Juvenile Idiopathic Arthritis, Uveitis and Multiple Sclerosis: Description of Two Patients and Literature Review
Abstract
:1. Introduction
1.1. Juvenile Idiopathic Arthritis: An Overview
1.2. Beyond the Joints: Juvenile Idiopathic Arthritis and Uveitis
1.3. Multiple Sclerosis: An Overview
1.4. Beyond the Central Nervous System: Uveitis and Multiple Sclerosis
1.5. Multiple Sclerosis and Other Autoimmune Diseases: Deciphering the Impact of Comorbidities
1.6. The Crossroad between Rheumatological Conditions and Multiple Sclerosis: Agents Targeting TNF-α
2. Description of Two Cases
2.1. Case 1
2.2. Case 2
3. When Juvenile Idiopathic Arthritis and Multiple Sclerosis Coexist: The Description of Five Patients in the Literature
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ording, A.G.; Sørensen, H.T. Concepts of Comorbidities, Multiple Morbidities, Complications, and Their Clinical Epidemiologic Analogs. Clin. Epidemiol. 2013, 5, 199–203. [Google Scholar] [CrossRef] [Green Version]
- Parodi, M.; Bensi, L.; Maio, T.; Mela, G.S.; Cimmino, M.A. Comorbidities in rheumatoid arthritis: Analysis of hospital discharge records. Reumatismo 2005, 57, 154–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, Q.; Jin, M.-W.; An, X.-J.; Xu, S.-M.; Wang, L. Macrophage Activation Syndrome as a Complication of Juvenile Rheumatoid Arthritis. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 4322–4326. [Google Scholar] [PubMed]
- Swart, J.; Giancane, G.; Horneff, G.; Magnusson, B.; Hofer, M.; Alexeeva, E.; Panaviene, V.; Bader-Meunier, B.; Anton, J.; Nielsen, S.; et al. Pharmacovigilance in Juvenile Idiopathic Arthritis Patients Treated with Biologic or Synthetic Drugs: Combined Data of More than 15,000 Patients from Pharmachild and National Registries. Arthritis Res. Ther. 2018, 20, 285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petty, R.E.; Southwood, T.R.; Manners, P.; Baum, J.; Glass, D.N.; Goldenberg, J.; He, X.; Maldonado-Cocco, J.; Orozco-Alcala, J.; Prieur, A.-M.; et al. International League of Associations for Rheumatology Classification of Juvenile Idiopathic Arthritis: Second Revision, Edmonton, 2001. J. Rheumatol. 2004, 31, 390–392. [Google Scholar] [PubMed]
- Thierry, S.; Fautrel, B.; Lemelle, I.; Guillemin, F. Prevalence and Incidence of Juvenile Idiopathic Arthritis: A Systematic Review. Jt. Bone Spine 2014, 81, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Merino, R.; de Inocencio, J.; García-Consuegra, J. Evaluation of Revised International League of Associations for Rheumatology Classification Criteria for Juvenile Idiopathic Arthritis in Spanish Children (Edmonton 2001). J. Rheumatol. 2005, 32, 559–561. [Google Scholar]
- Zuber, M.; Chhabra, M.; Venkataraman, R.; Kumar, S.; Rashid, M. Methotrexate Related Cutaneous Adverse Drug Reactions: A Systematic Literature Review. J. Basic Clin. Physiol. Pharmacol. 2021. [Google Scholar] [CrossRef]
- Martini, A.; Lovell, D.J.; Albani, S.; Brunner, H.I.; Hyrich, K.L.; Thompson, S.D.; Ruperto, N. Juvenile Idiopathic Arthritis. Nat. Rev. Dis. Primers 2022, 8, 5. [Google Scholar] [CrossRef]
