Validation of Sputum Biomarker Immunoassays and Cytokine Expression Profiles in COPD
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Sputum Processing
2.3. Part 1—Assay Development and Validation
2.3.1. Assay Kits and Analysis
2.3.2. Method Development
Matrix Dilution
Standard Recovery
Establishment of Calibration Curve
2.3.3. Method Validation
Intra-Assay Precision
Inter-Assay Precision
Assay Limits of Quantification and Detection
Validated Analyte Assays
2.4. Part 2—COPD versus Controls, and COPD Exacerbations
2.4.1. Study Design
2.4.2. Quantitative PCR Detection of Common Respiratory Pathogens
2.4.3. Sputum Supernatant Biomarkers
2.4.4. Statistical Analysis
3. Results
3.1. Part 1—Assay Development and Validation
3.1.1. Method Development
Matrix Dilution
Standard Recovery
Establishment of Calibration Curve
3.1.2. Method Validation
Precision
Assay Limits of Quantification and Detection
Validated Analyte Measurements
3.2. Part 2—COPD versus Controls and COPD Exacerbations
3.2.1. Cohort A
3.2.2. Cohort B
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hogg, J.C.; Chu, F.; Utokaparch, S.; Woods, R.; Elliott, W.M.; Buzatu, L.; Cherniack, R.M.; Rogers, R.M.; Sciurba, F.C.; Coxson, H.O.; et al. The nature of Small-Airway Obstruction in Chronic Obstructive Pulmonary Disease. N. Engl. J. Med. 2004, 350, 2645–2653. [Google Scholar] [CrossRef] [PubMed]
- Agusti, A. The Path to Personalised Medicine in COPD. Thorax. 2014, 69, 857–864. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Roche, N.; Halpin, D.; Agusti, A.; Wedzicha, J.A.; Martinez, F.J. Current Controversies in the Pharmacological Treatment of Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2016, 194, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Agusti, A.; Martinez, F.J.; Papi, A.; Pavord, I.D.; Wedzicha, J.A.; Vogelmeier, C.F.; Halpin, D.M.G. Blood Eosinophils and Chronic Obstructive Pulmonary Disease: A Global Initiative for Chronic Obstructive Lung Disease Science Committee 2022 Review. Am. J. Respir. Crit. Care Med. 2022, 206, 17–24. [Google Scholar] [CrossRef]
- Stockley, R.A.; Halpin, D.M.G.; Celli, B.R.; Singh, D. COPD Biomarkers and their Interpretation. Am. J. Respir. Crit. Care Med. 2018, 199, 1195–1204. [Google Scholar] [CrossRef]
- Strimbu, K.; Tavel, J.A. What are Biomarkers? Curr. Opin. HIV AID 2010, 5, 463–466. [Google Scholar] [CrossRef]
- Barnes, P.J.; Chowdhury, B.; Kharitonov, S.A.; Magnussen, H.; Page, C.P.; Postma, D.; Saetta, M. Pulmonary Biomarkers in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2006, 174, 6–14. [Google Scholar] [CrossRef]
- European Medicines Agency. ICH Guideline M10 on Bioanalytical Method Validation: Step 2b; European Medicines Agency: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Food and Drug Administration. Bioanalytical Method Validation Guidance for Industry; Food and Drug Administration: Silver Spring, MD, USA, 2018. [Google Scholar]
