Sex-Based Evaluation of Lipid Profile in Postoperative Adjuvant Mitotane Treatment for Adrenocortical Carcinoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Inclusion Criteria
2.2. HPLC Analysis
2.3. Statistical Analysis
3. Results
3.1. Study Population
3.2. Effects of Sex on Total Cholesterol, HDL, LDL and Triglycerides
3.3. Effects of Menopause on Total Cholesterol, HDL, LDL and Triglycerides
3.4. Effect of Menopause on Total Cholesterol, HDL, LDL and Triglycerides
3.5. Correlations between Mitotane and o,p’-DDE Levels, and Total Cholesterol, HDL, LDL and Triglycerides in Male Patients
3.6. Correlations between Mitotane and o,p’-DDE Levels, and Total Cholesterol, HDL, LDL and Triglycerides in Female Patients
3.7. Correlations between Mitotane and o,p’-DDE Levels, and Total Cholesterol, HDL, LDL and Triglycerides in Premenopausal Female Patients
3.8. Correlations between Mitotane and o,p’-DDE Levels, and Total Cholesterol, HDL, LDL and Triglycerides in Postmenopausal Female Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vilar, O.; Tullner, W.W. Effects of o,p’ DDD on histology and 17-hydroxycorticosteroid output of the dog adrenal cortex. Endocrinology 1959, 65, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Corso, C.R.; Acco, A.; Bach, C.; Bonatto, S.J.R.; de Figueiredo, B.C.; de Souza, L.M. Pharmacological profile and effects of mitotane in adrenocortical carcinoma. Br. J. Clin. Pharmacol. 2021, 87, 2698–2710. [Google Scholar] [CrossRef]
- Lo Iacono, M.; Puglisi, S.; Perotti, P.; Saba, L.; Petiti, J.; Giachino, C.; Reimondo, G.; Terzolo, M. Molecular Mechanisms of Mitotane Action in Adrenocortical Cancer Based on In Vitro Studies. Cancers 2021, 13, 5255. [Google Scholar] [CrossRef] [PubMed]
- Fassnacht, M.; Dekkers, O.M.; Else, T.; Baudin, E.; Berruti, A.; de Krijger, R.; Haak, H.R.; Mihai, R.; Assie, G.; Terzolo, M. European Society of Endocrinology Clinical Practice Guidelines on the management of adrenocortical carcinoma in adults, in collaboration with the European Network for the Study of Adrenal Tumors. Eur. J. Endocrinol. 2018, 179, G1–G46. [Google Scholar] [CrossRef]
- Fassnacht, M.; Assie, G.; Baudin, E.; Eisenhofer, G.; de la Fouchardiere, C.; Haak, H.R.; de Krijger, R.; Porpiglia, F.; Terzolo, M.; Berruti, A.; et al. Adrenocortical carcinomas and malignant phaeochromocytomas: ESMO-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2020, 31, 1476–1490. [Google Scholar] [CrossRef]
- Puglisi, S.; Calabrese, A.; Basile, V.; Pia, A.; Reimondo, G.; Perotti, P.; Terzolo, M. New perspectives for mitotane treatment of adrenocortical carcinoma. Best Pract. Res. Clin. Endocrinol. Metab. 2020, 34, 101415. [Google Scholar] [CrossRef]
- Puglisi, S.; Calabrese, A.; Basile, V.; Ceccato, F.; Scaroni, C.; Simeoli, C.; Torlontano, M.; Cannavò, S.; Arnaldi, G.; Stigliano, A.; et al. Mitotane Concentrations Influence the Risk of Recurrence in Adrenocortical Carcinoma Patients on Adjuvant Treatment. J. Clin. Med. 2019, 8, 1850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puglisi, S.; Calabrese, A.; Basile, V.; Ceccato, F.; Scaroni, C.; Altieri, B.; Della Casa, S.; Loli, P.; Pivonello, R.; De Martino, M.C.; et al. Mitotane Concentrations Influence Outcome in Patients with Advanced Adrenocortical Carcinoma. Cancers 2020, 12, 740. [Google Scholar] [CrossRef] [Green Version]
