Post-Synapses in the Brain: Role of Dendritic and Spine Structures
Abstract
:1. Introduction
2. Flat/Intended/Aspine Post-Synapses
2.1. Structural Properties of Dendritic Post-Synapses
2.2. Functions of Dendritic Post-Synapses
2.3. Local Depolarizations and Action Potentials
3. Post-Synapses with Spines
3.1. Structure and Composition of Spines
3.2. Function of Spines
3.3. Spine Depolarizations and Voltage Gradients
4. Post-Synapse Alterations in Brain Diseases
4.1. Neurodegenerative Diseases: Alzheimer’s and Parkinson’s Diseases
4.2. Autism
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Geshorn, M.D.; Schwartz, H.D.; Kandel, E.R. Synapses in the central nervous system have diverse morphologies. In Principles of Neural Sciences, 6th ed.; Kandel, E.R., Loester, J.D., Mack, S.H., Siegelbaum, A., Eds.; McGraw-Hill Education: New York, NY, USA, 2021; p. 140. [Google Scholar]
- Jan, Y.N.; Jan, L.Y. Dendrites. Genes Dev. 2001, 15, 2627–2641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulkarni, V.A.; Firestein, B.L. The dendritic tree and brain disorders. Mol. Cell. Neurosci. 2012, 50, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, M.B. Signal processing mechanisms at the postsynaptic density. Science 2000, 290, 750–754. [Google Scholar] [CrossRef] [PubMed]
- Hausser, M.; Spruston, N.; Stuart, G.J. Diversity and dynamics of dendritic signaling. Science 2000, 290, 739–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaefer, A.T.; Larkum, M.E.; Sakmann, B.; Roth, A. Coincidence detection in pyramidal neurons is tuned by their dendritic branching pattern. J. Neurophysiol. 2003, 89, 3143–3154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dall’Oglio, A.; Gehlen, G.; Achaval, M.; Rasia-Filho, A.A. Dendritic branching features of postero-dorsal medial amygdala neurons male and female rats. Neurosci. Lett. 2008, 430, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Mahalakshmi, A.M.; Ray, B.; Tuladhar, S.; Hediyal, T.A.; Raj, P.; Rathiptiya, A.G.; Ooronfleh, M.W.; Essa, M.M.; Chidambaram, S.B. Impact of pharmacological and non-pharmacological modulators on dendritic spines structure and functions in brain. Cells 2021, 10, 3405. [Google Scholar] [CrossRef]
- Poirazi, P.; Mel, B.W. Impact of active dendrites and structural plasticity on the memory capacity of neural tissue. Neuron 2001, 29, 779–796. [Google Scholar] [CrossRef] [Green Version]
- Holthoff, K.; Kovalchuk, Y.; Konnerth, A. Dendritic spikes and activity-dependent synaptic plasticity. Cell Tissue Res. 2006, 326, 369–377. [Google Scholar] [CrossRef]
- Pulikkottil, V.V.; Somashekar, B.P.; Bhalla, U.S. Computation, wiring, and plasticity in synaptic clusters. Curr. Opin. Neurobiol. 2021, 70, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Parekh, R.; Ascoli, G.A. Quantitative investigations of axonal and dendritic arbors: Development, structure, function, and pathology. Neuroscientist 2015, 21, 241–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulik, Y.D.; Watson, D.J.; Cao, G.; Kuwajima, M.; Harris, K.M. Structural plasticity of dendritic secretory compartments during LTP-induced synaptogenesis. Shaft SER remained more abundant in spiny than aspiny dendritic regions. eLife 2019, 8, e46356. [Google Scholar] [CrossRef]