- Lee, J.W.; Devanarayan, V.; Barrett, Y.C.; Weiner, R.; Allinson, J.; Fountain, S.; Keller, S.; Weinryb, I.; Green, M.; Duan, L.; et al. Fit-for-Purpose Method Development and Validation for Successful Biomarker Measurement. Pharm. Res. 2006, 23, 312–328. [Google Scholar] [CrossRef]
- Jani, D.; Allinson, J.; Berisha, F.; Cowan, K.J.; Devanarayan, V.; Gleason, C.; Jeromin, A.; Keller, S.; Khan, M.U.; Nowatzke, B.; et al. Recommendations for Use and Fit-for-Purpose Validation of Biomarker Multiplex Ligand Binding Assays in Drug Development. AAPS J. 2016, 18, 1–14. [Google Scholar] [CrossRef]
- Valentin, M.A.; Ma, S.; Zhao, A.; Legay, F.; Avrameas, A. Validation of Immunoassay for Protein Biomarkers: Bioanalytical Study Plan Implementation to Support Pre-Clinical and Clinical Studies. J. Pharm. Biomed. Anal. 2011, 55, 869–877. [Google Scholar] [CrossRef]
- Lowes, S.; Ackermann, B.L. AAPS and US FDA Crystal City VI Workshop on Bioanalytical Method Validation for Biomarkers. Bioanalysis 2016, 8, 163–167. [Google Scholar] [CrossRef]
- Hougton, R.; Gouty, D.; Allinson, J.; Green, R.; Losauro, M.; Lowes, S.; LeLacheur, R.; Garofolo, F.; Couerbe, P.; Bronner, S.; et al. Recommendations on Biomarker Bioanalytical Method Validation by GCC. Bioanalysis 2012, 4, 2439–2446. [Google Scholar] [CrossRef]
- Aaron, S.D.; Vandemheen, K.L.; Ramsay, T.; Zhang, C.; Avnur, Z.; Nikolcheva, T.; Quinn, A. Multi Analyte Profiling and Variability of Inflammatory Markers in Blood and Induced Sputum in Patients with Stable COPD. Respir. Res. 2010, 11, 41. [Google Scholar] [CrossRef]
- Bafadhel, M.; Saha, S.; Siva, R.; McCormick, M.; Monteiro, W.; Rugman, P.; Dodson, P.; Pavord, I.D.; Newbold, P.; Brightling, C.E. Sputum IL-5 Concentration is Associated with a Sputum Eosinophilia and Attenuated by Corticosteroid Therapy in COPD. Respiration 2009, 78, 256–262. [Google Scholar] [CrossRef]
- Pedersen, F.; Holz, O.; Lauer, G.; Quintini, G.; Kiwull-Schone, H.; Kirsten, A.M.; Magnussen, H.; Rabe, K.F.; Goldmann, T.; Watz, H. Multi-Analyte Profiling of Inflammatory Mediators in COPD Sputum—The Effects of Processing. Cytokine 2015, 71, 401–404. [Google Scholar] [CrossRef]
- Hadjicharalambous, C.; Dent, G.; May, R.D.; Handy, R.L.; Anderson, I.K.; Davies, D.E.; Djukanovic, R. Measurement of Eotaxin (CCL11) in Induced Sputum Supernatants: Validation and Detection in Asthma. J. Allergy Clin. Immunol 2004, 113, 657–662. [Google Scholar] [CrossRef]
- Tirelli, A.S.; Colombo, C.; Torresani, E.; Cariani, L.; Arnaboldi, E.; Conese, M. Validation of an Automated Sensitive Immunoassay for Quantitation of Cytokines in the Sputum of Cystic Fibrosis Patients. Clin. Chem. Lab. Med. 2007, 45, 108–111. [Google Scholar] [CrossRef]
- Stockley, R.A.; Bayley, D.L. Validation of Assays for Inflammatory Mediators in Sputum. Eur. Respir. J. 2000, 15, 778–781. [Google Scholar] [CrossRef]
- Woolhouse, I.S.; Bayley, D.L.; Stockley, R.A. Effect of Sputum Processing with Dithiothreitol on the Detection of Inflammatory Mediators in Chronic Bronchitis and Bronchiectasis. Thorax 2002, 57, 667–671. [Google Scholar] [CrossRef]