- Haak, H.R.; Hermans, J.; Van de Velde, C.J.; Lentjes, E.G.; Goslings, B.M.; Fleuren, G.J.; Krans, H.M. Optimal treatment of adrenocortical carcinoma with mitotane: Results in a consecutive series of 96 patients. Br. J. Cancer 1994, 69, 947–951. [Google Scholar] [CrossRef]
- Baudin, E.; Pellegriti, G.; Bonnay, M.; Penfornis, A.; Laplanche, A.; Vassal, G.; Schlumberger, M. Impact of monitoring plasma 1,1-dichlorodiphenildichloroethane (o,p’DDD) levels on the treatment of patients with adrenocortical carcinoma. Cancer 2001, 92, 1385–1392. [Google Scholar] [CrossRef]
- Hermsen, I.G.; Fassnacht, M.; Terzolo, M.; Houterman, S.; den Hartigh, J.; Leboulleux, S.; Daffara, F.; Berruti, A.; Chadarevian, R.; Schlumberger, M.; et al. Plasma concentrations of o,p’DDD, o,p’DDA, and o,p’DDE as predictors of tumor response to mitotane in adrenocortical carcinoma: Results of a retrospective ENS@T multicenter study. J. Clin. Endocrinol. Metab. 2011, 96, 1844–1851. [Google Scholar] [CrossRef] [Green Version]
- Megerle, F.; Herrmann, W.; Schloetelburg, W.; Ronchi, C.L.; Pulzer, A.; Quinkler, M.; Beuschlein, F.; Hahner, S.; Kroiss, M.; Fassnacht, M.; et al. Mitotane Monotherapy in Patients with Advanced Adrenocortical Carcinoma. J. Clin. Endocrinol. Metab. 2018, 103, 1686–1695. [Google Scholar] [CrossRef] [PubMed]
- Basile, V.; Puglisi, S.; Calabrese, A.; Pia, A.; Perotti, P.; Berruti, A.; Reimondo, G.; Terzolo, M. Unwanted Hormonal and Metabolic Effects of Postoperative Adjuvant Mitotane Treatment for Adrenocortical Cancer. Cancers 2020, 12, 2615. [Google Scholar] [CrossRef]
- Daffara, F.; de Francia, S.; Reimondo, G.; Zaggia, B.; Aroasio, E.; Porpiglia, F.; Volante, M.; Termine, A.; Di Carlo, F.; Dogliotti, L.; et al. Prospective evaluation of mitotane toxicity in adrenocortical cancer patients treated adjuvantly. Endocr. Relat. Cancer 2008, 15, 1043–1053. [Google Scholar] [CrossRef] [Green Version]
- Nader, N.; Raverot, G.; Emptoz-Bonneton, A.; Déchaud, H.; Bonnay, M.; Baudin, E.; Pugeat, M. Mitotane has an estrogenic effect on sex hormone-binding globulin and corticosteroid-binding globulin in humans. J. Clin. Endocrinol. Metab. 2006, 91, 2165–2170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reimondo, G.; Puglisi, S.; Zaggia, B.; Basile, V.; Saba, L.; Perotti, P.; de Francia, S.; Volante, M.; Zatelli, M.C.; Cannavò, S.; et al. Effects of mitotane on the hypothalamic-pituitary-adrenal axis in patients with adrenocortical carcinoma. Eur. J. Endocrinol. 2017, 177, 361–367. [Google Scholar] [CrossRef]
- Vikner, M.E.; Krogh, J.; Daugaard, G.; Andreassen, M. Metabolic and hormonal side effects of mitotane treatment for adrenocortical carcinoma: A retrospective study in 50 Danish patients. Clin. Endocrinol. 2021, 94, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Shawa, H.; Deniz, F.; Bazerbashi, H.; Hernandez, M.; Vassilopoulou-Sellin, R.; Jimenez, C.; Habra, M.A. Mitotane-induced hyperlipidemia: A retrospective cohort study. Int. J. Endocrinol. 2013, 2013, 624962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pohland, R.C.; Counsell, R.E. The role of high density lipoproteins in the biodistribution of two radioiodinated probes in the rat. Toxicol. Appl. Pharmacol. 1985, 77, 47–57. [Google Scholar] [CrossRef] [Green Version]
