; Hama, S.Y.; Goto, A.M.; Fogelman, A.M.; Lusis, A.J. Overexpression of apolipoprotein AII in transgenic mice converts high density lipoproteins to proinflammatory particles. J. Clin. Investig. 1997, 100, 464–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribas, V.; Sanchez-Quesada, J.L.; Anton, R.; Camacho, M.; Julve, J.; Escola-Gil, J.C.; Vila, L.; Ordonez-Llanos, J.; Blanco-Vaca, F. Human apolipoprotein A-II enrichment displaces paraoxonase from HDL and impairs its antioxidant properties: A new mechanism linking HDL protein composition and antiatherogenic potential. Circ. Res. 2004, 95, 789–797. [Google Scholar] [CrossRef] [PubMed]
- Mishra, M.; Muthuramu, I.; Aboumsallem, J.P.; Kempen, H.; de Geest, B. Reconstituted HDL (Milano) Treatment Efficaciously Reverses Heart Failure with Preserved Ejection Fraction in Mice. Int. J. Mol. Sci. 2018, 19, 3399. [Google Scholar] [CrossRef] [Green Version]
- Mishra, M.; Muthuramu, I.; Kempen, H.; de Geest, B. Administration of apo A-I (Milano) nanoparticles reverses pathological remodelling, cardiac dysfunction, and heart failure in a murine model of HFpEF associated with hypertension. Sci. Rep. 2020, 10, 8382. [Google Scholar] [CrossRef]
- Aboumsallem, J.P.; Mishra, M.; Amin, R.; Muthuramu, I.; Kempen, H.; de Geest, B. Successful treatment of established heart failure in mice with recombinant HDL (Milano). Br. J. Pharmacol. 2018, 175, 4167–4182. [Google Scholar] [CrossRef] [Green Version]
- Hunter, W.G.; McGarrah, R.W., 3rd; Kelly, J.P.; Khouri, M.G.; Craig, D.M.; Haynes, C.; Felker, G.M.; Hernandez, A.F.; Velazquez, E.J.; Kraus, W.E.; et al. High-Density Lipoprotein Particle Subfractions in Heart Failure With Preserved or Reduced Ejection Fraction. J. Am. Coll. Cardiol. 2019, 73, 177–186. [Google Scholar] [CrossRef]
- Iwaoka, M.; Obata, J.E.; Abe, M.; Nakamura, T.; Kitta, Y.; Kodama, Y.; Kawabata, K.; Takano, H.; Fujioka, D.; Saito, Y.; et al. Association of low serum levels of apolipoprotein A-I with adverse outcomes in patients with nonischemic heart failure. J. Card. Fail. 2007, 13, 247–253. [Google Scholar] [CrossRef]
- Gombos, T.; Forhecz, Z.; Pozsonyi, Z.; Janoskuti, L.; Prohaszka, Z.; Karadi, I. Long-Term Survival and Apolipoprotein A1 Level in Chronic Heart Failure: Interaction with Tumor Necrosis Factor alpha -308 G/A Polymorphism. J. Card. Fail. 2017, 23, 113–120. [Google Scholar] [CrossRef]
- Potocnjak, I.; Degoricija, V.; Trbusic, M.; Pregartner, G.; Berghold, A.; Marsche, G.; Frank, S. Serum Concentration of HDL Particles Predicts Mortality in Acute Heart Failure Patients. Sci. Rep. 2017, 7, 46642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Medical. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr.; et al. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [PubMed] [Green Version]