- Conde, C.; Cáceres, A. Microtubule assembly, organization and dynamics in axons and dendrites. Nat. Rev. Neurosci. 2009, 10, 319–332. [Google Scholar] [CrossRef]
- Chazeau, A.; Giannone, C. Organization and dynamics of the actin cytoskeleton during dendritic spine morphological remodeling. Cell. Mol. Life Sci. 2016, 73, 3053–3073. [Google Scholar] [CrossRef] [PubMed]
- Weiler, S.; Guggiana Nilo, D.; Bonhoeffer, T.; Hubener, M.; Rose, T.; Scheuss, V. Orientation and direction tuning align with dendritic morphology and special connectivity in mouse visual cortex. Curr. Biol. 2022, 32, 1743–1753.e7. [Google Scholar] [CrossRef] [PubMed]
- Steward, O.; Schumn, E.M. Protein synthesis of synaptic sites on dendrites. Annu. Rev. Neurosci. 2001, 24, 299–325. [Google Scholar] [CrossRef] [Green Version]
- Valles, A.S.; Barrantes, F.J. Nanoscale sub-compartmentalisation of dendritic spine compartments. Biomolecules 2021, 11, 1697. [Google Scholar] [CrossRef]
- Gentile, J.E.; Carrizales, M.G.; Koleske, A.J. Control of synapse structure and function by actin and its regulators. Cells 2022, 11, 603. [Google Scholar] [CrossRef]
- Tabuchi, A.; Ihara, D. Regulation of dendritic synaptic morphology and transcription by the SRF cofactor MKL/MRTF. Front. Mol. Neurosci. 2021, 14, 76. [Google Scholar] [CrossRef] [PubMed]
- Hanley, J.G. Actin-dependent mechanisms in AMPA receptor trafficking. Front. Cell. Neurosci. 2014, 8, 381. [Google Scholar] [CrossRef] [Green Version]
- Rolotti, S.V.; Blockus, H.; Sparks, F.T.; Prestley, J.B.; Losonczy, A. Reorganization of CA1 dendritic dynamics by hippocampal sharp-wave ripples during learning. Neuron 2022, 110, 977–991. [Google Scholar] [CrossRef]
- Ma, S.; Zuo, Y. Synaptic modifications in learning and memory. A dendritic spine story. Semin. Cell Dev. Biol. 2022, 125, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Leal, G.; Afonso, P.M.; Salazar, I.L.; Duarte, G.B. Regulation of hippocampal synaptic plasticity by BDNF. Brain Res. 2015, 1621, 82–101. [Google Scholar] [CrossRef]
- Kallergi, E.; Daskalaki, A.D.; Kolaxi, A.; Camus, C.; Ioannou, E.; Mercaldo, V.; Haberkant, P.; Stein, F.; Sidiropoulou, K.; Dalezios, Y.; et al. Dendritic autophagy degrades postsynaptic proteins and is required for long-term synaptic depression in mice. Nat. Commun. 2022, 13, 680. [Google Scholar] [CrossRef]
- Smalheiser, N.P. The RNA-centered view of the synapse: Non-coding RNAs and synaptic plasticity. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bicker, S.; Lackinger, M.; Weiss, K.; Schratt, G. MicroRNA-132, -134 and -138: A microRNA troika roles in neuronal dendrites. Cell. Mol. Life Sci. 2014, 71, 3987–4005. [Google Scholar] [CrossRef]
- Grienberger, C.; Chen, X.; Konnert, A. Dendritic function in vivo. Trends Neurosci. 2015, 38, 45–54. [Google Scholar] [CrossRef]
- Siegel, F.; Lohmann, C. Probing synaptic function in dendrites with Ca2+ imaging. Exp. Neurol. 2013, 242, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Murphy, J.G.; Gutzmann, J.J.; Lin, L.; Hu, J.; Petralia, R.S.; Wang, Y.X.; Hoffman, D.A. R-type voltage-gated Ca2+ channels mediate A-type K+ current regulation of synaptic input in hippocampal dendrites. Cell Rep. 2022, 38, 110264. [Google Scholar] [CrossRef] [PubMed]
- Hausser, M. Synaptic function: Dendritic democracy. Curr. Biol. 2001, 11, R10–R12. [Google Scholar] [CrossRef] [Green Version]