- Mauclère-Denost, S.; Leboulleux, S.; Borget, I.; Paci, A.; Young, J.; Al Ghuzlan, A.; Deandreis, D.; Drouard, L.; Tabarin, A.; Chanson, P.; et al. High-dose mitotane strategy in adrenocortical carcinoma: Prospective analysis of plasma mitotane measurement during the first 3 months of follow-up. Eur. J. Endocrinol. 2012, 166, 261–268. [Google Scholar] [CrossRef] [Green Version]
- Cusato, J.; de Francia, S.; Allegra, S.; Carrella, S.; Pirro, E.; Piccione, F.M.; de Martino, F.; Ferrero, A.; Daffara, F.C.; Terzolo, M.; et al. Circannual variation of mitotane and its metabolites plasma levels in patients with adrenocortical carcinoma. J. Pharm. Pharmacol. 2017, 69, 1524–1530. [Google Scholar] [CrossRef] [PubMed]
- Allegra, S.; Puglisi, S.; Brescia, I.; Chiara, F.; Basile, V.; Calabrese, A.; Reimondo, G.; de Francia, S. Sex Differences on Mitotane Concentration and Treatment Outcome in Patients with Adrenocortical Carcinoma. Life 2021, 11, 266. [Google Scholar] [CrossRef] [PubMed]
- Weiss, L.M.; Medeiros, L.J.; Vickery, A.L. Pathologic features of prognostic significance in adrenocortical carcinoma. Am. J. Surg. Pathol. 1989, 13, 202–206. [Google Scholar] [CrossRef] [PubMed]
- Puglisi, S.; Perotti, P.; Cosentini, D.; Roca, E.; Basile, V.; Berruti, A.; Terzolo, M. Decision-making for adrenocortical carcinoma: Surgical, systemic, and endocrine management options. Expert Rev. Anticancer. Ther. 2018, 18, 1125–1133. [Google Scholar] [CrossRef]
- Terzolo, M.; Ardito, A.; Zaggia, B.; Laino, F.; Germano, A.; de Francia, S.; Daffara, F.; Berruti, A. Management of adjuvant mitotane therapy following resection of adrenal cancer. Endocrine 2012, 42, 521–525. [Google Scholar] [CrossRef] [Green Version]
- De Francia, S.; Pirro, E.; Zappia, F.; de Martino, F.; Sprio, A.E.; Daffara, F.; Terzolo, M.; Berruti, A.; Di Carlo, F.; Ghezzo, F. A new simple HPLC method for measuring mitotane and its two principal metabolites Tests in animals and mitotane-treated patients. J. Chromatogr. B Analyt Technol. Biomed Life Sci. 2006, 837, 69–75. [Google Scholar] [CrossRef]
- Stacpoole, P.W.; Varnado, C.E.; Island, D.P. Stimulation of rat liver 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity by o,p’-DDD. Biochem. Pharmacol. 1982, 31, 857–860. [Google Scholar] [CrossRef]
- Hescot, S.; Seck, A.; Guerin, M.; Cockenpot, F.; Huby, T.; Broutin, S.; Young, J.; Paci, A.; Baudin, E.; Lombès, M. Lipoprotein-Free Mitotane Exerts High Cytotoxic Activity in Adrenocortical Carcinoma. J. Clin. Endocrinol. Metab. 2015, 100, 2890–2898. [Google Scholar] [CrossRef] [Green Version]
- Gebhardt, D.O.; Moolenaar, A.J.; Van Seters, A.P.; van der Velde, E.A.; Gevers Leuven, J.A. The distribution of o,p’-DDD (mitotane) among serum lipoproteins in normo- and hypertriglyceridemia. Cancer Chemother. Pharmacol. 1992, 29, 331–334. [Google Scholar] [CrossRef]
- Darling, G.M.; Johns, J.A.; Mccloud, P.I.; Davis, S.R. Estrogen and progestin compared with simvastatin for hypercholesterolemia in postmenopausal women. N. Engl. J. Med. 1997, 337, 595–601. [Google Scholar] [CrossRef]
- Darling, G.M.; Johns, J.A.; Mccloud, P.I.; Davis, S.R. Concurrent use of simvastatin and estrogen--progestin therapy compared with each therapy alone for hypercholesterolemia in postmenopausal women. Climacteric 1999, 2, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Rossouw, J.E.; Anderson, G.L.; Prentice, R.L.; Lacroix, A.Z.; Kooperberg, C.; Stefanick, M.L.; Jackson, R.D.; Beresford, S.A.; Howard, B.V.; Johnson, K.C.; et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: Principal results From the Women’s Health Initiative randomized controlled trial. JAMA 2002, 288, 321–333. [Google Scholar] [CrossRef] [Green Version]