- American Diabetes. Diagnosis and classification of diabetes mellitus. Diabetes Care 2014, 37, S81–S90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mancia, G.; Fagard, R.; Narkiewicz, K.; Redon, J.; Zanchetti, A.; Bohm, M.; Christiaens, T.; Cifkova, R.; de Backer, G.; Dominiczak, A.; et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur. Heart J. 2013, 34, 2159–2219. [Google Scholar] [PubMed] [Green Version]
- Mitchell, C.; Rahko, P.S.; Blauwet, L.A.; Canaday, B.; Finstuen, J.A.; Foster, M.C.; Horton, K.; Ogunyankin, K.O.; Palma, R.A. Velazquez, E.J. Guidelines for Performing a Comprehensive Transthoracic Echocardiographic Examination in Adults: Recommendations from the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2019, 32, 1–64. [Google Scholar] [CrossRef]
- Warnick, G.R.; Knopp, R.H.; Fitzpatrick, V.; Branson, L. Estimating low-density lipoprotein cholesterol by the Friedewald equation is adequate for classifying patients on the basis of nationally recommended cutpoints. Clin. Chem. 1990, 36, 15–19. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Schilcher, I.; Stadler, J.T.; Lechleitner, M.; Hrzenjak, A.; Berghold, A.; Pregartner, G.; Lhomme, M.; Holzer, M.; Korbelius, M.; Reichmann, F.; et al. Endothelial Lipase Modulates Paraoxonase 1 Content and Arylesterase Activity of HDL. Int. J. Mol. Sci. 2021, 22, 719. [Google Scholar] [CrossRef]
- Loungani, R.S.; Teerlink, J.R.; Metra, M.; Allen, L.A.; Butler, J.; Carson, P.E.; Chen, C.W.; Cotter, G.; Davison, B.A.; Eapen, Z.J.; et al. Cause of Death in Patients With Acute Heart Failure: Insights From RELAX-AHF-2. JACC Heart Fail. 2020, 8, 999–1008. [Google Scholar] [CrossRef]
- Ambrosy, A.P.; Fonarow, G.C.; Butler, J.; Chioncel, O.; Greene, S.J.; Vaduganathan, M.; Nodari, S.; Lam, C.S.P.; Sato, N.; Shah, A.N.; et al. The global health and economic burden of hospitalizations for heart failure: Lessons learned from hospitalized heart failure registries. J. Am. Coll. Cardiol. 2014, 63, 1123–1133. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, N.E.; Januzzi, J.L., Jr. Established and Emerging Roles of Biomarkers in Heart Failure. Circ. Res. 2018, 123, 614–629. [Google Scholar] [CrossRef] [PubMed]
- Emmens, J.E.; Jones, D.J.L.; Cao, T.H.; Chan, D.C.S.; Romaine, S.P.R.; Quinn, P.A.; Anker, S.D.; Cleland, J.G.; Dickstein, K.; Filippatos, G.; et al. Proteomic diversity of high-density lipoprotein explains its association with clinical outcome in patients with heart failure. Eur. J. Heart Fail. 2018, 20, 260–267. [Google Scholar] [CrossRef]
- Teis, A.; Cediel, G.; Amigo, N.; Julve, J.; Aranyo, J.; Andres-Cordon, J.; Puig-Jove, C.; Castelblanco, E.; Gual-Capllonch, F.; Ferrer-Sistach, E.; et al. Particle size and cholesterol content of circulating HDL correlate with cardiovascular death in chronic heart failure. Sci. Rep. 2021, 11, 3141. [Google Scholar] [CrossRef]
- Biegus, J.; Demissei, B.; Postmus, D.; Cotter, G.; Davison, B.A.; Felker, G.M.; Filippatos, G.; Gimpelewicz, C.; Greenberg, B.; Metra, M.; et al. Hepatorenal dysfunction identifies high-risk patients with acute heart failure: Insights from the RELAX-AHF trial. ESC Heart Fail. 2019, 6, 1188–1198. [Google Scholar] [CrossRef] [Green Version]