- Rooney, M.E.; McAllister, C.; Burns, J.F.T. Ankle Disease in Juvenile Idiopathic Arthritis: Ultrasound Findings in Clinically Swollen Ankles. J. Rheumatol. 2009, 36, 1725–1729. [Google Scholar] [CrossRef]
- Weiss, P.F. Diagnosis and Treatment of Enthesitis-Related Arthritis. Adolesc. Health Med. Ther. 2012, 2012, 67–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nigrovic, P.A. Review: Is There a Window of Opportunity for Treatment of Systemic Juvenile Idiopathic Arthritis? Arthritis Rheumatol. 2014, 66, 1405–1413. [Google Scholar] [CrossRef]
- Zaripova, L.N.; Midgley, A.; Christmas, S.E.; Beresford, M.W.; Baildam, E.M.; Oldershaw, R.A. Juvenile Idiopathic Arthritis: From Aetiopathogenesis to Therapeutic Approaches. Pediatric Rheumatol. 2021, 19, 135. [Google Scholar] [CrossRef] [PubMed]
- Cimaz, R.; Maioli, G.; Calabrese, G. Current and Emerging Biologics for the Treatment of Juvenile Idiopathic Arthritis. Expert Opin. Biol. Ther. 2020, 20, 725–740. [Google Scholar] [CrossRef] [PubMed]
- Nigrovic, P.A.; Colbert, R.A.; Holers, V.M.; Ozen, S.; Ruperto, N.; Thompson, S.D.; Wedderburn, L.R.; Yeung, R.S.M.; Martini, A. Biological Classification of Childhood Arthritis: Roadmap to a Molecular Nomenclature. Nat. Rev. Rheumatol. 2021, 17, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Angeles-Han, S.T.; Ringold, S.; Beukelman, T.; Lovell, D.; Cuello, C.A.; Becker, M.L.; Colbert, R.A.; Feldman, B.M.; Holland, G.N.; Ferguson, P.J.; et al. 2019 American College of Rheumatology/Arthritis Foundation Guideline for the Screening, Monitoring, and Treatment of Juvenile Idiopathic Arthritis–Associated Uveitis. Arthritis Care Res. 2019, 71, 703–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jabs, D.A.; Nussenblatt, R.B.; Rosenbaum, J.T.; Standardization of Uveitis Nomenclature (SUN) Working Group. Standardization of Uveitis Nomenclature for Reporting Clinical Data. Results of the First International Workshop. Am. J. Ophthalmol. 2005, 140, 509–516. [Google Scholar] [CrossRef]
- Sen, E.S.; Dick, A.D.; Ramanan, A.V. Uveitis Associated with Juvenile Idiopathic Arthritis. Nat. Rev. Rheumatol. 2015, 11, 338–348. [Google Scholar] [CrossRef]
- Clarke, S.L.N.; Sen, E.S.; Ramanan, A.V. Juvenile Idiopathic Arthritis-Associated Uveitis. Pediatr. Rheumatol. Online J. 2016, 14, 27. [Google Scholar] [CrossRef] [Green Version]
- Thorne, J.E.; Woreta, F.; Kedhar, S.R.; Dunn, J.P.; Jabs, D.A. Juvenile Idiopathic Arthritis-Associated Uveitis: Incidence of Ocular Complications and Visual Acuity Loss. Am. J. Ophthalmol. 2007, 143, 840–846. [Google Scholar] [CrossRef]
- Kalinina Ayuso, V.; Makhotkina, N.; van Tent-Hoeve, M.; de Groot-Mijnes, J.D.F.; Wulffraat, N.M.; Rothova, A.; de Boer, J.H. Pathogenesis of Juvenile Idiopathic Arthritis Associated Uveitis: The Known and Unknown. Surv. Ophthalmol. 2014, 59, 517–531. [Google Scholar] [CrossRef] [PubMed]
- Kalinina Ayuso, V.; van Dijk, M.R.; de Boer, J.H. Infiltration of Plasma Cells in the Iris of Children With ANA-Positive Anterior Uveitis. Investig. Ophthalmol. Vis. Sci. 2015, 56, 6770–6778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sijssens, K.M.; Rijkers, G.T.; Rothova, A.; Stilma, J.S.; Schellekens, P.A.W.J.F.; de Boer, J.H. Cytokines, Chemokines and Soluble Adhesion Molecules in Aqueous Humor of Children with Uveitis. Exp. Eye Res. 2007, 85, 443–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filippi, M.; Bar-Or, A.; Piehl, F.; Preziosa, P.; Solari, A.; Vukusic, S.; Rocca, M.A. Multiple Sclerosis. Nat. Rev. Dis. Primers 2018, 4, 43. [Google Scholar] [CrossRef]