- Martin-Belonte, A.; Aguado, C.; Alfaro-Ruiz, R.; Moreno-Martinez, A.E.; de la Ossa, I.; Martinez-Hernandez, J.; Buisson, A.; Shigemoto, R.; Fukazaw, Y.; Lujan, R. Density of GABAB receptor is reduced in granule cells of the hippocampus in a mouse model of Alzheimer’s disease. Int. J. Mol. Sci. 2020, 21, 2459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gennaccaro, L.; Fuchs, C.; Loi, M.; Roncacè, V.; Trazzi, S.; Ait-Bali, Y.; Galvani, G.; Berardi, A.C.; Medici, G.; Tassinari, M.; et al. GABAB receptor antagonist rescues functional and structural impairments in the perirhinal context of a mouse model of CDKL5 deficiency disorder. Neurobiol. Dis. 2021, 153, 105304. [Google Scholar] [CrossRef] [PubMed]
- Yuan, I.; Yi, W.; Sun, C.; Ma, S.; Wang, J.; Liu, S.; Chen, Y.; Chen, Y. EphB2 activates CREB-dependent expression of annexin A1 to regulate dendritic spine morphogenesis. Biochem. Biophys. Res. Commun. 2021, 584, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Zeng, Y.; Baj, J. Towards a brain-inspired developmental neural network based on dendritic spine. Neural Comput. 2021, 34, 172–189. [Google Scholar] [CrossRef]
- Arellano, J.I.; Benavides-Piccione, R.; De Felipe, J.; Yuste, R. Ultrastructure of dendritic spines: Correlation between synaptic and spine morphologies. Front. Neurosci. 2007, 1, 131–143. [Google Scholar] [CrossRef] [Green Version]
- Murakoshi, H.; Yasuda, R. Postsynaptic signaling during plasticity of dendritic spines. Trends Neurosci. 2012, 35, 135–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ucar, H.; Watanabe, S.; Noguchi, J.; Morimoto, J.; Iino, Y.; Yagishita, S.; Takahashi, N.; Kasai, H. Mechanical actions of dendritic-spine enlargement on presynaptic exocytosis. Nature 2021, 600, 686–689. [Google Scholar] [CrossRef] [PubMed]
- Sekino, Y.; Kojima, N.; Shirao, T. Role of actin cytoskeleton in dendritic spine morphogenesis. Neurochem. Int. 2007, 51, 92–104. [Google Scholar] [CrossRef] [PubMed]
- Sekino, Y.; Koganezawa, N.; Mizui, T.; Shirao, T. Role of drebrin in synaptic plasticity. Adv. Exp. Med. Biol. 2017, 1006, 183–201. [Google Scholar] [CrossRef] [PubMed]
- Chidambaram, S.B.; Rathipriya, A.G.; Bhat, A.; Ray, B.; Mahalakshmi, A.M.; Manivasagam, T.; Thenmozhi, A.J.; Essa, M.M.; Guillemin, G.J.; Chandra, R.; et al. Dendritic spines: Revisiting the physiological role. Prog. Neuropsychopharmacol. Biol. Psychiatry 2019, 92, 161–193. [Google Scholar] [CrossRef] [PubMed]
- Okabe, S. Regulation of actin dynamics in dendritic spines: Nanostructure, molecular mobility, and signaling mechanisms. Mol. Cell. Neurosci. 2020, 109, 103564. [Google Scholar] [CrossRef]
- Khanal, P.; Hotulainen, P. Dendritic spine initiation in brain development, learning and diseases and impact of BAR-domain proteins. Cells 2021, 10, 2392. [Google Scholar] [CrossRef] [PubMed]
- Kasai, H.; Ziv, N.E.; Okazaki, H.; Yagishita, S.; Toyoizumi, T. Spine dynamics in the brain, mental disorders and artificial neural network. Nat. Rev. Neurosci. 2021, 22, 407–422. [Google Scholar] [CrossRef] [PubMed]
- Deller, T.; Merten, T.; Roth, S.U.; Mundel, P.; Frotscher, M. Actin-associated protein synaptopodin in the rat hippocampal formation: Localization in the spine neck and close association with the spine apparatus of principal neurons. J. Comp. Neurol. 2000, 418, 164–181. [Google Scholar] [CrossRef]
