miRNAs and isomiRs: Serum-Based Biomarkers for the Development of Intellectual Disability and Autism Spectrum Disorder in Tuberous Sclerosis Complex
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cohort
2.2. RNA-Sequencing and Library Preparation
2.3. Bioinformatic Analysis
2.4. miRNA Isolation and TaqMan Polymerase Chain Reaction (PCR) for Verification
3. Results
3.1. Differential Expression of miRNAs and isomiRs
3.2. Prognostic Performance of miRNAs in ASD and ID
3.3. Verification of miRNA biomarkers in ASD and ID
3.4. Prognostic Performance of isomiRs in ASD and ID
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Northrup, H.; Aronow, M.E.; Bebin, E.M.; Bissler, J.; Darling, T.N.; de Vries, P.J.; Frost, M.D.; Fuchs, Z.; Gosnell, E.S.; Gupta, N.; et al. Updated International Tuberous Sclerosis Complex Diagnostic Criteria and Surveillance and Management Recommendations. Pediatr. Neurol. 2021, 123, 50–66. [Google Scholar] [CrossRef] [PubMed]
- Sancak, O.; Nellist, M.; Goedbloed, M.; Elfferich, P.; Wouters, C.; Maat-Kievit, A.; Zonnenberg, B.; Verhoef, S.; Halley, D.; van den Ouweland, A. Mutational Analysis of the TSC1 and TSC2 Genes in a Diagnostic Setting: Genotype--Phenotype Correlations and Comparison of Diagnostic DNA Techniques in Tuberous Sclerosis Complex. Eur. J. Hum. Genet. EJHG 2005, 13, 731–741. [Google Scholar] [CrossRef]
- Mühlebner, A.; Bongaarts, A.; Sarnat, H.B.; Scholl, T.; Aronica, E. New Insights into a Spectrum of Developmental Malformations Related to MTOR Dysregulations: Challenges and Perspectives. J. Anat. 2019, 235, 521–542. [Google Scholar] [CrossRef]
- Curatolo, P.; Moavero, R.; de Vries, P.J. Neurological and Neuropsychiatric Aspects of Tuberous Sclerosis Complex. Lancet Neurol. 2015, 14, 733–745. [Google Scholar] [CrossRef]
- Capal, J.K.; Williams, M.E.; Pearson, D.A.; Kissinger, R.; Horn, P.S.; Murray, D.; Currans, K.; Kent, B.; Bebin, M.; Northrup, H.; et al. Profile of Autism Spectrum Disorder in Tuberous Sclerosis Complex: Results from a Longitudinal, Prospective, Multisite Study. Ann. Neurol. 2021, 90, 874–886. [Google Scholar] [CrossRef] [PubMed]
- De Vries, P.J.; Leclezio, L.; Gardner-Lubbe, S.; Krueger, D.; Sahin, M.; Sparagana, S.; de Waele, L.; Jansen, A. Multivariate Data Analysis Identifies Natural Clusters of Tuberous Sclerosis Complex Associated Neuropsychiatric Disorders (TAND). Orphanet J. Rare Dis. 2021, 16, 447. [Google Scholar] [CrossRef]
- de Vries, P.J.; Belousova, E.; Benedik, M.P.; Carter, T.; Cottin, V.; Curatolo, P.; D’Amato, L.; Beure d’Augères, G.; Ferreira, J.C.; Feucht, M.; et al. Natural Clusters of Tuberous Sclerosis Complex (TSC)-Associated Neuropsychiatric Disorders (TAND): New Findings from the TOSCA TAND Research Project. J. Neurodev. Disord. 2020, 12, 24. [Google Scholar] [CrossRef]