- Koch-Henriksen, N.; Sørensen, P.S. The Changing Demographic Pattern of Multiple Sclerosis Epidemiology. Lancet Neurol. 2010, 9, 520–532. [Google Scholar] [CrossRef]
- Yeshokumar, A.K.; Narula, S.; Banwell, B. Pediatric Multiple Sclerosis. Curr. Opin. Neurol. 2017, 30, 216–221. [Google Scholar] [CrossRef]
- Cotsapas, C.; Mitrovic, M. Genome-Wide Association Studies of Multiple Sclerosis. Clin. Transl. Immunol. 2018, 7, e1018. [Google Scholar] [CrossRef]
- Olsson, T.; Barcellos, L.F.; Alfredsson, L. Interactions between Genetic, Lifestyle and Environmental Risk Factors for Multiple Sclerosis. Nat. Rev. Neurol. 2017, 13, 25–36. [Google Scholar] [CrossRef]
- Bjornevik, K.; Cortese, M.; Healy, B.C.; Kuhle, J.; Mina, M.J.; Leng, Y.; Elledge, S.J.; Niebuhr, D.W.; Scher, A.I.; Munger, K.L.; et al. Longitudinal Analysis Reveals High Prevalence of Epstein-Barr Virus Associated with Multiple Sclerosis. Science 2022, 375, 296–301. [Google Scholar] [CrossRef]
- Dendrou, C.A.; Fugger, L.; Friese, M.A. Immunopathology of Multiple Sclerosis. Nat. Rev. Immunol. 2015, 15, 545–558. [Google Scholar] [CrossRef]
- Mora, J.R.; Iwata, M.; von Andrian, U.H. Vitamin Effects on the Immune System: Vitamins A and D Take Centre Stage. Nat. Rev. Immunol. 2008, 8, 685–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sintzel, M.B.; Rametta, M.; Reder, A.T. Vitamin D and Multiple Sclerosis: A Comprehensive Review. Neurol. Ther. 2018, 7, 59–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mowry, E.M.; Waubant, E.; McCulloch, C.E.; Okuda, D.T.; Evangelista, A.A.; Lincoln, R.R.; Gourraud, P.-A.; Brenneman, D.; Owen, M.C.; Qualley, P.; et al. Vitamin D Status Predicts New Brain Magnetic Resonance Imaging Activity in Multiple Sclerosis. Ann. Neurol. 2012, 72, 234–240. [Google Scholar] [CrossRef] [Green Version]
- Wingerchuk, D.M. Smoking: Effects on Multiple Sclerosis Susceptibility and Disease Progression. Ther. Adv. Neurol. Disord. 2012, 5, 13–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, K.; Yang, S.M.; Kim, S.H.; Han, K.H.; Park, S.J.; Shin, J.I. Smoking and Rheumatoid Arthritis. Int. J. Mol. Sci. 2014, 15, 22279–22295. [Google Scholar] [CrossRef] [Green Version]
- Fresegna, D.; Bullitta, S.; Musella, A.; Rizzo, F.R.; De Vito, F.; Guadalupi, L.; Caioli, S.; Balletta, S.; Sanna, K.; Dolcetti, E.; et al. Re-Examining the Role of TNF in MS Pathogenesis and Therapy. Cells 2020, 9, 2290. [Google Scholar] [CrossRef]
- Ware, C.F.; Crowe, P.D.; Vanarsdale, T.L.; Andrews, J.L.; Grayson, M.H.; Jerzy, R.; Smith, C.A.; Goodwin, R.G. Tumor Necrosis Factor (TNF) Receptor Expression in T Lymphocytes. Differential Regulation of the Type I TNF Receptor during Activation of Resting and Effector T Cells. J. Immunol. 1991, 147, 4229–4238. [Google Scholar]