- Deller, T.; Korte, M.; Chabanis, S.; Drakew, A.; Schwegler, H.; Stefani, G.G.; Zuniga, A.; Schwarz, K.; Bonhoeffer, T.; Zeller, R.; et al. Synaptopodin-deficient mice lack a spine apparatus and show deficits in synaptic plasticity. Proc. Natl. Acad. Sci. USA 2003, 100, 10494–10499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deller, T.; Bas Orth, C.; Del Turco, D.; Vlachos, A.; Burbach, G.U.; Drakew, A.; Chabanis, S.; Korte, M.; Schwegler, H.; Haas, C.A.; et al. A role of synaptopodin and the spine apparatus in hippocampal synaptic plasticity. Ann. Anat. 2007, 189, 5–18. [Google Scholar] [CrossRef] [PubMed]
- Korkotian, E.; Frotscher, M.; Segal, M. Synaptopodin regulates spine plasticity: Mediation by calcium stores. J. Neurosci. 2014, 34, 11641–11651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chirillo, M.A.; Waters, M.S.; Lindsey, L.F.; Bourne, J.N.; Harris, K.M. Local resources of polyribosomes and SER promote synapse enlargement and spine clustering after long-term potentiation of adult rat hippocampus. Sci. Rep. 2019, 9, 3861. [Google Scholar] [CrossRef] [Green Version]
- Moulin, T.C.; Tayee, D.; Schioth, H.B. Dendritic spine density changes and homeostasis synaptic scaling: A meta-analysis of animal studies. Neural Regen. Res. 2022, 17, 2024. [Google Scholar] [CrossRef]
- Kashiwagi, Y.; Okabe, S. Imaging of spine synapses using super-resolution microscopy. Anat. Sci. Int. 2021, 96, 343–358. [Google Scholar] [CrossRef]
- Alvarez, V.A.; Sabatini, B.L. Anatomical and physiological plasticity of dendritic spines. Annu. Rev. Neurosci. 2007, 30, 79–97. [Google Scholar] [CrossRef] [Green Version]
- Baczynska, E.; Pels, K.K.; Basu, S.; Wlodarczyk, J.; Ruszczycki, B. Quantification of dendritic spines remodeling under physiological stimuli and in pathological conditions. Int. J. Mol. Sci. 2021, 22, 4053. [Google Scholar] [CrossRef]
- Obashi, K.; Taraska, J.W.; Okabe, S. The role of molecular diffusion within dendritic spines in synaptic function. J. Gen. Physiol. 2021, 153, e202012814. [Google Scholar] [CrossRef]
- Huertas, M.A.; Newton, A.J.H.; McDoughal, R.A.; Sacktor, T.C.; Shouval, H.Z. Conditions of synaptic specificity during maintenance phase of synaptic plasticity. eNeuro 2022, 9, ENEURO.0064-22.2022. [Google Scholar] [CrossRef]
- Suratkal, S.S.; Yen, Y.H.; Nishiyama, J. Imaging of dendritic spines: Molecular organization and signaling for plasticity. Curr. Opin. Neurobiol. 2021, 67, 66–74. [Google Scholar] [CrossRef]
- Perez-Alvarez, A.; Yin, S.; Schuze, C.; Hammer, J.A.; Wagner, W.; Oertner, T.G. Endoplasmic reticulum visits highly active spines and prevents runaway potentiation of synapses. Nat. Commun. 2020, 11, 5083. [Google Scholar] [CrossRef]
- Konietzny, A.; Grundel, J.; Kadek, A.; Bucher, M.; Han, Y.; Hertrich, N.; Dekkers, D.H.W.; Demmers, J.A.A.; Grunewald, K.; Uetrechr, C.; et al. Caldendrin and myosin V regulate synaptic spine apparatus localization via ER stabilization in dendritic spines. EMBO J. 2021, 22, e106523. [Google Scholar] [CrossRef]
- Das, N.; Baczynska, E.; Bijata, M.; Ruszczycki, B.; Zeug, A.; Plewczynski, D.; Saha, P.K.; Ponimaskin, E.; Wlodarczyk, J.; Basu, S. 3dSpAn: An interactive software for 3D segmentation and analysis of dendritic spines. Neuroinformatics 2021, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Adrian, M.; Kusters, R.; Wierenga, C.J.; Storm, C.; Hoogenraad, C.C.; Kapitein, L.C. Barriers in the brain: Resolving dendritic spine morphology and compartmentalization. Front. Neuroanat. 2014, 8, 142. [Google Scholar] [CrossRef] [Green Version]