- Specchio, N.; Pietrafusa, N.; Trivisano, M.; Moavero, R.; De Palma, L.; Ferretti, A.; Vigevano, F.; Curatolo, P. Autism and Epilepsy in Patients With Tuberous Sclerosis Complex. Front. Neurol. 2020, 11, 639. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; de Bruyn, G.; Tousseyn, S.; Krishnan, B.; Lagae, L.; Agarwal, N.; TSC Natural History Database Consortium. Epilepsy and Neurodevelopmental Comorbidities in Tuberous Sclerosis Complex: A Natural History Study. Pediatr. Neurol. 2020, 106, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Bolton, P.F.; Park, R.J.; Higgins, J.N.P.; Griffiths, P.D.; Pickles, A. Neuro-Epileptic Determinants of Autism Spectrum Disorders in Tuberous Sclerosis Complex. Brain J. Neurol. 2002, 125, 1247–1255. [Google Scholar] [CrossRef] [PubMed]
- Smalley, S.L. Autism and Tuberous Sclerosis. J. Autism Dev. Disord. 1998, 28, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Ehninger, D.; de Vries, P.J.; Silva, A.J. From MTOR to Cognition: Molecular and Cellular Mechanisms of Cognitive Impairments in Tuberous Sclerosis. J. Intellect. Disabil. Res. 2009, 53, 838–851. [Google Scholar] [CrossRef]
- Napolioni, V.; Moavero, R.; Curatolo, P. Recent Advances in Neurobiology of Tuberous Sclerosis Complex. Brain Dev. 2009, 31, 104–113. [Google Scholar] [CrossRef]
- Bassetti, D.; Luhmann, H.J.; Kirischuk, S. Effects of Mutations in TSC Genes on Neurodevelopment and Synaptic Transmission. Int. J. Mol. Sci. 2021, 22, 7273. [Google Scholar] [CrossRef]
- Moavero, R.; Kotulska, K.; Lagae, L.; Benvenuto, A.; Emberti Gialloreti, L.; Weschke, B.; Riney, K.; Feucht, M.; Krsek, P.; Nabbout, R.; et al. Is Autism Driven by Epilepsy in Infants with Tuberous Sclerosis Complex? Ann. Clin. Transl. Neurol. 2020, 7, 1371–1381. [Google Scholar] [CrossRef]
- World Health Organization; International Programme on Chemical Safety. Biomarkers and Risk Assessment: Concepts and Principles; World Health Organization: Geneva, Switzerland, 1993. [Google Scholar]
- van Vliet, E.A.; Puhakka, N.; Mills, J.D.; Srivastava, P.K.; Johnson, M.R.; Roncon, P.; Das Gupta, S.; Karttunen, J.; Simonato, M.; Lukasiuk, K.; et al. Standardization Procedure for Plasma Biomarker Analysis in Rat Models of Epileptogenesis: Focus on Circulating MicroRNAs. Epilepsia 2017, 58, 2013–2024. [Google Scholar] [CrossRef]
- Pitkänen, A.; Löscher, W.; Vezzani, A.; Becker, A.J.; Simonato, M.; Lukasiuk, K.; Gröhn, O.; Bankstahl, J.P.; Friedman, A.; Aronica, E.; et al. Advances in the Development of Biomarkers for Epilepsy. Lancet Neurol. 2016, 15, 843–856. [Google Scholar] [CrossRef]
- Pitkänen, A.; Henshall, D.C.; Cross, J.H.; Guerrini, R.; Jozwiak, S.; Kokaia, M.; Simonato, M.; Sisodiya, S.; Mifsud, J. Advancing Research toward Faster Diagnosis, Better Treatment, and End of Stigma in Epilepsy. Epilepsia 2019, 60, 1281–1292. [Google Scholar] [CrossRef]
- Stoicea, N.; Du, A.; Lakis, D.C.; Tipton, C.; Arias-Morales, C.E.; Bergese, S.D. The MiRNA Journey from Theory to Practice as a CNS Biomarker. Front. Genet. 2016, 7, 11. [Google Scholar] [CrossRef]
- Ha, M.; Kim, V.N. Regulation of MicroRNA Biogenesis. Nat. Rev. Mol. Cell Biol. 2014, 15, 509–524. [Google Scholar] [CrossRef]
- Broughton, J.P.; Lovci, M.T.; Huang, J.L.; Yeo, G.W.; Pasquinelli, A.E. Pairing beyond the Seed Supports MicroRNA Targeting Specificity. Mol. Cell 2016, 64, 320–333. [Google Scholar] [CrossRef]
- Gebert, L.F.R.; MacRae, I.J. Regulation of MicroRNA Function in Animals. Nat. Rev. Mol. Cell Biol. 2019, 20, 21–37. [Google Scholar] [CrossRef]