- Stylianou, I.M.; Svenson, K.L.; Vanorman, S.K.; Langle, Y.; Millar, J.S.; Paigen, B.; Rader, D.J. Novel ENU-induced point mutation in scavenger receptor class B, member 1, results in liver specific loss of SCARB1 protein. PLoS ONE 2009, 4, e6521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chortis, V.; Taylor, A.E.; Schneider, P.; Tomlinson, J.W.; Hughes, B.A.; O’neil, D.M.; Libé, R.; Allolio, B.; Bertagna, X.; Bertherat, J.; et al. Mitotane therapy in adrenocortical cancer induces CYP3A4 and inhibits 5α-reductase, explaining the need for personalized glucocorticoid and androgen replacement. J. Clin. Endocrinol. Metab. 2013, 98, 161–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bianchini, M.; Puliani, G.; Chiefari, A.; Mormando, M.; Lauretta, R.; Appetecchia, M. Metabolic and Endocrine Toxicities of Mitotane: A Systematic Review. Cancers 2021, 13, 5001. [Google Scholar] [CrossRef]
- Jugan, J.; Lind, P.M.; Salihovic, S.; Stubleski, J.; Kärrman, A.; Lind, L.; La Merrill, M.A. The associations between p,p’-DDE levels and plasma levels of lipoproteins and their subclasses in an elderly population determined by analysis of lipoprotein content. Lipids Health Dis. 2020, 19, 249. [Google Scholar] [CrossRef]
- Norén, K.; Weistrand, C.; Karpe, F. Distribution of PCB congeners, DDE, hexachlorobenzene, and methylsulfonyl metabolites of PCB and DDE among various fractions of human blood plasma. Arch. Environ. Contam. Toxicol. 1999, 37, 408–414. [Google Scholar] [CrossRef]
- Ljunggren, S.A.; Helmfrid, I.; Salihovic, S.; Van Bavel, B.; Wingren, G.; Lindahl, M.; Karlsson, H. Persistent organic pollutants distribution in lipoprotein fractions in relation to cardiovascular disease and cancer. Environ. Int. 2014, 65, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Ramasamy, I. Recent advances in physiological lipoprotein metabolism. Clin. Chem. Lab. Med. 2014, 52, 1695–1727. [Google Scholar] [CrossRef]
- Aminov, Z.; Carpenter, D.O. Serum concentrations of persistent organic pollutants and the metabolic syndrome in Akwesasne Mohawks, a Native American community. Environ. Pollut. 2020, 260, 114004. [Google Scholar] [CrossRef]
- Han, X.; Zhang, F.; Meng, L.; Xu, Y.; Li, Y.; Li, A.; Turyk, M.E.; Yang, R.; Wang, P.; Zhang, J.; et al. Exposure to organochlorine pesticides and the risk of type 2 diabetes in the population of East China. Ecotoxicol. Environ. Saf. 2020, 190, 110125. [Google Scholar] [CrossRef]
- Arrebola, J.P.; Ocaña-Riola, R.; Arrebola-Moreno, A.L.; Fernández-Rodríguez, M.; Martin-Olmedo, P.; Fernández, M.F.; Olea, N. Associations of accumulated exposure to persistent organic pollutants with serum lipids and obesity in an adult cohort from Southern Spain. Environ. Pollut. 2014, 195, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Langer, P.; Ukropec, J.; Kocan, A.; Drobna, B.; Radikova, Z.; Huckova, M.; Imrich, R.; Gasperikova, D.; Klimes, I.; Trnovec, T. Obesogenic and diabetogenic impact of high organochlorine levels (HCB, p,p’-DDE, PCBs) on inhabitants in the highly polluted Eastern Slovakia. Endocr. Regul. 2014, 48, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Skipski, V.P.; Barclay, M.; Barclay, R.K.; Fetzer, V.A.; Good, J.J.; Archibald, F.M. Lipid composition of human serum lipoproteins. Biochem. J. 1967, 104, 340–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clifton, P.M.; Nestel, P.J. Influence of gender, body mass index, and age on response of plasma lipids to dietary fat plus cholesterol. Arterioscler. Thromb. 1992, 12, 955–962. [Google Scholar] [CrossRef] [Green Version]