- Magliozzi, R.; Howell, O.W.; Durrenberger, P.; Aricò, E.; James, R.; Cruciani, C.; Reeves, C.; Roncaroli, F.; Nicholas, R.; Reynolds, R. Meningeal Inflammation Changes the Balance of TNF Signalling in Cortical Grey Matter in Multiple Sclerosis. J. Neuroinflammat. 2019, 16, 259. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Pinedo, U.; Matías-Guiu, J.A.; Torre-Fuentes, L.; Montero-Escribano, P.; Hernández, L.; Pytel, V.; Maietta, P.; Alvarez, S.; Sanclemente-Alamán, I.; Moreno-Jimenez, L.; et al. Variant Rs4149584 (R92Q) of the TNFRSF1A Gene in Patients with Familial Multiple Sclerosis. Neurologia 2022, S2173-5808(22)00087-6. [Google Scholar] [CrossRef]
- Marastoni, D.; Pisani, A.I.; Schiavi, G.; Mazziotti, V.; Castellaro, M.; Tamanti, A.; Bosello, F.; Crescenzo, F.; Ricciardi, G.K.; Montemezzi, S.; et al. CSF TNF and Osteopontin Levels Correlate with the Response to Dimethyl Fumarate in Early Multiple Sclerosis. Ther. Adv. Neurol. Disord. 2022, 15, 17562864221092124. [Google Scholar] [CrossRef]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of Multiple Sclerosis: 2017 Revisions of the McDonald Criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef]
- Li, T.; Xiao, H.; Li, S.; Du, X.; Zhou, J. Multiple sclerosis: Clinical features and MRI findings in Northern China. Eur. J. Med. Res. 2014, 19, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGinley, M.P.; Goldschmidt, C.H.; Rae-Grant, A.D. Diagnosis and Treatment of Multiple Sclerosis: A Review. JAMA 2021, 325, 765–779. [Google Scholar] [CrossRef] [PubMed]
- Kale, N. Optic Neuritis as an Early Sign of Multiple Sclerosis. Eye Brain 2016, 8, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Nazari, F.; Shaygannejad, V.; Mohammadi Sichani, M.; Mansourian, M.; Hajhashemi, V. Quality of Life among Patients with Multiple Sclerosis and Voiding Dysfunction: A Cross-Sectional Study. BMC Urol. 2020, 20, 62. [Google Scholar] [CrossRef]
- Richards, R.G.; Sampson, F.C.; Beard, S.M.; Tappenden, P. A Review of the Natural History and Epidemiology of Multiple Sclerosis: Implications for Resource Allocation and Health Economic Models. Health Technol. Assess. 2002, 6, 1–73. [Google Scholar] [CrossRef]
- Hou, Y.; Jia, Y.; Hou, J. Natural Course of Clinically Isolated Syndrome: A Longitudinal Analysis Using a Markov Model. Sci. Rep. 2018, 8, 10857. [Google Scholar] [CrossRef]
- Lublin, F.D.; Reingold, S.C.; Cohen, J.A.; Cutter, G.R.; Sørensen, P.S.; Thompson, A.J.; Wolinsky, J.S.; Balcer, L.J.; Banwell, B.; Barkhof, F.; et al. Defining the Clinical Course of Multiple Sclerosis. Neurology 2014, 83, 278–286. [Google Scholar] [CrossRef] [Green Version]
- Nazareth, T.A.; Rava, A.R.; Polyakov, J.L.; Banfe, E.N.; Waltrip Ii, R.W.; Zerkowski, K.B.; Herbert, L.B. Relapse Prevalence, Symptoms, and Health Care Engagement: Patient Insights from the Multiple Sclerosis in America 2017 Survey. Mult. Scler. Relat. Disord. 2018, 26, 219–234. [Google Scholar] [CrossRef] [Green Version]
- Oh, J.; Vidal-Jordana, A.; Montalban, X. Multiple Sclerosis: Clinical Aspects. Curr. Opin. Neurol. 2018, 31, 752–759. [Google Scholar] [CrossRef]
- Wattjes, M.P.; Ciccarelli, O.; Reich, D.S.; Banwell, B.; de Stefano, N.; Enzinger, C.; Fazekas, F.; Filippi, M.; Frederiksen, J.; Gasperini, C.; et al. 2021 MAGNIMS–CMSC–NAIMS Consensus Recommendations on the Use of MRI in Patients with Multiple Sclerosis. Lancet Neurol. 2021, 20, 653–670. [Google Scholar] [CrossRef]