- Brennan, G.P.; Bauer, S.; Engel, T.; Jimenez-Mateos, E.M.; Del Gallo, F.; Hill, T.D.M.; Connolly, N.M.C.; Costard, L.S.; Neubert, V.; Salvetti, B.; et al. Genome-Wide MicroRNA Profiling of Plasma from Three Different Animal Models Identifies Biomarkers of Temporal Lobe Epilepsy. Neurobiol. Dis. 2020, 144, 105048. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Gao, S.; Lindberg, D.; Panja, D.; Wakabayashi, Y.; Li, K.; Kleinman, J.E.; Zhu, J.; Li, Z. Temporal Dynamics of MiRNAs in Human DLPFC and Its Association with MiRNA Dysregulation in Schizophrenia. Transl. Psychiatry 2019, 9, 196. [Google Scholar] [CrossRef] [PubMed]
- Jansen, A.C.; Jozwiak, S.; Lagae, L.; Kwiatkowski, D.; Jansen, F.E.; Aronica, E.; Kotulska, K.; Curatolo, P. Long-Term, Prospective Study Evaluating Clinical and Molecular Biomarkers of Epileptogenesis in a Genetic Model of Epilepsy–Tuberous Sclerosis Complex. Impact 2019, 2019, 6–9. [Google Scholar] [CrossRef]
- Mills, J.D.; Iyer, A.M.; van Scheppingen, J.; Bongaarts, A.; Anink, J.J.; Janssen, B.; Zimmer, T.S.; Spliet, W.G.; van Rijen, P.C.; Jansen, F.E.; et al. Coding and Small Non-Coding Transcriptional Landscape of Tuberous Sclerosis Complex Cortical Tubers: Implications for Pathophysiology and Treatment. Sci. Rep. 2017, 7, 8089. [Google Scholar] [CrossRef]
- Raoof, R.; Bauer, S.; El Naggar, H.; Connolly, N.M.C.; Brennan, G.P.; Brindley, E.; Hill, T.; McArdle, H.; Spain, E.; Forster, R.J.; et al. Dual-Center, Dual-Platform MicroRNA Profiling Identifies Potential Plasma Biomarkers of Adult Temporal Lobe Epilepsy. EBioMedicine 2018, 38, 127–141. [Google Scholar] [CrossRef]
- Zhao, D.; Lin, M.; Chen, J.; Pedrosa, E.; Hrabovsky, A.; Fourcade, H.M.; Zheng, D.; Lachman, H.M. MicroRNA Profiling of Neurons Generated Using Induced Pluripotent Stem Cells Derived from Patients with Schizophrenia and Schizoaffective Disorder, and 22q11.2 Del. PLoS ONE 2015, 10, e0132387. [Google Scholar] [CrossRef]
- Lan, C.; Peng, H.; McGowan, E.M.; Hutvagner, G.; Li, J. An IsomiR Expression Panel Based Novel Breast Cancer Classification Approach Using Improved Mutual Information. BMC Med. Genom. 2018, 11, 118. [Google Scholar] [CrossRef]
- Magee, R.; Telonis, A.G.; Cherlin, T.; Rigoutsos, I.; Londin, E. Assessment of IsomiR Discrimination Using Commercial QPCR Methods. Non-Coding RNA 2017, 3, 18. [Google Scholar] [CrossRef]
- Schamberger, A.; Orbán, T.I. 3’ IsomiR Species and DNA Contamination Influence Reliable Quantification of MicroRNAs by Stem-Loop Quantitative PCR. PLoS ONE 2014, 9, e106315. [Google Scholar] [CrossRef] [PubMed]
- Telonis, A.G.; Magee, R.; Loher, P.; Chervoneva, I.; Londin, E.; Rigoutsos, I. Knowledge about the Presence or Absence of MiRNA Isoforms (IsomiRs) Can Successfully Discriminate amongst 32 TCGA Cancer Types. Nucleic Acids Res. 2017, 45, 2973–2985. [Google Scholar] [CrossRef] [PubMed]
- Biomarkers and Surrogate Endpoints: Preferred Definitions and Conceptual Framework-2001-Clinical Pharmacology & Therapeutics-Wiley Online Library. Available online: https://ascpt.onlinelibrary.wiley.com/doi/abs/10.1067/mcp.2001.113989 (accessed on 6 April 2022).