- Anker, S.D.; Chua, T.P.; Ponikowski, P.; Harrington, D.; Swan, J.W.; Kox, W.J.; Poole-Wilson, P.A.; Coats, A.J. Hormonal changes and catabolic/anabolic imbalance in chronic heart failure and their importance for cardiac cachexia. Circulation 1997, 96, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Ambrosy, A.P.; Pang, P.S.; Khan, S.; Konstam, M.A.; Fonarow, G.C.; Traver, B.; Maggioni, A.P.; Cook, T.; Swedberg, K.; Burnett, J.C., Jr.; et al. Investigators ET. Clinical course and predictive value of congestion during hospitalization in patients admitted for worsening signs and symptoms of heart failure with reduced ejection fraction: Findings from the EVEREST trial. Eur. Heart J. 2013, 34, 835–843. [Google Scholar] [CrossRef] [Green Version]
- Degoricija, V.; Trbusic, M.; Potocnjak, I.; Radulovic, B.; Teresak, S.D.; Pregartner, G.; Berghold, A.; Tiran, B.; Frank, S. Acute Heart Failure developed as worsening of Chronic Heart Failure is associated with increased mortality compared to de novo cases. Sci. Rep. 2018, 8, 9587. [Google Scholar] [CrossRef]
- Mishra, M.; de Geest, B. High-Density Lipoprotein-Targeted Therapies for Heart Failure. Biomedicines 2020, 8, 620. [Google Scholar] [CrossRef]
- Spillmann, F.; de Geest, B.; Muthuramu, I.; Amin, R.; Miteva, K.; Pieske, B.; Tschope, C.; van Linthout, S. Apolipoprotein A-I gene transfer exerts immunomodulatory effects and reduces vascular inflammation and fibrosis in ob/ob mice. J. Inflamm. 2016, 13, 25. [Google Scholar] [CrossRef] [Green Version]
- Yuhanna, I.S.; Zhu, Y.; Cox, B.E.; Hahner, L.D.; Osborne-Lawrence, S.; Lu, P.; Marcel, Y.L.; Anderson, R.G.; Mendelsohn, M.E.; Hobbs, H.H.; et al. High-density lipoprotein binding to scavenger receptor-BI activates endothelial nitric oxide synthase. Nat. Med. 2001, 7, 853–857. [Google Scholar] [CrossRef] [PubMed]
- Schultz, J.R.; Verstuyft, J.G.; Gong, E.L.; Nichols, A.V.; Rubin, E.M. Protein composition determines the anti-atherogenic properties of HDL in transgenic mice. Nature 1993, 365, 762–764. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Niimi, M.; Nishijima, K.; Waqar, A.B.; Yu, Y.; Koike, T.; Kitajima, S.; Liu, E.; Inoue, T.; Kohashi, M.; et al. Human apolipoprotein A-II protects against diet-induced atherosclerosis in transgenic rabbits. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 224–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luc, G.; Bard, J.M.; Ferrieres, J.; Evans, A.; Amouyel, P.; Arveiler, D.; Fruchart, J.C.; Ducimetiere, P. Value of HDL cholesterol, apolipoprotein A-I, lipoprotein A-I, and lipoprotein A-I/A-II in prediction of coronary heart disease: The PRIME Study. Prospective Epidemiological Study of Myocardial Infarction. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 1155–1161. [Google Scholar] [CrossRef] [Green Version]
