In Vitro Blood Clot Formation and Dissolution for Testing New Stroke-Treatment Devices
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Virani, S.S.; Alonso, A.; Aparicio, H.J.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics-2021 Update: A Report From the American Heart Association. Circulation 2021, 143, e254–e743. [Google Scholar] [CrossRef] [PubMed]
- Hameed, A.; Zafar, H.; Mylotte, D.; Sharif, F. Recent Trends in Clot Retrieval Devices: A Review. Cardiol. Ther. 2017, 6, 193–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, K.; Matsumaru, Y.; Takeuchi, M.; Morimoto, M.; Kanazawa, R.; Takayama, Y.; Kamiya, Y.; Shigeta, K.; Okubo, S.; Hayakawa, M.; et al. Effect of Mechanical Thrombectomy Without vs With Intravenous Thrombolysis on Functional Outcome Among Patients With Acute Ischemic Stroke: The SKIP Randomized Clinical Trial. JAMA 2021, 325, 244–253. [Google Scholar] [CrossRef]
- Preut, A.; Laughlin, M.; Jensen, H.; Hestekin, J.; Jensen, M. Novel method for emboli analog formation towards improved stroke retrieval devices. J. Biomech 2018, 80, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Landskroner, K.; Olson, N.; Jesmok, G. Cross-species pharmacologic evaluation of plasmin as a direct-acting thrombolytic agent: Ex vivo evaluation for large animal model development. J. Vasc. Interv. Radiol. 2005, 16, 369–377. [Google Scholar] [CrossRef]
- Krasokha, N.; Theisen, W.; Reese, S.; Mordasini, P.; Brekenfeld, C.; Gralla, J.; Slotboom, J.; Schrott, G.; Monstadt, H. Mechanical properties of blood clots—A new test method. Mater. Werkst. 2010, 41, 1019–1024. [Google Scholar] [CrossRef]
- Chueh, J.Y.; Wakhloo, A.K.; Hendricks, G.H.; Silva, C.F.; Weaver, J.P.; Gounis, M.J. Mechanical characterization of thromboemboli in acute ischemic stroke and laboratory embolus analogs. AJNR Am. J. Neuroradiol. 2011, 32, 1237–1244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wohner, N.; Sótonyi, P.; Machovich, R.; Szabó, L.; Tenekedjiev, K.; Silva, M.M.C.G.; Longstaff, C.; Kolev, K. Lytic Resistance of Fibrin Containing Red Blood Cells. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 2306–2313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byrnes, J.R.; Wolberg, A.S. Red blood cells in thrombosis. Blood 2017, 130, 1795–1799. [Google Scholar] [CrossRef]
- Duffy, S.; Farrell, M.; McArdle, K.; Thornton, J.; Vale, D.; Rainsford, E.; Morris, L.; Liebeskind, D.S.; MacCarthy, E.; Gilvarry, M. Novel methodology to replicate clot analogs with diverse composition in acute ischemic stroke. J. Neurointerv. Surg. 2017, 9, 486–491. [Google Scholar] [CrossRef]
- Athens Research and Technology. Plasmin: Human Plasma: Lyophilized, Product Datasheet. Available online: https://www.athensresearch.com/images/_dynamic/Plasmin-_F-16-16-161213-Lyophilized.pdf (accessed on 28 June 2022).
- Castino, F.; Wickramasinghe, S.R. Washing frozen red blood cell concentrates using hollow fibres. J. Membr. Sci. 1996, 110, 169–180. [Google Scholar] [CrossRef]
- Ziel, R.; Haus, A.; Tulke, A. Quantification of the pore size distribution (porosity profiles) in microfiltration membranes by SEM, TEM and computer image analysis. J. Membr. Sci. 2008, 323, 241–246. [Google Scholar] [CrossRef]
- Katz, J.M.; Tadi, P. Physiology, Plasminogen Activation. In Treasure Island (FL); StatPearls: Tampa, FL, USA, 2021. [Google Scholar]
- Etter, M.M.; Möhlenbruch, M.; Weyland, C.S.; Pérez-García, C.; Moreu, M.; Capasso, F.; Limbucci, N.; Nikoubashman, O.; Wiesmann, M.; Blackham, K.; et al. Initial Experience With the Trevo NXT Stent Retriever. Front. Neurol. 2021, 12, 1136. [Google Scholar] [CrossRef] [PubMed]
- Broussalis, E.; Trinka, E.; Hitzl, W.; Wallner, A.; Chroust, V.; Killer-Oberpfalzer, M. Comparison of Stent-Retriever Devices versus the Merci Retriever for Endovascular Treatment of Acute Stroke. Am. J. Neuroradiol. 2013, 34, 366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fanous, A.A.; Siddiqui, A.H. Mechanical thrombectomy: Stent retrievers vs. aspiration catheters. Cor Et Vasa 2016, 58, e193–e203. [Google Scholar] [CrossRef]
- Bose, A.; Henkes, H.; Alfke, K.; Reith, W.; Mayer, T.E.; Berlis, A.; Branca, V.; Sit, S.P. The Penumbra System: A Mechanical Device for the Treatment of Acute Stroke due to Thromboembolism. Am. J. Neuroradiol. 2008, 29, 1409. [Google Scholar] [CrossRef] [Green Version]
- Man, S.; Xian, Y.; Holmes, D.N.; Matsouaka, R.A.; Saver, J.L.; Smith, E.E.; Bhatt, D.L.; Schwamm, L.H.; Fonarow, G.C. Association Between Thrombolytic Door-to-Needle Time and 1-Year Mortality and Readmission in Patients With Acute Ischemic Stroke. JAMA 2020, 323, 2170–2184. [Google Scholar] [CrossRef]