- Olsen, T.G.; Frederiksen, J. The Association between Multiple Sclerosis and Uveitis. Surv. Ophthalmol. 2017, 62, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.R.; Rosenbaum, J.T. Neurological Concomitants of Uveitis. Br. J. Ophthalmol. 2004, 88, 1498–1499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zein, G.; Berta, A.; Foster, C.S. Multiple Sclerosis-Associated Uveitis. Ocul. Immunol. Inflamm. 2004, 12, 137–142. [Google Scholar] [CrossRef]
- Le Scanff, J.; Sève, P.; Renoux, C.; Broussolle, C.; Confavreux, C.; Vukusic, S. Uveitis Associated with Multiple Sclerosis. Mult Scler 2008, 14, 415–417. [Google Scholar] [CrossRef] [PubMed]
- Kaya, D.; Kaya, M.; Özakbaş, S.; İdiman, E. Uveitis Associated with Multiple Sclerosis: Complications and Visual Prognosis. Int. J. Ophthalmol. 2014, 7, 1010–1013. [Google Scholar] [CrossRef]
- Messenger, W.; Hildebrandt, L.; Mackensen, F.; Suhler, E.; Becker, M.; Rosenbaum, J.T. Characterisation of Uveitis in Association with Multiple Sclerosis. Br. J. Ophthalmol. 2015, 99, 205–209. [Google Scholar] [CrossRef]
- Jakob, E.; Reuland, M.S.; Mackensen, F.; Harsch, N.; Fleckenstein, M.; Lorenz, H.-M.; Max, R.; Becker, M.D. Uveitis Subtypes in a German Interdisciplinary Uveitis Center--Analysis of 1916 Patients. J. Rheumatol. 2009, 36, 127–136. [Google Scholar] [CrossRef]
- Towler, H.M.; Lightman, S. Symptomatic Intraocular Inflammation in Multiple Sclerosis. Clin. Exp. Ophthalmol. 2000, 28, 97–102. [Google Scholar] [CrossRef]
- Prieto, J.F.; Dios, E.; Gutierrez, J.M.; Mayo, A.; Calonge, M.; Herreras, J.M. Pars Planitis: Epidemiology, Treatment, and Association with Multiple Sclerosis. Ocul. Immunol. Inflamm. 2001, 9, 93–102. [Google Scholar] [CrossRef]
- Donaldson, M.J.; Pulido, J.S.; Herman, D.C.; Diehl, N.; Hodge, D. Pars Planitis: A 20-Year Study of Incidence, Clinical Features, and Outcomes. Am. J. Ophthalmol. 2007, 144, 812–817. [Google Scholar] [CrossRef] [PubMed]
- AlBloushi, A.F.; Dheyab, A.M.; Al-Swaina, N.F.; Al-Obailan, M.; Daif, A.-K.; Abu El-Asrar, A.M. Clinical Findings and Outcomes of Uveitis Associated with Multiple Sclerosis. Eur. J. Ophthalmol. 2021, 31, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Casselman, P.; Cassiman, C.; Casteels, I.; Schauwvlieghe, P.-P. Insights into Multiple Sclerosis-Associated Uveitis: A Scoping Review. Acta Ophthalmol. 2021, 99, 592–603. [Google Scholar] [CrossRef] [PubMed]
- Heinzlef, O.; Alamowitch, S.; Sazdovitch, V.; Chillet, P.; Joutel, A.; Tournier-Lasserve, E.; Roullet, E. Autoimmune Diseases in Families of French Patients with Multiple Sclerosis. Acta Neurol. Scand. 2000, 101, 36–40. [Google Scholar] [CrossRef]
- Ramagopalan, S.V.; Dyment, D.A.; Herrera, B.M.; Criscuoli, M.; Yee, I.M.; Sadovnick, A.D.; Ebers, G.C. Clustering of Autoimmune Disease in Families at High Risk for Multiple Sclerosis? Lancet Neurol. 2007, 6, 206–207. [Google Scholar] [CrossRef]
- Nielsen, N.M.; Frisch, M.; Rostgaard, K.; Wohlfahrt, J.; Hjalgrim, H.; Koch-Henriksen, N.; Melbye, M.; Westergaard, T. Autoimmune Diseases in Patients with Multiple Sclerosis and Their First-Degree Relatives: A Nationwide Cohort Study in Denmark. Mult. Scler. 2008, 14, 823–829. [Google Scholar] [CrossRef]