- Asztalos, B.F.; Demissie, S.; Cupples, L.A.; Collins, D.; Cox, C.E.; Horvath, K.V.; Bloomfield, H.E.; Robins, S.J.; Schaefer, E.J. LpA-I, LpA-I:A-II HDL and CHD-risk: The Framingham Offspring Study and the Veterans Affairs HDL Intervention Trial. Atherosclerosis 2006, 188, 59–67. [Google Scholar] [CrossRef]
Alive (n = 197) | Deceased (n = 118) | All (n = 315) | p-Value | |
---|---|---|---|---|
Demographics | ||||
Age (years) | 72.5 (10.4) | 77.0 (10.1) | 74.2 (10.5) | <0.001 |
Sex, Female | 85 (43.1%) | 51 (43.2%) | 136 (43.2%) | 1.000 |
Comorbidities | ||||
Hypertension | 186 (94.4%) | 108 (91.5%) | 294 (93.3%) | 0.355 |
T1DM | 2 (1.0%) | 2 (1.7%) | 4 (1.3%) | 0.632 |
T2DM | 76 (38.6%) | 56 (47.5%) | 132 (41.9%) | 0.127 |
CAD | 100 (50.8%) | 56 (47.5%) | 156 (49.5%) | 0.642 |
CMP | 173 (87.8%) | 115 (97.5%) | 288 (91.4%) | 0.003 |
AF | 98 (49.7%) | 72 (61.0%) | 170 (54.0%) | 0.062 |
CKD | 72 (36.5%) | 71 (60.2%) | 143 (45.4%) | <0.001 |
COPD | 45 (22.8%) | 39 (33.1%) | 84 (26.7%) | 0.050 |
MetS | 130 (66.0%) | 87 (73.7%) | 217 (68.9%) | 0.168 |
AHF type | 0.003 | |||
New onset AHF | 24 (12.2%) | 3 (2.5)% | 27 (8.6%) | |
AHF following CHF | 173 (87.8%) | 115 (97.5%) | 288 (91.4%) | |
Physical examination at admission | ||||
BMI (kg/m2) | 27.4 (17.0–46.7) | 29.1 (18.4–65.3) | 28.0 (17.0–65.3) | 0.067 |
MAP (mmHg) | 108.1 (24.2) | 96.0 (19.5) | 103.6 (23.3) | <0.001 |
Heart rate (beats/min) | 103.8 (25.8) | 95.3 (27.5) | 100.6 (26.7) | 0.006 |
Respiratory rate (breaths/min) | 29.3 (6.9) | 28.8 (6.0) | 29.1 (6.5) | 0.474 |
Signs and symptoms | ||||
Symptom duration (days) | 5.0 (1.0–5.0) | 5.0 (1.0–5.0) | 5.0 (1.0–5.0) | 0.022 |
Rales or crackles | 193 (98.0%) | 118 (100.0%) | 311 (98.7%) | 0.301 |
Dyspnoea | 196 (99.5%) | 118 (100%) | 314 (99.7%) | 1.000 |
Orthopnoea | 184 (93.4%) | 115 (97.5%) | 299 (94.9%) | 0.183 |
JVD | 97 (49.2%) | 77 (65.3%) | 174 (55.2%) | 0.007 |
Enlarged liver | 95 (48.2%) | 81 (68.6%) | 176 (55.9%) | <0.001 |
Peripheral edema | 114 (57.9%) | 90 (76.3%) | 204 (64.8%) | <0.001 |
Ascites | 20 (10.2%) | 29 (24.6%) | 49 (15.6%) | 0.001 |
NYHA class | 0.305 | |||
3 | 13 (6.6%) | 4 (3.4%) | 17 (5.4%) | |
4 | 184 (93.4%) | 114 (96.6%) | 298 (94.6%) | |
AHF presentation | 0.030 | |||
Worsening of CHF | 118 (59.9%) | 90 (76.3%) | 208 (66.0%) | |
Hypertensive AHF | 27 (13.7%) | 7 (5.9%) | 34 (10.8%) | |
Isolated right-sided HF | 3 (1.5%) | 0 (0.0%) | 3 (1.0%) | |
ACS and AHF | 30 (15.2%) | 13 (11.0%) | 43 (13.7%) | |
Pulmonary edema | 15 (7.6%) | 8 (6.8%) | 23 (7.3%) | |
Cardiogenic shock | 4 (2.0%) | 0 (0.0%) | 4 (1.3%) | |
AHF class | 0.575 | |||
HFrEF, EF < 40% | 88 (44.9%) | 55 (51.4%) | 143 (47.2%) | |
HFmrEF, EF 41–49% | 55 (28.1%) | 26 (24.3%) | 81 (26.7%) | |
HFpEF, EF ≥ 50% | 53 (27.3) | 26 (24.3%) | 79 (26.1%) | |
Echocardiography | ||||
LVEDd/BSA (mm/m2) | 29.1 (4.9) | 28.5 (5.2) | 28.8 (5.0) | 0.346 |