- Ropcke, S.; Holz, O.; Lauer, G.; Muller, M.; Rittinghausen, S.; Ernst, P.; Lahu, G.; Elmlinger, M.; Krug, N.; Hohlfeld, J.M. Repeatability of and Relationship between Potential COPD Biomarkers in Bronchoalveolar Lavage, Bronchial Biopsies, Serum, and Induced Sputum. PLoS ONE 2012, 7, e46207. [Google Scholar] [CrossRef]
- Beech, A.; Lea, S.; Li, J.; Jackson, N.; Mulvanny, A.; Singh, D. Airway Bacteria Quantification Using Polymerase Chain Reaction Combined with Neutrophil and Eosinophil Counts Identifies Distinct COPD Endotypes. Biomedicines 2021, 9, 1337. [Google Scholar] [CrossRef]
- Higham, A.; Beech, A.; Jackson, N.; Lea, S.; Singh, D. Sputum Cell Counts in COPD Patients Who Use Electronic Cigarettes. Eur. Respir. J. 2022, 59, 2103016. [Google Scholar] [CrossRef]
- Higham, A.; Cadden, P.; Southworth, T.; Rossall, M.; Kolsum, U.; Lea, S.; Knowles, R.; Singh, D. Leukotriene B4 Levels in Sputum from Asthma Patients. ERJ Open Res. 2016, 2, 00088-2015. [Google Scholar] [CrossRef]
- Stevenson, L.F.; Purushothama, S. Parallelism: Considerations for the Development, Validation and Implementation of PK and Biomarker Ligand-Binding Assays. Bioanalysis 2014, 6, 185–198. [Google Scholar] [CrossRef]
- Arnold, M.E.; Booth, B.; King, L.; Ray, C. Workshop Report: Crystal City VI-Bioanalytical Method Validation for Biomarkers. AAPS J. 2016, 18, 1366–1372. [Google Scholar] [CrossRef]
- Findlay, J.W.; Dillard, R.F. Appropriate Calibration Curve Fitting in Ligand Binding Assays. AAPS J. 2007, 9, E260–E267. [Google Scholar] [CrossRef]
- Graham, B.L.; Steenbruggen, I.; Miller, M.R.; Barjaktarevic, I.Z.; Cooper, B.G.; Hall, G.L.; Hallstrand, T.S.; Kaminsky, D.A.; McCarthy, K.; McCormack, M.C.; et al. Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am. J. Respir. Crit. Care Med. 2019, 200, e70–e88. [Google Scholar] [CrossRef]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; van der Grinten, C.P.; Gustafsson, P.; et al. Standardisation of Spirometry. Eu. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef]
- Jones, P.W.; Quirk, F.H.; Baveystock, C.M.; Littlejohns, P. A Self-Complete Measure of Health Status for Chronic Airflow Limitation. The St. George’s Respiratory Questionnaire. Am. Rev. Respir. Dis. 1992, 145, 1321–1327. [Google Scholar] [CrossRef]
- Tu, J.; Bennett, P. Parallelism Experiments to Evaluate Matrix Effects, Selectivity and Sensitivity in Ligand-Binding Assay Method Development: Pros and Cons. Bioanalysis 2017, 9, 1107–1122. [Google Scholar] [CrossRef]
- Eickmeier, O.; Huebner, M.; Herrmann, E.; Zissler, U.; Rosewich, M.; Baer, P.C.; Buhl, R.; Schmitt-Grohe, S.; Zielen, S.; Schubert, R. Sputum Biomarker Profiles in Cystic Fibrosis (CF) and Chronic Obstructive Pulmonary Disease (COPD) and Association between Pulmonary Function. Cytokine 2010, 50, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Guiedem, E.; Pefura-Yone, E.W.; Ikomey, G.M.; Nkenfou, C.N.; Mesembe, M.; Yivala, M.M.; Chendi, B.H.; Jacobs, G.B.; Chegou, N.N.; Okomo, M.C.A. Cytokine Profile in the Sputum of Subjects with Post-Tuberculosis Airflow Obstruction and in Those with Tobacco Related Chronic Obstructive Pulmonary Disease. BMC Immunol. 2020, 21, 52. [Google Scholar] [CrossRef] [PubMed]