- Astrup, A. Physical activity and weight gain and fat distribution changes with menopause: Current evidence and research issues. Med. Sci. Sports Exerc. 1999, 31, S564–S567. [Google Scholar] [CrossRef] [PubMed]
- Douchi, T.; Yamamoto, S.; Yoshimitsu, N.; Andoh, T.; Matsuo, T.; Nagata, Y. Relative contribution of aging and menopause to changes in lean and fat mass in segmental regions. Maturitas 2002, 42, 301–306. [Google Scholar] [CrossRef]
- Franklin, R.M.; Ploutz-Snyder, L.; Kanaley, J.A. Longitudinal changes in abdominal fat distribution with menopause. Metabolism 2009, 58, 311–315. [Google Scholar] [CrossRef]
- Stevenson, J.C.; Crook, D.; Godsland, I.F. Influence of age and menopause on serum lipids and lipoproteins in healthy women. Atherosclerosis 1993, 98, 83–90. [Google Scholar] [CrossRef]
- Bednarek-Tupikowska, G.; Tworowska-Bardzinska, U.; Tupikowski, K. Effects of estrogen and estrogen-progesteron on serum nitric oxide metabolite concentrations in post-menopausal women. J. Endocrinol. Investig. 2008, 31, 877–881. [Google Scholar] [CrossRef] [PubMed]
- Matthews, K.A.; Crawford, S.L.; Chae, C.U.; Everson-Rose, S.A.; Sowers, M.F.; Sternfeld, B.; Sutton-Tyrrell, K. Are changes in cardiovascular disease risk factors in midlife women due to chronological aging or to the menopausal transition? J. Am. Coll. Cardiol. 2009, 54, 2366–2373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Mcnamara, J.R.; Fruchart, J.C.; Luc, G.; Bard, J.M.; Ordovas, J.M.; Wilson, P.W.; Schaefer, E.J. Effects of gender and menopausal status on plasma lipoprotein subspecies and particle sizes. J. Lipid Res. 1996, 37, 1886–1896. [Google Scholar] [CrossRef]
Variable | All (n = 112) | Males | Females (n = 74) | Premenopausal Women (n = 50) | Postmenopausal Women (n = 23) |
---|---|---|---|---|---|
(n = 38) | |||||
Age (years) | |||||
Median (IQR) | 43.21 | 40.97 | 44.37 | 41.04 (33.03–45.99) | 58.10 (53.69–62.04) |
(34.51–56.60) | (33.84–58.72) | (54.55–54.67) | |||
Hormone secretion (valid cases: 105) | |||||
No secretion, n (%) | 76 (72.4) | 32 (42.1) | 44 (57.9) | 29 (65.9) | 15 (34.1) |
Cortisol/Cortisol + other steroids, n (%) | 24 (22.9) | 6 (25) | 18 (75) | 11 (61.1) | 7 (38.9) |
Other secretion, n (%) | 5 (4.76) | 0 | 5 (100) | 4 (80) | 1 (10) |
Margins, R status | |||||
R0, n (%) | 93 (83) | 33 (35.5) | 60 (64.5) | 40 (66.7) | 20 (33.3) |
R1, n (%) | 19 (17) | 6 (31.6) | 13 (68.4) | 9 (69.2) | 4 (30.8) |
RX, n (%) | 0 | 0 | 0 | 0 | 0 |
Recurrence-free survival (months) | |||||
Median (IQR) | 26 (12–67.75) | 44 (14.75–70.25) | 21.5 (11–59.25) | 22 (11.5–56) | 21 (10.5–71) |
Overall survival (months) | |||||
Median (IQR) | 57.5 (33–88.75) | 67.5 (34.75–97) | 52.5 (32.5–87.25) | 50 (33–110.5) | 58 (30.5–82) |
Variable | All (n = 551) | Males | Females (n = 336) | Premenopausal Women (n = 246) | Postmenopausal Women (n = 90) |
---|---|---|---|---|---|
(n = 215) | |||||
Total cholesterol (mg/dL) | |||||
Median (IQR) | 249.0 | 247.0 | 251.0 | 247.50 (219.0–288.0) | 264.50 (234.0–311.50) |