IVS (mm) | 12.7 (2.1) | 13.3 (2.4) | 12.9 (2.2) | 0.038 |
PW (mm) | 12.5 (1.9) | 13.1 (1.8) | 12.7 (1.9) | 0.016 |
LVEF (%) | 40.1 (11.9) | 39.1 (12.6) | 39.8 (12.1) | 0.455 |
SPAP (mmHg) | 47.0 (30.0–90.0) | 50.0 (30.0–102.0) | 50.0 (30.0–102.0) | 0.005 |
Alive (n = 197) | Deceased (n = 118) | All (n = 315) | p-Value | |
---|---|---|---|---|
Albumin (g/L) | 38.2 (19.7–48.9) | 36.7 (21.8–56.5) | 37.8 (19.7–56.5) | 0.017 |
AST (U/L) | 28.0 (10.0–1720.0) | 27.0 (6.0–1080.0) | 28.0 (6.0–1720.0) | 0.427 |
ALT (U/L) | 25.0 (7.0–1082.0) | 21.0 (6.0–1168.0) | 25.0 (6.0–1168.0) | 0.031 |
CK (U/L) | 105.0 (13.0–8135.0) | 78.0 (20.0–2414.0) | 93.0 (13.0–8135.0) | 0.198 |
LDH (U/L) | 252.0 (119.0–3401.0) | 283.0 (111.0–2753.0) | 265.0 (111.0–3401.0) | 0.148 |
BUN (mmol/L) | 8.3 (3.0–34.7) | 12.3 (3.1–32.2) | 9.6 (3.0–34.7) | <0.001 |
Creatinine (µmol/L) | 107.0 (58.0–303.0) | 131.5 (59.0–366.0) | 117.0 (58.0–366.0) | <0.001 |
eGFR (mL/min/1.73 m2) | 54.0 (12.1–103.5) | 38.4 (10.8–98.5) | 46.6 (10.8–103.5) | <0.001 |
Sodium (mmol/L) | 140.0 (112.0–147.0) | 138.0 (122.0–148.0) | 140.0 (112.0–148.0) | <0.001 |
Potassium (mmol/L) | 4.5 (3.2–6.3) | 4.5 (3.1–7.1) | 4.5 (3.1–7.1) | 0.091 |
Chloride (mmol/L) | 104.0 (78.0–115.0) | 100.0 (82.0–112.0) | 103.0 (78.0–115.0) | <0.001 |
hsTnI (ng/L) | 39.0 (10.0–50,000.0) | 61.0 (10.0–32,364.0) | 46.0 (10.0–50,000.0) | 0.898 |
NT-proBNP (pg/mL) | 5350.0 (263.0–70,000.0) | 10,733.0 (226.0–70,000.0) | 6692.0 (226.0–70,000.0) | <0.001 |
CRP (mg/L) | 10.3 (0.6–246.5) | 24.9 (0.7–240.0) | 12.2 (0.6–246.5) | <0.001 |
IL-6 (pg/mL) | 22.1 (2.4–1848.0) | 40.6 (3.4–2800.0) | 25.1 (2.4–2800.0) | 0.136 |
TC (mmol/L) | 3.8 (1.8–9.6) | 3.3 (1.6–8.0) | 3.5 (1.6–9.6) | <0.001 |
HDL-C (mmol/L) | 1.1 (0.4–3.0) | 1.1 (0.2–2.5) | 1.1 (0.2–3.0) | 0.025 |
LDL-C (mmol/L) | 2.0 (0.5–7.9) | 1.7 (0.6–5.9) | 1.9 (0.5–7.9) | <0.001 |
Triglycerides (mmol/L) | 1.3 (0.6–8.9) | 1.3 (0.6–2.1) | 1.3 (0.6–8.9) | 0.064 |
Erythrocytes (×1012/L) | 4.7 (3.3–6.3) | 4.4 (2.7–6.4) | 4.6 (2.7–6.4) | <0.001 |
Hemoglobin (g/L) | 138.0 (93.0–185.0) | 126.0 (54.0–170.0) | 134.0 (54.0–185.0) | <0.001 |
INR | 1.2 (0.8–5.3) | 1.3 (0.8–6.1) | 1.2 (0.8–6.1) | 0.077 |
Univariable | Adjusted * | ||||||
---|---|---|---|---|---|---|---|
SD | HR (95% CI) per 1 SD | p-Value | Events/n | HR (95% CI) per 1 SD | p-Value | Events/n | |
HDL-apoA-II | 6.2 | 0.50 (0.41–0.62) | <0.001 | 117/314 | 0.67 (0.47–0.94) | 0.020 | 111/302 |
HDL1-apoA-II | 1.5 | 1.05 (0.89–1.25) | 0.559 | 117/314 | 1.06 (0.85–1.32) | 0.600 | 111/302 |
HDL2-apoA-II | 0.9 | 0.73 (0.60–0.89) | 0.002 | 117/314 | 0.72 (0.54–0.95) | 0.019 | 111/302 |
HDL3-apoA-II | 1.6 | 0.51 (0.40–0.63) | <0.001 | 117/314 | 0.59 (0.43–0.80) | <0.001 | 111/302 |
HDL4-apoA-II | 5.0 | 0.51 (0.42–0.63) | <0.001 | 117/314 | 0.81 (0.60–1.10) | 0.185 | 111/302 |
HDL-apoA-I | 29.4 | 0.66 (0.54–0.80) | <0.001 | 117/314 | 1.00 (0.76–1.33) | 0.980 | 111/302 |
HDL1-apoA-I | 16.4 | 1.12 (0.95–1.32) | 0.172 | 117/314 | 1.13 (0.92–1.39) | 0.241 | 111/302 |