- Newpher, T.M.; Ehlers, M.D. Spine microdomains for postsynaptic signaling and plasticity. Trends Cell Biol. 2009, 19, 218–227. [Google Scholar] [CrossRef]
- Adler, A.; Lai, C.S.W.; Yang, G.; Geron, E.; Bai, Y.; Gan, B.W. Sleep promotes the formation of dendritic filopodia and spines near learning-inactive existing spines. Proc. Natl. Acad. Sci. USA 2021, 118, e2114856118. [Google Scholar] [CrossRef] [PubMed]
- Gourley, S.L.; Srikanth, K.D.; Woon, E.P.; Gil-Henn, H. Pyk2 stabilizes medium spiny neuron structure and striatal-dependent action. Cells 2021, 10, 3442. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Cheng, T.; Dong, X.; Chen, H.; Yang, L.; Qiu, Z.; Zhou, W. KIF5C deficiency causes abnormal cortical neuronal migration, dendritic branches and spine morphology in mice. Pediatr. Res. 2021, 1–8. [Google Scholar] [CrossRef]
- Basilico, B.; Ferrucci, L.; Raitano, P.; Golia, M.T.; Grimaldi, A.; Rosito, M.; Ferretti, V.; Reverte, I.; Sanchini, C.; Marrone, M.C.; et al. Microglia control glutamatergic synapses in the adult mouse hippocampus. Glia 2022, 70, 173–195. [Google Scholar] [CrossRef]
- Meldolesi, J. Rapidly exchanging Ca2+ stores: Ubiquitous partners of surface channels in neurons. News Physiol. Sci. 2002, 17, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Basnayake, K.; Mazaud, D.; Kushnireva, L.; Bemelmans, A.; Rauch, N.; Korkotian, E.; Holkman, D. Nanoscale molecular architecture controls calcium diffusion and ER replenishment in dendritic spines. Sci. Adv. 2021, 7, eabh1376. [Google Scholar] [CrossRef] [PubMed]
- Tshuva, R.Y.; Korkotian, E.; Segal, M. ORAI1-dependent synaptic plasticity in rat hippocampal neurons. Neurobiol. Learn. Mem. 2017, 140, 1–10. [Google Scholar] [CrossRef]
- Holkman, D.; Schuss, Z. Diffusion lows in dendritic spines. J. Math. Neurosci. 2011, 1, 10. [Google Scholar] [CrossRef] [Green Version]
- Mikuni, T.; Uchigashima, M. Approaches to understand the molecular mechanisms of structural plasticity of dendritic spines. Eur. J. Neurosci. 2021, 54, 6902–6911. [Google Scholar] [CrossRef]
- Ueda, H.H.; Nagasawa, Y.; Murakoshi, H. Imaging intracellular protein interactions/activity in neurons using 2-photon fluorescence lifetime imaging microscopy. Neurosci. Res. 2022, 179, 31–38. [Google Scholar] [CrossRef]
- Shimizu, G.; Yoshida, K.; Kasai, H.; Toyoizumi, T. Computational role of intrinsic synaptic dynamics. Curr. Opin. Neurobiol. 2021, 70, 34–42. [Google Scholar] [CrossRef]
- Lamprecht, R. Actin cytoskeleton role in the maintenance of neuronal morphology and long-term memory. Cells 2021, 10, 1795. [Google Scholar] [CrossRef] [PubMed]
- Bertling, E.; Englund, J.; Minkeviciene, R.; Koskinen, M.; Segerstrale, M.; Castrén, E.; Taira, T.; Hotulainen, P. Actin tyrosine-53-phosphorylation in neuronal maturation and synaptic plasticity. J. Neurosci. 2016, 36, 5299–5313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Ben Zablah, Y.; Zhang, H.; Jia, Z. Rho signaling in synaptic plasticity, memory and brain disorders. Front. Cell Dev. Biol. 2021, 9, 729076. [Google Scholar] [CrossRef] [PubMed]