- Marrie, R.A.; Reider, N.; Cohen, J.; Stuve, O.; Sorensen, P.S.; Cutter, G.; Reingold, S.C.; Trojano, M. A Systematic Review of the Incidence and Prevalence of Autoimmune Disease in Multiple Sclerosis. Mult. Scler. 2015, 21, 282–293. [Google Scholar] [CrossRef] [Green Version]
- Barcellos, L.F.; Kamdar, B.B.; Ramsay, P.P.; DeLoa, C.; Lincoln, R.R.; Caillier, S.; Schmidt, S.; Haines, J.L.; Pericak-Vance, M.A.; Oksenberg, J.R.; et al. Clustering of Autoimmune Diseases in Families with a High-Risk for Multiple Sclerosis: A Descriptive Study. Lancet Neurol. 2006, 5, 924–931. [Google Scholar] [CrossRef]
- Seyfert, S.; Klapps, P.; Meisel, C.; Fischer, T.; Junghan, U. Multiple Sclerosis and Other Immunologic Diseases. Acta Neurol. Scand. 1990, 81, 37–42. [Google Scholar] [CrossRef]
- Henderson, R.D.; Bain, C.J.; Pender, M.P. The Occurrence of Autoimmune Diseases in Patients with Multiple Sclerosis and Their Families. J. Clin. Neurosci. 2000, 7, 434–437. [Google Scholar] [CrossRef] [Green Version]
- Edwards, L.J.; Constantinescu, C.S. A Prospective Study of Conditions Associated with Multiple Sclerosis in a Cohort of 658 Consecutive Outpatients Attending a Multiple Sclerosis Clinic. Mult. Scler. 2004, 10, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Langer-Gould, A.; Brara, S.M.; Beaber, B.E.; Zhang, J.L. Incidence of Multiple Sclerosis in Multiple Racial and Ethnic Groups. Neurology 2013, 80, 1734–1739. [Google Scholar] [CrossRef] [PubMed]
- Dobson, R.; Ramagopalan, S.; Davis, A.; Giovannoni, G. Cerebrospinal Fluid Oligoclonal Bands in Multiple Sclerosis and Clinically Isolated Syndromes: A Meta-Analysis of Prevalence, Prognosis and Effect of Latitude. J. Neurol. Neurosurg. Psychiatry 2013, 84, 909–914. [Google Scholar] [CrossRef] [PubMed]
- Oguz, K.K.; Kurne, A.; Aksu, A.O.; Karabulut, E.R.D.E.M.; Serdaroglu, A.; Teber, S.; Anlar, B. Assessment of Citrullinated Myelin by 1H-MR Spectroscopy in Early-Onset Multiple Sclerosis. Am. J. Neuroradiol. 2009, 30, 716–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradford, C.M.; Ramos, I.; Cross, A.K.; Haddock, G.; McQuaid, S.; Nicholas, A.P.; Woodroofe, M.N. Localisation of Citrullinated Proteins in Normal Appearing White Matter and Lesions in the Central Nervous System in Multiple Sclerosis. J. Neuroimmunol. 2014, 273, 85–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moscarello, M.A.; Mastronardi, F.G.; Wood, D.D. The Role of Citrullinated Proteins Suggests a Novel Mechanism in the Pathogenesis of Multiple Sclerosis. Neurochem. Res. 2007, 32, 251–256. [Google Scholar] [CrossRef] [Green Version]
- Omar, A.; Abo-Elyoun, I.; Hussein, H.; Nabih, M.; Atwa, H.; Gad, S.; Emad, Y. Anti-Cyclic Citrullinated Peptide (Anti-CCP) Antibody in Juvenile Idiopathic Arthritis (JIA): Correlations with Disease Activity and Severity of Joint Damage (a Multicenter Trial). Jt. Bone Spine 2013, 80, 38–43. [Google Scholar] [CrossRef]
- Derksen, V.F.a.M.; Huizinga, T.W.J.; van der Woude, D. The Role of Autoantibodies in the Pathophysiology of Rheumatoid Arthritis. Semin. Immunopathol. 2017, 39, 437–446. [Google Scholar] [CrossRef]