- Cocucci, E.; Racchetti, G.; Meldolesi, J. Shedding Microvesicles: Artefacts No More. Trends Cell Biol. 2009, 19, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Ratajczak, J.; Wysoczynski, M.; Hayek, F.; Janowska-Wieczorek, A.; Ratajczak, M.Z. Membrane-Derived Microvesicles: Important and Underappreciated Mediators of Cell-to-Cell Communication. Leukemia 2006, 20, 1487–1495. [Google Scholar] [CrossRef] [PubMed]
- Simons, M.; Raposo, G. Exosomes–Vesicular Carriers for Intercellular Communication. Curr. Opin. Cell Biol. 2009, 21, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Vickers, K.C.; Palmisano, B.T.; Shoucri, B.M.; Shamburek, R.D.; Remaley, A.T. MicroRNAs Are Transported in Plasma and Delivered to Recipient Cells by High-Density Lipoproteins. Nat. Cell Biol. 2011, 13, 423–433. [Google Scholar] [CrossRef]
- Kos, M.Z.; Puppala, S.; Cruz, D.; Neary, J.L.; Kumar, A.; Dalan, E.; Li, C.; Nathanielsz, P.; Carless, M.A. Blood-Based MiRNA Biomarkers as Correlates of Brain-Based MiRNA Expression. Front. Mol. Neurosci. 2022, 15, 89. [Google Scholar] [CrossRef]
- Kotulska, K.; Kwiatkowski, D.J.; Curatolo, P.; Weschke, B.; Riney, K.; Jansen, F.; Feucht, M.; Krsek, P.; Nabbout, R.; Jansen, A.C.; et al. Prevention of Epilepsy in Infants with Tuberous Sclerosis Complex in the EPISTOP Trial. Ann. Neurol. 2021, 89, 304–314. [Google Scholar] [CrossRef]
- Moavero, R.; Benvenuto, A.; Emberti Gialloreti, L.; Siracusano, M.; Kotulska, K.; Weschke, B.; Riney, K.; Jansen, F.E.; Feucht, M.; Krsek, P.; et al. Early Clinical Predictors of Autism Spectrum Disorder in Infants with Tuberous Sclerosis Complex: Results from the EPISTOP Study. J. Clin. Med. 2019, 8, 788. [Google Scholar] [CrossRef] [PubMed]
- De Ridder, J.; Lavanga, M.; Verhelle, B.; Vervisch, J.; Lemmens, K.; Kotulska, K.; Moavero, R.; Curatolo, P.; Weschke, B.; Riney, K.; et al. Prediction of Neurodevelopment in Infants With Tuberous Sclerosis Complex Using Early EEG Characteristics. Front. Neurol. 2020, 11, 582891. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Muller, H.; Marzi, M.J.; Nicassio, F. IsomiRage: From Functional Classification to Differential Expression of MiRNA Isoforms. Front. Bioeng. Biotechnol. 2014, 2, 38. [Google Scholar] [CrossRef] [PubMed]
- Kozomara, A.; Griffiths-Jones, S. MiRBase: Annotating High Confidence MicroRNAs Using Deep Sequencing Data. Nucleic Acids Res. 2014, 42, D68–D73. [Google Scholar] [CrossRef] [PubMed]
- Langmead, B.; Salzberg, S.L. Fast Gapped-Read Alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [PubMed]
- Bongaarts, A.; van Scheppingen, J.; Korotkov, A.; Mijnsbergen, C.; Anink, J.J.; Jansen, F.E.; Spliet, W.G.M.; den Dunnen, W.F.A.; Gruber, V.E.; Scholl, T.; et al. The Coding and Non-Coding Transcriptional Landscape of Subependymal Giant Cell Astrocytomas. Brain J. Neurol. 2020, 143, 131–149. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, P.K.; van Eyll, J.; Godard, P.; Mazzuferi, M.; Delahaye-Duriez, A.; Van Steenwinckel, J.; Gressens, P.; Danis, B.; Vandenplas, C.; Foerch, P.; et al. A Systems-Level Framework for Drug Discovery Identifies Csf1R as an Anti-Epileptic Drug Target. Nat. Commun. 2018, 9, 3561. [Google Scholar] [CrossRef]
- Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2|Genome Biology|Full Text. Available online: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-014-0550-8 (accessed on 6 April 2022).