- Moermans, C.; Bonnet, C.; Willems, E.; Baron, F.; Nguyen, M.; Henket, M.; Sele, J.; Corhay, J.L.; Beguin, Y.; Louis, R. Sputum Cytokine Levels in Patients Undergoing Hematopoietic SCT and Comparison with Healthy Subjects and COPD: A Pilot Study. Bone Marrow Transpl. 2014, 49, 1382–1388. [Google Scholar] [CrossRef] [PubMed]
- Aaron, S.D.; Angel, J.B.; Lunau, M.; Wright, K.; Fex, C.; Le Saux, N.; Dales, R.E. Granulocyte Inflammatory Markers and Airway Infection during Acute Exacerbation of chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2001, 163, 349–355. [Google Scholar] [CrossRef]
- Bafadhel, M.; McKenna, S.; Terry, S.; Mistry, V.; Reid, C.; Haldar, P.; McCormick, M.; Haldar, K.; Kebadze, T.; Duvoix, A.; et al. Acute Exacerbations of Chronic Obstructive Pulmonary Disease: Identification of Biologic Clusters and their Biomarkers. Am. J. Respir. Crit. Care Med. 2011, 184, 662–671. [Google Scholar] [CrossRef]
- Kelly, M.M.; Keatings, V.; Leigh, R.; Peterson, C.; Shute, J.; Venge, P.; Djukanovic, R. Analysis of Fluid-Phase Mediators. Eur. Respir. J. Suppl. 2002, 37, 24s–39s. [Google Scholar]
- Bafadhel, M.; McCormick, M.; Saha, S.; McKenna, S.; Shelley, M.; Hargadon, B.; Mistry, V.; Reid, C.; Parker, D.; Dodson, P.; et al. Profiling of Sputum Inflammatory Mediators in Asthma and Chronic Obstructive Pulmonary Disease. Respiration 2012, 83, 36–44. [Google Scholar] [CrossRef]
- Ouyang, Y.; Virasch, N.; Hao, P.; Aubrey, M.T.; Mukerjee, N.; Bierer, B.E.; Freed, B.M. Suppression of human IL-1beta, IL-2, IFN-Gamma, and TNF-Alpha Production by Cigarette Smoke Extracts. J. Allergy Clin. Immunol. 2000, 106, 280–287. [Google Scholar] [CrossRef]
- Kent, L.; Smyth, L.; Clayton, C.; Scott, L.; Cook, T.; Stephens, R.; Fox, S.; Hext, P.; Farrow, S.; Singh, D. Cigarette Smoke Extract Induced Cytokine and Chemokine Gene Expression Changes in COPD Macrophages. Cytokine 2008, 42, 205–216. [Google Scholar] [CrossRef]
- Moretto, N.; Facchinetti, F.; Southworth, T.; Civelli, M.; Singh, D.; Patacchini, R. Alpha, beta-Unsaturated Aldehydes Contained in Cigarette Smoke Elicit IL-8 Release in Pulmonary Cells through Mitogen-Activated Protein Kinases. Am. J. Physiol. Lung Cell. Mol. Physiol. 2009, 296, L839–L848. [Google Scholar] [CrossRef]
- Wang, Z.; Locantore, N.; Haldar, K.; Ramsheh, M.Y.; Beech, A.S.; Ma, W.; Brown, J.R.; Tal-Singer, R.; Barer, M.R.; Bafadhel, M.; et al. Inflammatory Endotype-Associated Airway Microbiome in Chronic Obstructive Pulmonary Disease Clinical Stability and Exacerbations: A Multicohort Longitudinal Analysis. Am. J. Respir. Crit. Care Med. 2021, 203, 1488–1502. [Google Scholar] [CrossRef]