(218.0–283.0) | (209.50–272.50) | (222.0–292.0) | |||
HDL (mg/dL) | |||||
Median (IQR) | 71.0 | 54.0 | 85.50 | 88.0 (68.0–107.0) | 81.0 (57.0–94.50) |
(53.0–95.0) | (45.0–69.0) | (64.50–103.0) | |||
LDL (mg/dL) | |||||
Median (IQR) | 142.80 | 114.60 | 140.70 | 134.60 (102.60–183.60) | 147.60 (125.5–197.30) |
(113.0–177.60) | (116.60–170.20) | (110.10–186.70) | |||
Triglycerides (mg/dL) | |||||
Median (IQR) | 125.0 | 157.0 | 114.50 | 107.0 (81.0–139.0) | 130.50 (97.50–192.50) |
(93.0–179.0) | (110.0–224.0) | (84.0–150.50) | |||
Mitotane concentration (µg/mL) | |||||
Median (IQR) | 11.58 | 11.93 | 11.22 | 12.08 (7.25–15.05) | 9.88 (4.15–14.11) |
(7.04–15.35) | (7.45–16.35) | (6.41–14.92) | |||
o,p’-DDE concentration (µg/mL) | |||||
Median (IQR) | 1.29 | 1.33 | 1.18 (0.31–2.35) | 1.33 (0.47–2.43) | 0.82 (0.09–1.25) |
(0.37–2.44) | (0.47–2.43) |
Mitotane Levels | o,p’-DDE Levels | |
---|---|---|
Males | Total cholesterol r = 0.192; p = 0.005; IC95%: 0.059–0.317 HDL r = 0.337; p < 0.001; IC95%: 0.213–0.450 LDL r = 0.281; p < 0.001; IC95%: 0.152–0.399 | HDL r = 0.405; p < 0.001; IC95%: 0.287–0.511 LDL r = −0.180; p = 0.008; IC95%: −0.306–−0.047 |
Females | Total cholesterol r = 0.114; p = 0.036; IC95%: 0.007–0.219 HDL r = 0.470; p < 0.001; IC95%: 0.382–0.549 Triglycerides r = 0.107; p = 0.005; IC95%: 0–0.212 | Total cholesterol r = −0.195; p < 0.001; IC95%: −0.296–−0.09 HDL r = 0.524; p < 0.001; IC95%: 0.441–0.597 LDL r = −0.366; p < 0.001; IC95%: −0.455–−0.269 Triglycerides r = −0.206; p < 0.001; IC95%: −0.306–−0.101 |
Premenopausal woman | HDL r = 0.495; p < 0.001; IC95%: 0.394–0.584 | Total cholesterol r = −0.154; p = 0.016; IC95%: −0.274–−0.029 HDL r = 0.505; p < 0.001; IC95%: 0.406–0.593 LDL r = −0.344; p < 0.001; IC95%: −0.450–−0.229 Triglycerides r = −0.180; p = 0.005; IC95%: −0.298–−0.056 |
Postmenopausal women | HDL r = 0.359; p < 0.001; IC95%: 0.161–0.528 Triglycerides r = 0.328; p = 0.002; IC95%: 0.127–0.503 | Total cholesterol r = −0.272; p = 0.010; IC95%: −0.455–−0.066 HDL r = 0.553; p < 0.001; IC95%: 0.389–0.683 LDL r = −0.434; p < 0.001; IC95%: −0.590–−0.247 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allegra, S.; Puglisi, S.; Borin, C.; Chiara, F.; Basile, V.; Calabrese, A.; Reimondo, G.; De Francia, S. Sex-Based Evaluation of Lipid Profile in Postoperative Adjuvant Mitotane Treatment for Adrenocortical Carcinoma. Biomedicines 2022, 10, 1873. https://doi.org/10.3390/biomedicines10081873
Allegra S, Puglisi S, Borin C, Chiara F, Basile V, Calabrese A, Reimondo G, De Francia S. Sex-Based Evaluation of Lipid Profile in Postoperative Adjuvant Mitotane Treatment for Adrenocortical Carcinoma. Biomedicines. 2022; 10(8):1873. https://doi.org/10.3390/biomedicines10081873
Chicago/Turabian StyleAllegra, Sarah, Soraya Puglisi, Chiara Borin, Francesco Chiara, Vittoria Basile, Anna Calabrese, Giuseppe Reimondo, and Silvia De Francia. 2022. "Sex-Based Evaluation of Lipid Profile in Postoperative Adjuvant Mitotane Treatment for Adrenocortical Carcinoma" Biomedicines 10, no. 8: 1873. https://doi.org/10.3390/biomedicines10081873
APA StyleAllegra, S., Puglisi, S., Borin, C., Chiara, F., Basile, V., Calabrese, A., Reimondo, G., & De Francia, S. (2022). Sex-Based Evaluation of Lipid Profile in Postoperative Adjuvant Mitotane Treatment for Adrenocortical Carcinoma. Biomedicines, 10(8), 1873. https://doi.org/10.3390/biomedicines10081873