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.-C.; Müller, M. PROC: An Open-Source Package for R and S+ to Analyze and Compare ROC Curves. BMC Bioinform. 2011, 12, 77. [Google Scholar] [CrossRef]
- Friedman, J.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw. 2010, 33, 1–22. [Google Scholar] [CrossRef]
- Ruijter, J.M.; Ramakers, C.; Hoogaars, W.M.H.; Karlen, Y.; Bakker, O.; van den Hoff, M.J.B.; Moorman, A.F.M. Amplification Efficiency: Linking Baseline and Bias in the Analysis of Quantitative PCR Data. Nucleic Acids Res. 2009, 37, e45. [Google Scholar] [CrossRef]
- Korotkov, A.; Broekaart, D.W.M.; van Scheppingen, J.; Anink, J.J.; Baayen, J.C.; Idema, S.; Gorter, J.A.; Aronica, E.; van Vliet, E.A. Increased Expression of Matrix Metalloproteinase 3 Can Be Attenuated by Inhibition of MicroRNA-155 in Cultured Human Astrocytes. J. Neuro. 2018, 15, 211. [Google Scholar] [CrossRef]
- Jeong, A.; Wong, M. Systemic Disease Manifestations Associated with Epilepsy in Tuberous Sclerosis Complex. Epilepsia 2016, 57, 1443–1449. [Google Scholar] [CrossRef] [PubMed]
- Webb, D.W.; Fryer, A.E.; Osborne, J.P. Morbidity Associated with Tuberous Sclerosis: A Population Study. Dev. Med. Child Neurol. 1996, 38, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Nabbout, R.; Belousova, E.; Benedik, M.P.; Carter, T.; Cottin, V.; Curatolo, P.; Dahlin, M.; D’amato, L.; d’Augères, G.B.; de Vries, P.J.; et al. Epilepsy in Tuberous Sclerosis Complex: Findings from the TOSCA Study. Epilepsia Open 2019, 4, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Overwater, I.E.; Bindels-de Heus, K.; Rietman, A.B.; Ten Hoopen, L.W.; Vergouwe, Y.; Moll, H.A.; de Wit, M.-C.Y. Epilepsy in Children with Tuberous Sclerosis Complex: Chance of Remission and Response to Antiepileptic Drugs. Epilepsia 2015, 56, 1239–1245. [Google Scholar] [CrossRef] [PubMed]
- de Vries, P.J.; Hunt, A.; Bolton, P.F. The Psychopathologies of Children and Adolescents with Tuberous Sclerosis Complex (TSC): A Postal Survey of UK Families. Eur. Child Adolesc. Psychiatry 2007, 16, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.C.; Thomas, H.V.; Murphy, K.C.; Sampson, J.R. Genotype and Psychological Phenotype in Tuberous Sclerosis. J. Med. Genet. 2004, 41, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Pulsifer, M.B.; Winterkorn, E.B.; Thiele, E.A. Psychological Profile of Adults with Tuberous Sclerosis Complex. Epilepsy Behav. 2007, 10, 402–406. [Google Scholar] [CrossRef]
- Trickett, J.; Heald, M.; Oliver, C.; Richards, C. A Cross-Syndrome Cohort Comparison of Sleep Disturbance in Children with Smith-Magenis Syndrome, Angelman Syndrome, Autism Spectrum Disorder and Tuberous Sclerosis Complex. J. Neurodev. Disord. 2018, 10, 9. [Google Scholar] [CrossRef]
- de Vries, P.J.; Belousova, E.; Benedik, M.P.; Carter, T.; Cottin, V.; Curatolo, P.; Dahlin, M.; D’Amato, L.; d’Augères, G.B.; Ferreira, J.C.; et al. TSC-Associated Neuropsychiatric Disorders (TAND): Findings from the TOSCA Natural History Study. Orphanet J. Rare Dis. 2018, 13, 157. [Google Scholar] [CrossRef]