- Diver, S.; Richardson, M.; Haldar, K.; Ghebre, M.A.; Ramsheh, M.Y.; Bafadhel, M.; Desai, D.; Cohen, E.S.; Newbold, P.; Rapley, L.; et al. Sputum Microbiomic Clustering in Asthma and Chronic Obstructive Pulmonary Disease Reveals a Haemophilus-Predominant Subgroup. Allergy 2020, 75, 808–817. [Google Scholar] [CrossRef]
- Bafadhel, M.; Haldar, K.; Barker, B.; Patel, H.; Mistry, V.; Barer, M.R.; Pavord, I.D.; Brightling, C.E. Airway Bacteria Measured by Quantitative Polymerase Chain Reaction and Culture in Patients with Stable COPD: Relationship with Neutrophilic Airway Inflammation, Exacerbation Frequency, and Lung Function. Int. J. Chron. Obstr. Pulmon. Dis. 2015, 10, 1075–1083. [Google Scholar] [CrossRef]
- Beech, A.S.; Lea, S.; Kolsum, U.; Wang, Z.; Miller, B.E.; Donaldson, G.C.; Wedzicha, J.A.; Brightling, C.E.; Singh, D. Bacteria and Sputum Inflammatory Cell Counts; a COPD Cohort Analysis. Respir. Res. 2020, 21, 289. [Google Scholar] [CrossRef]
- Winslow, S.; Odqvist, L.; Diver, S.; Riise, R.; Abdillahi, S.; Wingren, C.; Lindmark, H.; Wellner, A.; Lundin, S.; Yrlid, L.; et al. Multi-Omics Links IL-6 Trans-Signalling with Neutrophil Extracellular Trap Formation and Haemophilus Infection in COPD. Eur. Respir. J. 2021, 58, 2003312. [Google Scholar] [CrossRef]
- Garcha, D.S.; Thurston, S.J.; Patel, A.R.C.; Mackay, A.J.; Goldring, J.J.P.; Donaldson, G.C.; McHugh, T.D.; Wedzicha, J.A. Changes in prevalence and load of airway bacteria using quantitative PCR in stable and exacerbated COPD. Thorax 2012, 67, 1075–1080. [Google Scholar] [CrossRef]
Analyte | Matrix Dilution (%RE) | High Standard Recovery (%RE) | Low Standard Recovery (%RE) | Standard Accuracy (%RE) | Intra-Assay (%CV) | Inter-Assay (%CV) |
---|---|---|---|---|---|---|
ELISA Assays | ||||||
MPO | 102.55 | 110.64 | 83.00 | 100.00 | 2.55 | 3.31 |
IL-8 | 99.70 | 92.10 | 101.84 | 102.22 | 7.04 | 7.82 |
3-Plex Luminex Assay | ||||||
IL-1β | 75.44 | 36.07 | 35.47 | 100.43 | 11.12 | 11.55 |
IL-6 | 114.96 | 65.30 | 111.64 | 100.46 | 8.53 | 10.24 |
TNF-α | 124.44 | 34.24 | 17.95 | 100.27 | 11.82 | 8.75 |
27-Plex Luminex Assay | ||||||
Basic FGF | 144.32 | 124.60 | 80.86 | 100.03 | 9.28 | 9.52 |
Eotaxin | 97.83 | 98.10 | 54.39 | 100.61 | 5.35 | 18.59 |
G-CSF | 103.06 | 75.74 | 106.30 | 101.57 | 5.66 | 5.83 |
GM-CSF | 144.12 | 89.63 | 60.49 | 101.24 | 2.52 | 1.87 |
IFN-y | 117.40 | 73.90 | 77.12 | 99.61 | 5.60 | 24.44 |
IL-1β | 105.19 | 73.91 | 82.76 | 101.23 | 5.36 | 7.67 |
IL-1RA | 116.92 | 66.94 | 94.04 | 100.85 | 3.09 | 4.86 |
IL-2 | 104.22 | 84.24 | 90.45 | 100.21 | 4.42 | 6.06 |
IL-4 | 110.14 | 75.07 | 81.33 | 99.05 | 6.58 | 12.73 |
IL-5 | 103.63 | 76.38 | 74.25 | 99.96 | 3.19 | 3.61 |
IL-6 | 95.58 | 90.26 | 79.49 | 103.41 | 4.15 | 9.58 |
IL-7 | 137.696 | 97.59 | 87.54 | 100.47 | 5.09 | 23.44 |
IL-8 | 111.87 | 76.93 | −97.11 | 100.66 | 3.97 | 5.36 |
IL-9 | 149.10 | 65.22 | 74.11 | 100.37 | 7.28 | 11.02 |