HDL2-apoA-I | 4.6 | 0.77 (0.63–0.94) | 0.011 | 117/314 | 0.98 (0.77–1.24) | 0.839 | 111/302 |
HDL3-apoA-I | 6.1 | 0.56 (0.46–0.69) | <0.001 | 117/314 | 0.79 (0.60–1.04) | 0.096 | 111/302 |
HDL4-apoA-I | 16.5 | 0.53 (0.43–0.65) | <0.001 | 117/314 | 0.92 (0.67–1.28) | 0.632 | 111/302 |
HDL-p | 8.3 | 0.53 (0.43–0.65) | <0.001 | 118/314 | 0.77 (0.55–1.07) | 0.114 | 112/302 |
LHDL-p | 3.3 | 0.98 (0.81–1.19) | 0.836 | 100/268 | 1.17 (0.94–1.46) | 0.150 | 97/262 |
SHDL-p | 7.4 | 0.56 (0.44–0.70) | <0.001 | 101/290 | 0.85 (0.62–1.18) | 0.330 | 97/280 |
HDL-apoA-II (mg/dL) | HDL2-apoA-II (mg/dL) | HDL3-apoA-II (mg/dL) | ||
---|---|---|---|---|
CAD | no (n = 158) | 23.3 (7.8–44.6) | 3.2 (1.3–6.4) | 4.5 (1.2–9.8) |
yes (n = 156) | 25.2 (11.5–49.2) | 3.2 (1.5–7.7) | 5.2 (2.0–13.6) | |
p = 0.005 | p = 0.625 | p = 0.002 | ||
MetS | no (n = 98) | 25.9 (12.6–40.8) | 3.4 (1.8–6.4) | 5.1 (1.2–8.8) |
yes (n = 216) | 23.6 (7.8–49.2) | 3.1 (1.3–7.7) | 4.8 (1.2–13.6) | |
p < 0.001 | p = 0.054 | p = 0.450 | ||
AF | no (n = (144) | 26.3 (11.5–49.2) | 3.3 (1.3–7.0) | 5.4 (1.2–11.8) |
yes (n = 170) | 22.3 (7.8–44.0) | 3.0 (1.3–7.7) | 4.4 (1.2–13.6) | |
p < 0.001 | p = 0.100 | p < 0.001 | ||
Venous overload * | no (n = 66) | 28.2 (17.2–49.2) | 3.4 (1.6–7.7) | 5.6 (2.9–13.6) |
yes (n = 248) | 23.3 (7.8–40.8) | 3.1 (1.3–6.4) | 4.5 (1.2–9.5) | |
p < 0.001 | p = 0.005 | p < 0.001 | ||
AHF type | New onset AHF (n = 27) | 29.7 (16.2–44.6) | 3.5 (2.4–5.1) | 6.2 (2.9–9.8) |
AHF following CHF (n = 287) | 23.7 (7.8–49.2) | 3.1 (1.3–7.7) | 4.7 (1.2–13.6) | |
p < 0.001 | p = 0.016 | p < 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klobučar, I.; Degoricija, V.; Potočnjak, I.; Trbušić, M.; Pregartner, G.; Berghold, A.; Fritz-Petrin, E.; Habisch, H.; Madl, T.; Frank, S. HDL-apoA-II Is Strongly Associated with 1-Year Mortality in Acute Heart Failure Patients. Biomedicines 2022, 10, 1668. https://doi.org/10.3390/biomedicines10071668
Klobučar I, Degoricija V, Potočnjak I, Trbušić M, Pregartner G, Berghold A, Fritz-Petrin E, Habisch H, Madl T, Frank S. HDL-apoA-II Is Strongly Associated with 1-Year Mortality in Acute Heart Failure Patients. Biomedicines. 2022; 10(7):1668. https://doi.org/10.3390/biomedicines10071668
Chicago/Turabian StyleKlobučar, Iva, Vesna Degoricija, Ines Potočnjak, Matias Trbušić, Gudrun Pregartner, Andrea Berghold, Eva Fritz-Petrin, Hansjörg Habisch, Tobias Madl, and Saša Frank. 2022. "HDL-apoA-II Is Strongly Associated with 1-Year Mortality in Acute Heart Failure Patients" Biomedicines 10, no. 7: 1668. https://doi.org/10.3390/biomedicines10071668
APA StyleKlobučar, I., Degoricija, V., Potočnjak, I., Trbušić, M., Pregartner, G., Berghold, A., Fritz-Petrin, E., Habisch, H., Madl, T., & Frank, S. (2022). HDL-apoA-II Is Strongly Associated with 1-Year Mortality in Acute Heart Failure Patients. Biomedicines, 10(7), 1668. https://doi.org/10.3390/biomedicines10071668