- Joinson, C.; O’Callaghan, F.J.; Osborne, J.P.; Martyn, C.; Harris, T.; Bolton, P.F. Learning Disability and Epilepsy in an Epidemiological Sample of Individuals with Tuberous Sclerosis Complex. Psychol. Med. 2003, 33, 335–344. [Google Scholar] [CrossRef]
- Kingswood, J.C.; d’Augères, G.B.; Belousova, E.; Ferreira, J.C.; Carter, T.; Castellana, R.; Cottin, V.; Curatolo, P.; Dahlin, M.; de Vries, P.J.; et al. TuberOus SClerosis Registry to Increase Disease Awareness (TOSCA)-Baseline Data on 2093 Patients. Orphanet J. Rare Dis. 2017, 12, 2. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Zhang, Y.; Zhao, C.; Pan, Y.; Smales, R.; Wang, H.; Ni, Y.; Zhang, H.; Ni, J.; Ma, J.; et al. Serum MicroRNAs as Potential Biomarkers of Mandibular Prognathism. Oral Dis. 2014, 20, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Prabu, P.; Rome, S.; Sathishkumar, C.; Gastebois, C.; Meugnier, E.; Mohan, V.; Balasubramanyam, M. MicroRNAs from Urinary Extracellular Vesicles Are Non-Invasive Early Biomarkers of Diabetic Nephropathy in Type 2 Diabetes Patients with the “Asian Indian Phenotype”. Diabetes Metab. 2019, 45, 276–285. [Google Scholar] [CrossRef]
- Wang, T.-H.; Hsueh, C.; Chen, C.-C.; Li, W.-S.; Yeh, C.-T.; Lian, J.-H.; Chang, J.-L.; Chen, C.-Y. Melatonin Inhibits the Progression of Hepatocellular Carcinoma through MicroRNA Let7i-3p Mediated RAF1 Reduction. Int. J. Mol. Sci. 2018, 19, 2687. [Google Scholar] [CrossRef]
- Wang, Y.-F.; Lian, X.-L.; Zhong, J.-Y.; Su, S.-X.; Xu, Y.-F.; Xie, X.-F.; Wang, Z.-P.; Li, W.; Zhang, L.; Che, D.; et al. Serum Exosomal MicroRNA Let-7i-3p as Candidate Diagnostic Biomarker for Kawasaki Disease Patients with Coronary Artery Aneurysm. IUBMB Life 2019, 71, 891–900. [Google Scholar] [CrossRef]
- Patrício, P.; Mateus-Pinheiro, A.; Alves, N.D.; Morais, M.; Rodrigues, A.J.; Bessa, J.M.; Sousa, N.; Pinto, L. MiR-409 and MiR-411 Modulation in the Adult Brain of a Rat Model of Depression and After Fluoxetine Treatment. Front. Behav. Neurosci. 2020, 14, 136. [Google Scholar] [CrossRef] [PubMed]
- Bessa, J.M.; Ferreira, D.; Melo, I.; Marques, F.; Cerqueira, J.J.; Palha, J.A.; Almeida, O.F.X.; Sousa, N. The Mood-Improving Actions of Antidepressants Do Not Depend on Neurogenesis but Are Associated with Neuronal Remodeling. Mol. Psychiatry 2009, 14, 764–773. [Google Scholar] [CrossRef]
- Zhou, J.; Zhao, Y.; Li, Z.; Zhu, M.; Wang, Z.; Li, Y.; Xu, T.; Feng, D.; Zhang, S.; Tang, F.; et al. MiR-103a-3p Regulates Mitophagy in Parkinson’s Disease through Parkin/Ambra1 Signaling. Pharmacol. Res. 2020, 160, 105197. [Google Scholar] [CrossRef]
- Geng, L.; Zhang, T.; Liu, W.; Chen, Y. MiR-494-3p Modulates the Progression of in Vitro and in Vivo Parkinson’s Disease Models by Targeting SIRT3. Neurosci. Lett. 2018, 675, 23–30. [Google Scholar] [CrossRef]
- Hojati, Z.; Omidi, F.; Dehbashi, M.; Mohammad Soltani, B. The Highlighted Roles of Metabolic and Cellular Response to Stress Pathways Engaged in Circulating Hsa-MiR-494-3p and Hsa-MiR-661 in Alzheimer’s Disease. Iran. Biomed. J. 2021, 25, 62–67. [Google Scholar] [CrossRef]