- Harbin, N.H.; Bramlett, S.N.; Montanez-Miranda, C.; Terzioglu, G.; Hepler, J.R. GS14 regulation of post-synaptic signaling and spine plasticity in brain. Int. J. Mol. Sci. 2021, 22, 6823. [Google Scholar] [CrossRef] [PubMed]
- Mu, L.; Cai, J.; Gu, B.; Yu, L.; Li, C.; Liu, Q.S.; Zhao, L. Treadmill exercise prevents decline in spatial learning and memory in 3xTg-AD mice through enhancement of structural synaptic plasticity of the hippocampus and prefrontal cortex. Cells 2022, 11, 244. [Google Scholar] [CrossRef]
- Takahashi, N.; Kitamura, K.; Matsuo, N.; Mayford, M.; Kano, M.; Matsuki, N.; Ikegaya, Y. Locally synchronized synaptic inputs. Science 2012, 335, 353–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaulieu-Laroche, L.; Harnett, M.T. Dendritic spines prevents synaptic voltage clamp. Neuron 2018, 97, 75–82.e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cartailler, J.; Kwan, T.; Yuste, R.; Hocman, D. Deconvolution of voltage sensor time series and electro-diffusion modeling reveal the role of spine geometry in controlling synaptic strength. Neuron 2018, 97, 1126–1136.e10. [Google Scholar] [CrossRef] [Green Version]
- Cornejo, V.H.; Ofer, N.; Yuste, R. Voltage compartmentalization in dendritic spines in vivo. Science 2022, 375, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Govindaiah, G.; Liu, R.J.; Wang, Y. Dopamine D2L receptor deficiency alters neuronal excitability and spine formation in mouse striatum. Biomedicines 2022, 10, 101. [Google Scholar] [CrossRef]
- Ring, N.A.R.; Valdivieso, K.; Grillari, J.; Redl, H.; Ogrodnik, M. The role of senescence in cellular plasticity: Lessons from regeneration and development and implications for age-related diseases. Dev. Cell 2022, 57, 1083–1101. [Google Scholar] [CrossRef] [PubMed]
- Sikor, E.; Bielak-Zmijwska, A.; Dudkowska, M.; Krzystyniak, A.; Mosieniak, G.; Wesierska, M.; Wlodarczyk, J. Cellular senescence in brain aging. Front. Aging Neurosci. 2021, 13, 646924. [Google Scholar] [CrossRef] [PubMed]
- Gramuntel, Y.; Klimczak, P.; Coviello, S.; Perez-Rando, M.; Nacher, J. Effects of aging on the structure and expression of NMDA receptors of somatostatin expressing neurons in the mouse hippocampus. Front. Aging Neurosci. 2021, 13, 782737. [Google Scholar] [CrossRef]
- Nishiyama, J. Plasticity of dendritic spines: Molecular function and dysfunction in neurodevelopmental disorders. Psychiatry Clin. Neurosci. 2019, 73, 541–550. [Google Scholar] [CrossRef]
- Biasetti, L.; Rey, S.; Fowler, M.; Ratnayaka, A.; Fennell, K.; Smith, C.; Marshall, K.; Hall, C.; Vergas-Caballero, M.; Serpell, L.; et al. Elevated amyloid beta disrupts the nanoscale organization and function of synaptic vesicle pools in hippocampal neurons. Cereb. Cortex 2022, bhac134. [Google Scholar] [CrossRef]
- Boros, B.D.; Greathouse, K.M.; Gentry, E.G.; Curtis, K.A.; Birchall, E.L.; Gearing, M.; Herskowitz, J.H. Dendritic spines provide cognitive resilience against Alzheimer’s disease. Ann. Neurol. 2017, 82, 602–614. [Google Scholar] [CrossRef] [PubMed]
- Walker, C.K.; Herskowitz, J.H. Dendritic spines: Mediators of cognitive resilience in aging and Alzheimer’s disease. Neuroscientist 2021, 27, 487–4505. [Google Scholar] [CrossRef]