- Alpayci, M.; Milanlioglu, A.; Delen, V.; Aydin, M.N.; Guducuoglu, H.; Bayram, Y. Anti-CCP Antibody Levels Are Not Associated with MS: Results from a Case-Control Study. Biomed. Res. Int. 2015, 2015, 817427. [Google Scholar] [CrossRef] [Green Version]
- The Lenercept Multiple Sclerosis Study Group and The University of British Columbia MS/MRI Analysis Group. TNF Neutralization in MS: Results of a Randomized, Placebo-Controlled Multicenter Study. Neurology 1999, 53, 457–465. [Google Scholar]
- Kopp, T.I.; Delcoigne, B.; Arkema, E.V.; Jacobsen, R.K.; Magyari, M.; Ibfelt, E.H.; Locht, H.; Sellebjerg, F.; Cordtz, R.L.; Jensen, D.V.; et al. Risk of Neuroinflammatory Events in Arthritis Patients Treated with Tumour Necrosis Factor Alpha Inhibitors: A Collaborative Population-Based Cohort Study from Denmark and Sweden. Ann. Rheum. Dis. 2020, 79, 566–572. [Google Scholar] [CrossRef] [PubMed]
- Kunchok, A.; Aksamit, A.J., Jr.; Davis, J.M., III; Kantarci, O.H.; Keegan, B.M.; Pittock, S.J.; Weinshenker, B.G.; McKeon, A. Association Between Tumor Necrosis Factor Inhibitor Exposure and Inflammatory Central Nervous System Events. JAMA Neurol. 2020, 77, 937–946. [Google Scholar] [CrossRef] [PubMed]
- Salomon, B.L.; Leclerc, M.; Tosello, J.; Ronin, E.; Piaggio, E.; Cohen, J.L. Tumor Necrosis Factor α and Regulatory T Cells in Oncoimmunology. Front. Immunol. 2018, 9, 444. [Google Scholar] [CrossRef] [PubMed]
- Faustman, D.; Davis, M. TNF Receptor 2 and Disease: Autoimmunity and Regenerative Medicine. Front. Immunol. 2013, 4, 478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spadaro, M.; Amendolea, M.A.; Mazzucconi, M.G.; Fantozzi, R.; Di Lello, R.; Zangari, P.; Masala, C. Autoimmunity in Multiple Sclerosis: Study of a Wide Spectrum of Autoantibodies. Mult. Scler. 1999, 5, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Stinissen, P.; Medaer, R.; Raus, J. Myelin Reactive T Cells in the Autoimmune Pathogenesis of Multiple Sclerosis. Mult. Scler. 1998, 4, 203–211. [Google Scholar] [CrossRef]
- D’Amico, E.; Leone, C.; Graziano, G.; Amato, M.P.; Bergamaschi, R.; Cavalla, P.; Coniglio, G.; Battista, G.D.; Ferrò, M.T.; Granella, F.; et al. The Use of Immunosuppressant Therapy for Multiple Sclerosis in Italy: A Multicenter Retroprospective Study. PLoS ONE 2016, 11, e0157721. [Google Scholar] [CrossRef]
- Weiner, H.L. Immunosuppressive Treatment in Multiple Sclerosis. J. Neurol. Sci. 2004, 223, 1–11. [Google Scholar] [CrossRef]
- Coşkun, A.N.; Günbey, C.; Göçmen, R.; Turan, K.E.; Sönmez, H.E.; Özen, S.; Anlar, B. Concurrence of Juvenile Idiopathic Arthritis and Primary Demyelinating Disease in a Young Child. Mult. Scler. Relat. Disord. 2019, 27, 20–22. [Google Scholar] [CrossRef]
- Puszczewicz, M.J.; Tuchocka-Piotrowska, A.; Majewski, D.; Kołczewska, A. Coincidence of juvenile idiopathic arthritis and multiple sclerosis: Case report. Ann. Acad. Med. Stetin. 2006, 52, 85–88. [Google Scholar]
- Ozsahin, M.; Dikici, S.; Kocaman, G.; Besir, F.H.; Baltaci, D.; Ataoglu, S. Dual Diagnosis: Rheumatoid Arthritis and Multiple Sclerosis. PM R 2014, 6, 96–99. [Google Scholar] [CrossRef] [PubMed]