IL-10 | <LLOQ | 71.34 | 71.17 | 100.63 | 3.80 | 6.22 |
IL-12p70 | 146.01 | 89.68 | 84.09 | 100.03 | 3.24 | 4.61 |
IL-13 | <LLOQ | 82.77 | 74.84 | 103.24 | 3.16 | 6.09 |
IL-15 | 118.72 | 75.86 | 57.99 | 100.82 | 2.95 | 2.80 |
IL-17A | 108.64 | 85.46 | 90.16 | 100.11 | 2.60 | 2.62 |
IP-10 | 87.38 | 76.32 | <LLOQ | 99.66 | 3.84 | 36.17 |
MCP-1 | 112.38 | 92.57 | 80.56 | 102.90 | 8.00 | 7.17 |
MIP-1a | 87.35 | 86.23 | 84.54 | 102.33 | 4.00 | 4.03 |
MIP-1b | 107.42 | 87.33 | 25.16 | 100.86 | 3.39 | 10.85 |
PDGF-BB | 130.83 | 120.17 | 70.97 | <6 | Unvalidated Assay | |
RANTES | 128.31 | 87.11 | 80.46 | 102.12 | 8.78 | 19.52 |
TNF-α | 109.45 | 110.77 | 94.15 | 100.21 | 4.27 | 32.38 |
VEGF | 94.08 | 48.82 | 85.30 | <6 | Unvalidated Assay |
Characteristics | COPD (n = 30) | HS (n = 10) | HNS (n = 10) | p-Value (COPD vs. HS) | p-Value (COPD vs. HNS) |
---|---|---|---|---|---|
Gender (% Male) | 80.0 | 50.0 | 50.0 | 0.10 | 0.10 |
Age | 67.7 (6.7) | 59.4 (7.7) | 53.6 (7.2) | 0.01 | <0.01 |
Smoking Status (Current %) | 30.0 | 50.0 | n/a | 0.28 | n/a |
Pack Years | 51.2 (22.0) | 27.9 (11.1) | 0.04 (0.1) | <0.01 | <0.01 |
BMI (kg/m2) | 26.9 (5.0) | 24.5 (2.7) | 28.1 (3.8) | >0.99 | >0.99 |
Retrospective Exacerbation Rate (1-year period) | 1.0 [0.0–11.0] | n/a | n/a | n/a | n/a |
0 (%) | 37.9 | n/a | n/a | n/a | n/a |
1 (%) | 20.7 | n/a | n/a | n/a | n/a |
≥2 (%) | 41.4 | n/a | n/a | n/a | n/a |
Post FEV1 (L) | 1.5 (0.6) | 2.7 (0.7) | 3.1 (0.7) | <0.01 | <0.01 |
Post FEV1 (%) | 56.2 (19.6) | 94.9 (8.7) | 101.6 (12.5) | <0.01 | <0.01 |
Post FEV1/FVC Ratio (%) | 41.5 (12.1) | 72.7 (3.8) | 75.9 (3.5) | <0.01 | <0.01 |
Gold Category (%) | |||||
1 | 10.0 | n/a | n/a | n/a | n/a |
2 | 56.7 | n/a | n/a | n/a | n/a |
3 | 23.3 | n/a | n/a | n/a | n/a |
4 | 10.0 | n/a | n/a | n/a | n/a |
CAT | 22.5 (7.2) | n/a | n/a | n/a | n/a |
mMRC | 3.0 [1.0–4.0] | n/a | n/a | n/a | n/a |
SGRQ-C (Total) | 57.2 (18.3) | n/a | n/a | n/a | n/a |
ICS Use (n) | 26 + | n/a | n/a | n/a | n/a |
Sputum Characteristics | |||||
Neutrophil (%) | 83.7 [24.5–99.8] | 69.1 [38.3–86.8] | 66.4 [55.0–82.0] | 0.14 | 0.07 |
Macrophage (%) | 9.9 [0.3–67.8] | 28.4 [11.5–40.5] | 29.6 [17.0–43.0] | 0.02 | <0.01 |
Eosinophil (%) | 1.8 [0.0–13.2] | 0.3 [0.0–33.3] | 0.1 [0.0–2.5] | 0.25 | <0.01 |
Lymphocyte (%) | 0.0 [0.0–2.0] | 0.0 [0.0–0.5] | 0.0 [0.0–0.8] | >0.99 | >0.99 |
Epithelial (%) | 2.2 [0.0–14.0] | 0.9 [0.0–2.0] | 0.9 [0.8–4.0] | 0.11 | 0.57 |
TCC × 106/g | 7.9 [0.7–35.3] | 6.2 [2.0–13.2] | 6.8 [4.4–12.6] | 0.86 | >0.99 |
Neutrophil cell × 106/g | 7.1 [0.3–31.2] | 3.4 [1.2—8.9] | 5.3 [2.5–8.9] | 0.56 | >0.99 |
Macrophage cell × 106/g | 0.8 [0.0–7.1] | 1.4 [0.3–4.0] | 2.0 [0.9–4.4] | 0.79 | 0.07 |
Eosinophil cell × 106/g | 0.2 [0.0–2.1] | 0.0 [0.0–2.8] | 0.0 [0.0–0.2] | 0.19 | 0.01 |
Lymphocyte cell × 106/g | 0.0 [0.0–0.3] | 0.0 [0.0–0.0] | 0.0 [0.0–0.1] | >0.99 | >0.99 |
Epithelial cell × 106/g | 0.1 [0.0–2.3] | 0.0 [0.0–0.3] | 0.1 [0.0–0.9] | 0.05 | >0.99 |