- Li, B.; Shen, M.; Yao, H.; Chen, X.; Xiao, Z. Long Noncoding RNA TP73-AS1 Modulates Medulloblastoma Progression In Vitro And In Vivo By Sponging MiR-494-3p And Targeting EIF5A2. OncoTargets Ther. 2019, 12, 9873–9885. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, H.; Wu, Z.; Yang, T.; Zhao, Z.; Chen, G.; Xie, X.; Li, B.; Wei, Y.; Huang, Y.; et al. MiR-494-3p Regulates Cellular Proliferation, Invasion, Migration, and Apoptosis by PTEN/AKT Signaling in Human Glioblastoma Cells. Cell. Mol. Neurobiol. 2015, 35, 679–687. [Google Scholar] [CrossRef]
- Zheng, D.; Chen, D.; Lin, F.; Wang, X.; Lu, L.; Luo, S.; Chen, J.; Xu, X. LncRNA NNT-AS1 Promote Glioma Cell Proliferation and Metastases through MiR-494-3p/PRMT1 Axis. Cell Cycle 2020, 19, 1621–1631. [Google Scholar] [CrossRef]
- Yuan, L.; Feng, F.; Mao, Z.; Huang, J.-Z.; Liu, Y.; Li, Y.-L.; Jiang, R.-X. Regulation Mechanism of MiR-494-3p on Endometrial Receptivity in Mice via PI3K/AKT/MTOR Pathway. Gen. Physiol. Biophys. 2021, 40, 351–363. [Google Scholar] [CrossRef]
- Li, F.; Li, F.; Chen, W. Propofol Inhibits Cell Proliferation, Migration, and Invasion via Mir-410-3p/Transforming Growth Factor-β Receptor Type 2 (TGFBR2) Axis in Glioma. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2020, 26, e919523. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Huang, S.; Rao, S.; Hu, J.; Zhang, Y.; Luo, J.; Wang, H. Decreased Expression of MiR-410-3p Correlates with Poor Prognosis and Tumorigenesis in Human Glioma. Cancer Manag. Res. 2019, 11, 10581–10592. [Google Scholar] [CrossRef]
- Mc Devitt, N.; Gallagher, L.; Reilly, R.B. Autism Spectrum Disorder (ASD) and Fragile X Syndrome (FXS): Two Overlapping Disorders Reviewed through Electroencephalography—What Can Be Interpreted from the Available Information? Brain Sci. 2015, 5, 92–117. [Google Scholar] [CrossRef]
- Oxelgren, U.W.; Myrelid, Å.; Annerén, G.; Ekstam, B.; Göransson, C.; Holmbom, A.; Isaksson, A.; Åberg, M.; Gustafsson, J.; Fernell, E. Prevalence of Autism and Attention-Deficit-Hyperactivity Disorder in Down Syndrome: A Population-Based Study. Dev. Med. Child Neurol. 2017, 59, 276–283. [Google Scholar] [CrossRef]
- Fujino, H.; Saito, T.; Matsumura, T.; Shibata, S.; Iwata, Y.; Fujimura, H.; Imura, O. Autism Spectrum Disorders Are Prevalent among Patients with Dystrophinopathies. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2018, 39, 1279–1282. [Google Scholar] [CrossRef]
- Garg, S.; Lehtonen, A.; Huson, S.M.; Emsley, R.; Trump, D.; Evans, D.G.; Green, J. Autism and Other Psychiatric Comorbidity in Neurofibromatosis Type 1: Evidence from a Population-Based Study. Dev. Med. Child Neurol. 2013, 55, 139–145. [Google Scholar] [CrossRef]
- Kleinman, J.M.; Ventola, P.E.; Pandey, J.; Verbalis, A.D.; Barton, M.; Hodgson, S.; Green, J.; Dumont-Mathieu, T.; Robins, D.L.; Fein, D. Diagnostic Stability in Very Young Children with Autism Spectrum Disorders. J. Autism Dev. Disord. 2008, 38, 606–615. [Google Scholar] [CrossRef] [PubMed]