- Ettcheto, M.; Busquets, O.; Cano, A.; Sanchez-Lopez, E.; Manzine, E.; Espinosa-Jimenez, T.; Olloquequi, J.; Castro-Torres, R.D.; Auladel, C.; Folch, J.; et al. Pharmacological strategies to improve dendritic spines in Alzheimer’s disease. J. Alzheimer’s Dis. 2021, 82, S91–S107. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Zhang, M.; Yin, X.; Chen, K.; Hu, Z.; Zhou, Q.; Cao, X.; Chen, Z.; Liu, D. The role of pathological tau in synaptic dysfunction in Alzheimer’s disease. Transl. Neurodegener. 2021, 10, 45. [Google Scholar] [CrossRef] [PubMed]
- Teravskis, P.I.; Ashe, K.H.; Liao, D. The accumulation of tau in postsynaptic structures: A common feature in multiple neurodegenerative diseases? Neuroscientist 2020, 26, 503–520. [Google Scholar] [CrossRef] [PubMed]
- Giovannini, J.; Smeralda, W.; Jouanne, M.; Sopkova-de-Olivera Santos, J.; Catto, M.; Voisin-Chiret, A.S. Tau protein aggregation: Key feature to improve drug discovery screening. Drug Discov. Today 2022, 27, 1284–1297. [Google Scholar] [CrossRef] [PubMed]
- Witzig, V.S.; Koming, D.; Falkenburger, B.H. Changes in striatal medium spiny neuron morphology resulting from dopamine depletion are reversible. Cells 2020, 9, 2441. [Google Scholar] [CrossRef] [PubMed]
- Suarez, M.L.; Solis, O.; Sanz-Magro, A.; Alberquilla, S.; Moratalla, R. Dopamine D1 receptor regulates spines in striatal direct-pathway and indirect-pathway neurons. Mov. Disord. 2020, 35, 1819–1821. [Google Scholar] [CrossRef] [PubMed]
- Parajuli, L.K.; Wako, K.; Maruo, S.; Kakuta, S.; Taguchi, T.; Ikuno, M.; Yamakado, H.; Takahashi, R.; Koike, M. Developmental changes in dendritic spine morphology in the striatum and their alteration in an A53T synuclein transgenic mouse model of Parkinson’s disease. eNeuro 2020, 7, ENEURO.0072-20.2020. [Google Scholar] [CrossRef] [PubMed]
- Turner, T.N.; Coe, B.P.; Dickel, D.E.; Hoekzema, K.; Nelson, B.J.; Zody, M.C.; Kronenberg, Z.N.; Hormozdiari, F.; Raja, A.; Pennacchio, L.A.; et al. Genomic patterns of de novo mutation in simplex autism. Cell 2017, 171, 710–722.e12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valles, A.S.; Barrantes, F.J. Dendritic spine membrane proteome and its alterations in autistic spectrum disorders. Adv. Protein Chem. Struct. Biol. 2022, 128, 435–474. [Google Scholar] [CrossRef] [PubMed]
- Joensuu, M.; Lanoue, V.; Hotulainen, P. Dendritic spine actin cytosketeton in autism spectrum disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 84, 362–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, R.; Zhu, T.; Liu, Q.; Tian, Q.; Wang, M.; Chen, J.; Tong, D.; Yu, B.; Guo, H.; Xia, K.; et al. The autism risk gene CNTN4 modulates dendritic spine formation. Hum. Mol. Genet. 2021, 31, 207–218. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meldolesi, J. Post-Synapses in the Brain: Role of Dendritic and Spine Structures. Biomedicines 2022, 10, 1859. https://doi.org/10.3390/biomedicines10081859
Meldolesi J. Post-Synapses in the Brain: Role of Dendritic and Spine Structures. Biomedicines. 2022; 10(8):1859. https://doi.org/10.3390/biomedicines10081859
Chicago/Turabian StyleMeldolesi, Jacopo. 2022. "Post-Synapses in the Brain: Role of Dendritic and Spine Structures" Biomedicines 10, no. 8: 1859. https://doi.org/10.3390/biomedicines10081859
APA StyleMeldolesi, J. (2022). Post-Synapses in the Brain: Role of Dendritic and Spine Structures. Biomedicines, 10(8), 1859. https://doi.org/10.3390/biomedicines10081859