Characteristics | COPD (n = 81) | HS (n = 15) | HNS (n = 26) | p-Value (COPD vs HS) | p-Value (COPD vs HNS) |
---|---|---|---|---|---|
Gender (% Male) | 59.3 | 46.7 | 53.8 | 0.40 | 0.65 |
Age | 66.1 (7.3) | 60.6 (7.7) | 60.0 (9.4) | 0.04 | <0.01 |
Smoking Status (Current %) | 40.7 | 36.4 | 0.0 | 0.39 | n/a |
Pack Years | 42.6 (20.2) | 25.2 (9.7) | 0.0 (0.0) | <0.01 | <0.01 |
BMI (kg/m2) | 28.0 (5.3) | 27.8 (3.7) | 27.8 (3.5) | >0.99 | >0.99 |
Retrospective Exacerbation Rate (1-year period) | 1.0 [0.0–4.0] | n/a | n/a | n/a | n/a |
0 (%) | 40.7 | n/a | n/a | n/a | n/a |
1 (%) | 34.6 | n/a | n/a | n/a | n/a |
≥2 (%) | 24.7 | n/a | n/a | n/a | n/a |
Post FEV1 (L) | 1.7 (0.5) | 2.8 (0.5) | 3.0 (1.0) | >0.01 | >0.01 |
Post FEV1 (%) | 64.7 (15.3) | 103.4 (14.1) | 106.3 (12.6) | >0.01 | >0.01 |
Post FEV1/FVC Ratio (%) | 51.9 (11.1) | 75.0 (4.4) | 76.1 (3.7) | >0.01 | >0.01 |
Gold Category (%) | |||||
1 | 17.3 | n/a | n/a | n/a | n/a |
2 | 65.4 | n/a | n/a | n/a | n/a |
3 | 17.3 | n/a | n/a | n/a | n/a |
4 | 0.0 | n/a | n/a | n/a | n/a |
CAT | 19.7 (7.4) | n/a | n/a | n/a | n/a |
mMRC | 4.0 [0.0–4.0] | n/a | n/a | n/a | n/a |
SGRQ-C (Total) | 50.3 (17.5) | n/a | n/a | n/a | n/a |
ICS Use (n) | 56 + | n/a | n/a | n/a | n/a |
Sputum Characteristics | |||||
Neutrophil (%) | 68.75 [21.50–97.75] | 72.25 [5.25–90.0] | 68.38 [31.25–92.50] | >0.99 | >0.99 |
Macrophage (%) | 21.50 [1.00–72.25] | 23.50 [5.75–86.75] | 26.75 [5.00–57.50] | 0.61 | 0.45 |
Eosinophil (%) | 1.00 [0.00–16.50] | 0.63 [0.00–2.00] | 0.00 [0.00–3.50] | 0.08 | <0.01 |
Lymphocyte (%) | 0.25 [0.00–3.50] | 0.50 [0.00–1.25] | 0.50 [0.00–3.75] | 0.65 | 0.37 |
Epithelial (%) | 2.50 [0.00–60.50] | 1.88 [0.25–7.25] | 3.00 [0.50–13.00] | 0.74 | >0.99 |
TCC × 106/g | 6.98 [0.62–100.9] | 7.09 [1.48–17.36] | 6.43 [0.99–32.18] | >0.99 | >0.99 |
Neutrophil cell × 106/g | 4.43 [0.32–98.08] | 5.00 [0.21–15.14] | 4.96 [0.72–25.18] | >0.99 | >0.99 |
Macrophage cell × 106/g | 1.24 [0.18–4.53] | 1.85 [0.79–4.71] | 2.06 [0.19–6.60] | 0.38 | 0.46 |
Eosinophil cell × 106/g | 0.07 [0.00–1.29] | 0.01 [0.00–0.12] | 0.00 [0.00–0.44] | 0.04 | <0.01 |
Lymphocyte cell × 106/g | 0.02 [0.00–0.63] | 0.03 [0.00–0.22] | 0.03 [0.00–0.16] | 0.76 | >0.99 |
Epithelial cell × 106/g | 0.18 [0.00–3.86] | 0.12 [0.02–0.51] | 0.17 [0.03–0.75] | 0.54 | >0.99 |
Analyte | COPD (n = 81) | HS (n = 15) | HNS (n = 26) | p-Value (COPD vs HS) | p-Value (COPD vs HNS) |
---|---|---|---|---|---|
IL-1β (pg/mL) | 8.92 [0.28–947.90] | 13.46 [1.86–72.66] | 14.52 [1.65–76.80] | 0.61 | 0.16 |
IL-1RA (pg/mL) | 7032 [2198–31,785] | 6779 [2495–31,083] | 8632 [3566–19,704] | >0.99 | 0.40 |
IL-2 (pg/mL) | 6.80 [6.80–28.98] | 6.80 [6.80–25.99] | 6.80 [6.80–15.85] | >0.99 | >0.99 |
IL-4 (pg/mL) | 5.05 [0.84–28.73] | 3.28 [0.84–22.12] | 3.77 [0.84–19.14] | 0.27 | 0.60 |
IL-6 (pg/mL) | 85.98 [13.71–485.10] | 40.09 [1.68–318.20] | 33.21 [1.68–205.90] | 0.01 | <0.0001 |
IL-8 (pg/mL) | 2863 [354.90–26,518] | 1364 [269.60–5820] | 1308 [152.40–4514] | 0.02 | 0.003 |