- Jozwiak, S.; Słowińska, M.; Borkowska, J.; Sadowski, K.; Łojszczyk, B.; Domańska-Pakieła, D.; Chmielewski, D.; Kaczorowska-Frontczak, M.; Głowacka, J.; Sijko, K.; et al. Preventive Antiepileptic Treatment in Tuberous Sclerosis Complex: A Long-Term, Prospective Trial. Pediatr. Neurol. 2019, 101, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Baker, G.A.; Jacoby, A.; Buck, D.; Stalgis, C.; Monnet, D. Quality of Life of People with Epilepsy: A European Study. Epilepsia 1997, 38, 353–362. [Google Scholar] [CrossRef]
- Jacoby, A.; Snape, D.; Baker, G.A. Determinants of Quality of Life in People with Epilepsy. Neurol. Clin. 2009, 27, 843–863. [Google Scholar] [CrossRef]
- Sherman, E.M.S. Maximizing Quality of Life in People Living with Epilepsy. Can. J. Neurol. Sci. J. Can. Sci. Neurol. 2009, 36 (Suppl. 2), S17–S24. [Google Scholar]
Control (n = 30) | ID (n = 10) | ASD (n = 6) | ASD + ID (n = 13) | |
---|---|---|---|---|
Mean age V1 (days) | 47.1 | 20.2 | 26.3 | 54.2 |
Sex | ||||
Female | 15 (50%) | 7 (70%) | 1 (17%) | 4 (31%) |
Male | 15 (50%) | 3 (30%) | 5 (83%) | 9 (69%) |
TSC mutation | ||||
TSC1 | 7 (23%) | 2 (20%) | 3 (50%) | 1 (8%) |
TSC2 | 22 (74%) | 8 (80%) | 3 (50%) | 12 (92%) |
NMI | 1 (3%) | |||
Seizures | ||||
Yes | 17 (57%) | 10 (100%) | 5 (83%) | 12 (92%) |
No | 13 (43%) | 0 (0%) | 1 (17%) | 1 (8%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scheper, M.; Romagnolo, A.; Besharat, Z.M.; Iyer, A.M.; Moavero, R.; Hertzberg, C.; Weschke, B.; Riney, K.; Feucht, M.; Scholl, T.; et al. miRNAs and isomiRs: Serum-Based Biomarkers for the Development of Intellectual Disability and Autism Spectrum Disorder in Tuberous Sclerosis Complex. Biomedicines 2022, 10, 1838. https://doi.org/10.3390/biomedicines10081838
Scheper M, Romagnolo A, Besharat ZM, Iyer AM, Moavero R, Hertzberg C, Weschke B, Riney K, Feucht M, Scholl T, et al. miRNAs and isomiRs: Serum-Based Biomarkers for the Development of Intellectual Disability and Autism Spectrum Disorder in Tuberous Sclerosis Complex. Biomedicines. 2022; 10(8):1838. https://doi.org/10.3390/biomedicines10081838
Chicago/Turabian StyleScheper, Mirte, Alessia Romagnolo, Zein Mersini Besharat, Anand M. Iyer, Romina Moavero, Christoph Hertzberg, Bernhard Weschke, Kate Riney, Martha Feucht, Theresa Scholl, and et al. 2022. "miRNAs and isomiRs: Serum-Based Biomarkers for the Development of Intellectual Disability and Autism Spectrum Disorder in Tuberous Sclerosis Complex" Biomedicines 10, no. 8: 1838. https://doi.org/10.3390/biomedicines10081838
APA StyleScheper, M., Romagnolo, A., Besharat, Z. M., Iyer, A. M., Moavero, R., Hertzberg, C., Weschke, B., Riney, K., Feucht, M., Scholl, T., Petrak, B., Maulisova, A., Nabbout, R., Jansen, A. C., Jansen, F. E., Lagae, L., Urbanska, M., Ferretti, E., Tempes, A., ... EPISTOP Consortium Members. (2022). miRNAs and isomiRs: Serum-Based Biomarkers for the Development of Intellectual Disability and Autism Spectrum Disorder in Tuberous Sclerosis Complex. Biomedicines, 10(8), 1838. https://doi.org/10.3390/biomedicines10081838