- Pena, I.D.; Borlongan, C.; Shen, G.; Davis, W. Strategies to Extend Thrombolytic Time Window for Ischemic Stroke Treatment: An Unmet Clinical Need. J. Stroke 2017, 19, 50–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, M.C.; Cutler, D.M.; Rosen, A.B. Trends in thrombolytic use for ischemic stroke in the United States. J. Hosp. Med. 2010, 5, 406–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marder, V.J.; Jahan, R.; Gruber, T.; Goyal, A.; Arora, V. Thrombolysis with plasmin: Implications for stroke treatment. Stroke 2010, 41, S45–S49. [Google Scholar] [CrossRef] [Green Version]
- Stewart, D.; Kong, M.; Novokhatny, V.; Jesmok, G.; Marder, V.J. Distinct dose-dependent effects of plasmin and TPA on coagulation and hemorrhage. Blood 2003, 101, 3002–3007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohara, T.; Menon, B.K.; Al-Ajlan, F.S.; Horn, M.; Najm, M.; Al-Sultan, A.; Puig, J.; Dowlatshahi, D.; Calleja Sanz, A.I.; Sohn, S.-I.; et al. Thrombus Migration and Fragmentation After Intravenous Alteplase Treatment. Stroke 2021, 52, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Stanford, S.N.; Sabra, A.; D’Silva, L.; Lawrence, M.; Morris, R.H.K.; Storton, S.; Brown, M.R.; Evans, V.; Hawkins, K.; Williams, P.R.; et al. The changes in clot microstructure in patients with ischaemic stroke and the effects of therapeutic intervention: A prospective observational study. BMC Neurol. 2015, 15, 35. [Google Scholar] [CrossRef] [Green Version]
- Staessens, S.; Denorme, F.; Francois, O.; Desender, L.; Dewaele, T.; Vanacker, P.; Deckmyn, H.; Vanhoorelbeke, K.; Andersson, T.; De Meyer, S.F. Structural analysis of ischemic stroke thrombi: Histological indications for therapy resistance. Haematologica 2020, 105, 498–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simons, N.; Mitchell, P.; Dowling, R.; Gonzales, M.; Yan, B. Thrombus composition in acute ischemic stroke: A histopathological study of thrombus extracted by endovascular retrieval. J. Neuroradiol. 2015, 42, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Gunning, G.M.; McArdle, K.; Mirza, M.; Duffy, S.; Gilvarry, M.; Brouwer, P.A. Clot friction variation with fibrin content; implications for resistance to thrombectomy. J. NeuroInterventional. Surg. 2018, 10, 34. [Google Scholar] [CrossRef]
- Dobrocky, T.; Piechowiak, E.; Cianfoni, A.; Zibold, F.; Roccatagliata, L.; Mosimann, P.; Jung, S.; Fischer, U.; Mordasini, P.; Gralla, J. Thrombectomy of calcified emboli in stroke. Does histology of thrombi influence the effectiveness of thrombectomy? J. NeuroInterventional. Surg. 2018, 10, 345. [Google Scholar] [CrossRef]
- Laughlin, M.E.; Stephens, S.E.; Hestekin, J.A.; Jensen, M.O. Development of Custom Wall-Less Cardiovascular Flow Phantoms with Tissue-Mimicking Gel. Cardiovasc Eng. Technol 2022, 13, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Shlansky-Goldberg, R. Phase 1 study of human plasma-derived plasmin (TAL-05-00018) in hemodialysis graft occlusion. Thromb Res. 2008, 122 (Suppl. S3), S16–S19. [Google Scholar] [CrossRef] [PubMed]
- Comerota, A.J.F.; Shlansky-Goldberg, D.; Deng, R.; Marder, C.; Victor, J. Plasmin (Human) TAL-05-00018 Demonstrates a Good Safety Profile in Patients with Acute Peripheral Arterial Occlusion. In Proceedings of the Vascular Annual Meeting C3f, Chicago, IL, USA, 16–18 June 2011. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wood, K.; Stephens, S.E.; Xu, F.; Hazaa, A.; Meek, J.C.; Jensen, H.K.; Jensen, M.O.; Wickramasinghe, R. In Vitro Blood Clot Formation and Dissolution for Testing New Stroke-Treatment Devices. Biomedicines 2022, 10, 1870. https://doi.org/10.3390/biomedicines10081870
Wood K, Stephens SE, Xu F, Hazaa A, Meek JC, Jensen HK, Jensen MO, Wickramasinghe R. In Vitro Blood Clot Formation and Dissolution for Testing New Stroke-Treatment Devices. Biomedicines. 2022; 10(8):1870. https://doi.org/10.3390/biomedicines10081870
Chicago/Turabian StyleWood, Kayla, Sam E. Stephens, Feng Xu, Alshaimaa Hazaa, James C. Meek, Hanna K. Jensen, Morten O. Jensen, and Ranil Wickramasinghe. 2022. "In Vitro Blood Clot Formation and Dissolution for Testing New Stroke-Treatment Devices" Biomedicines 10, no. 8: 1870. https://doi.org/10.3390/biomedicines10081870
APA StyleWood, K., Stephens, S. E., Xu, F., Hazaa, A., Meek, J. C., Jensen, H. K., Jensen, M. O., & Wickramasinghe, R. (2022). In Vitro Blood Clot Formation and Dissolution for Testing New Stroke-Treatment Devices. Biomedicines, 10(8), 1870. https://doi.org/10.3390/biomedicines10081870