IL-17A (pg/mL) | 10.68 [10.69–58.92] | 10.68 [10.68–65.38] | 10.68 [10.68–63.14] | >0.99 | >0.99 |
Eotaxin (pg/mL) | 55.96 [4.73–253.3] | 35.96 [14.87–194.40] | 35.13 [5.34–151.90] | 0.16 | 0.12 |
G-CSF (pg/mL) | 497.30 [69.48–3710] | 69.48 [69.48–1735] | 284.40 [69.48–2137] | 0.59 | 0.76 |
IFN-γ (pg/mL) | 53.97 [9.60–256.60] | 46.83 [9.60–143.10] | 49.78 [9.60–142.40] | >0.99 | >0.99 |
IP-10 (pg/mL) | 6724 [587.90–46,318] | 7026 [673–46,318] | 6154 [721.60–46,318] | >0.99 | >0.99 |
MCP-1 (pg/mL) | 95.81 [13.69–1946] | 47.22 [9.36–365] | 61.32 [10.23–481.70] | 0.09 | 0.08 |
MIP-1α (pg/mL) | 20.20 [0.36–304] | 11.96 [0.36–390.80] | 23.21 [1.76–304.90] | 0.91 | >0.99 |
MIP-1β (pg/mL) | 129.70 [1.44–2417] | 69.09 [1.44–1126] | 133.30 [16.31–967.20] | 0.54 | >0.99 |
TNF-α (pg/mL) | 64.50 [13.40–5561] | 57.88 [13.40–4581] | 57.10 [13.40–401.60] | >0.99 | >0.99 |
Analyte | COPD, HNS, S (n = 119) | COPD (n = 79) |
---|---|---|
IL-1β (pg/mL) | rho = 0.4739, p < 0.0001 | rho = 0.5136, p < 0.0001 |
IL-1RA (pg/mL) | rho = 0.2269, p = 0.01 | rho = 0.1558, p = 0.17 |
IL-2 (pg/mL) | rho = 0.2703, p = 0.003 | rho = 0.3399, p = 0.002 |
IL-4 (pg/mL) | rho = 0.2676, p = 0.003 | rho = 0.3749, p = 0.0007 |
IL-6 (pg/mL) | rho = 0.1888, p = 0.04 | rho = 0.1291, p = 0.26 |
IL-8 (pg/mL) | rho = 0.3101, p = 0.0006 | rho = 0.4185, p = 0.0001 |
IL-17A (pg/mL) | rho = 0.3423, p = 0.0001 | rho = 0.4318, p < 0.0001 |
Eotaxin (pg/mL) | rho = −0.02802, p = 0.76 | rho = −0.0040, p = 0.97 |
G-CSF (pg/mL) | rho = 0.2586, p = 0.002 | rho = 0.3600, p = 0.001 |
IFN-γ (pg/mL) | rho = 0.3186, p = 0.0004 | rho = 0.2634, p = 0.02 |
IP-10 (pg/mL) | rho = 0.2289, p = 0.01 | rho = 0.2981, p = 0.008 |
MCP-1 (pg/mL) | rho = 0.1479, p = 0.1084 | rho = 0.1822, p = 0.11 |
MIP-1α (pg/mL) | rho = 0.2732, p = 0.003 | rho = 0.3779, p = 0.0006 |
MIP-1β (pg/mL) | rho = 0.2953, p = 0.001 | rho = 0.3959, p = 0.0003 |
TNF-α (pg/mL) | rho = 0.3551, p < 0.0001 | rho = 0.4323, p = <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mulvanny, A.; Pattwell, C.; Beech, A.; Southworth, T.; Singh, D. Validation of Sputum Biomarker Immunoassays and Cytokine Expression Profiles in COPD. Biomedicines 2022, 10, 1949. https://doi.org/10.3390/biomedicines10081949
Mulvanny A, Pattwell C, Beech A, Southworth T, Singh D. Validation of Sputum Biomarker Immunoassays and Cytokine Expression Profiles in COPD. Biomedicines. 2022; 10(8):1949. https://doi.org/10.3390/biomedicines10081949
Chicago/Turabian StyleMulvanny, Alex, Caroline Pattwell, Augusta Beech, Thomas Southworth, and Dave Singh. 2022. "Validation of Sputum Biomarker Immunoassays and Cytokine Expression Profiles in COPD" Biomedicines 10, no. 8: 1949. https://doi.org/10.3390/biomedicines10081949
APA StyleMulvanny, A., Pattwell, C., Beech, A., Southworth, T., & Singh, D. (2022). Validation of Sputum Biomarker Immunoassays and Cytokine Expression Profiles in COPD. Biomedicines, 10(8), 1949. https://doi.org/10.3390/biomedicines10081949