- Sicotte, N.L.; Voskuhl, R.R. Onset of Multiple Sclerosis Associated with Anti-TNF Therapy. Neurology 2001, 57, 1885–1888. [Google Scholar] [CrossRef] [PubMed]
- Kaouther, B.A.; Leila, S.; Salwa, B.; Leith, Z. Concurrence of Juvenile Idiopathic Arthritis and Multiple Sclerosis. Case Rep. Rheumatol. 2011, 2011, 162857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.X. Assessment and Management of Acute Disseminated Encephalomyelitis (ADEM) in the Pediatric Patient. Paediatr. Drugs 2021, 23, 213–221. [Google Scholar] [CrossRef]
- Montalban, X.; Gold, R.; Thompson, A.J.; Otero-Romero, S.; Amato, M.P.; Chandraratna, D.; Clanet, M.; Comi, G.; Derfuss, T.; Fazekas, F.; et al. ECTRIMS/EAN Guideline on the Pharmacological Treatment of People with Multiple Sclerosis. Mult. Scler. 2018, 24, 96–120. [Google Scholar] [CrossRef] [Green Version]
- Montalban, X.; Hauser, S.L.; Kappos, L.; Arnold, D.L.; Bar-Or, A.; Comi, G.; de Seze, J.; Giovannoni, G.; Hartung, H.-P.; Hemmer, B.; et al. Ocrelizumab versus Placebo in Primary Progressive Multiple Sclerosis. N. Engl. J. Med. 2017, 376, 209–220. [Google Scholar] [CrossRef]
- Lalive, P.H.; Neuhaus, O.; Benkhoucha, M.; Burger, D.; Hohlfeld, R.; Zamvil, S.S.; Weber, M.S. Glatiramer acetate in the treatment of multiple sclerosis: Emerging concepts regarding its mechanism of action. CNS Drugs 2011, 25, 401–414. [Google Scholar] [CrossRef] [Green Version]
- Yadav, S.K.; Soin, D.; Ito, K.; Dhib-Jalbut, S. Insight into the Mechanism of Action of Dimethyl Fumarate in Multiple Sclerosis. J. Mol. Med. 2019, 97, 463–472. [Google Scholar] [CrossRef]
- Bar-Or, A.; Pachner, A.; Menguy-Vacheron, F.; Kaplan, J.; Wiendl, H. Teriflunomide and Its Mechanism of Action in Multiple Sclerosis. Drugs 2014, 74, 659–674. [Google Scholar] [CrossRef] [Green Version]
- Mechanism of Action of Oral Fingolimod (FTY720) in Multiple Sclerosis–PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/20061941/ (accessed on 15 July 2022).
- Leist, T.P.; Weissert, R. Cladribine: Mode of Action and Implications for Treatment of Multiple Sclerosis. Clin. Neuropharmacol. 2011, 34, 28–35. [Google Scholar] [CrossRef]
- Pfender, N.; Martin, R. Daclizumab (anti-CD25) in multiple sclerosis. Exp. Neurol. 2014, 262, 44–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khoy, K.; Mariotte, D.; Defer, G.; Petit, G.; Toutirais, O.; Le Mauff, B. Natalizumab in Multiple Sclerosis Treatment: From Biological Effects to Immune Monitoring. Front. Immunol. 2020, 11, 549842. [Google Scholar] [CrossRef] [PubMed]
- Mancinelli, C.R.; Rossi, N.D.; Capra, R. Ocrelizumab for the Treatment of Multiple Sclerosis: Safety, Efficacy, and Pharmacology. Ther. Clin. Risk Manag. 2021, 17, 765–776. [Google Scholar] [CrossRef]
- Ruck, T.; Bittner, S.; Wiendl, H.; Meuth, S.G. Alemtuzumab in Multiple Sclerosis: Mechanism of Action and Beyond. Int. J. Mol. Sci. 2015, 16, 16414–16439. [Google Scholar] [CrossRef] [PubMed]
- Brummer, T.; Ruck, T.; Meuth, S.G.; Zipp, F.; Bittner, S. Treatment approaches to patients with multiple sclerosis and coexisting autoimmune disorders. Ther. Adv. Neurol. Disord. 2021, 23, 14. [Google Scholar] [CrossRef]
- Cronstein, B.N.; Aune, T.M. Methotrexate and Its Mechanisms of Action in Inflammatory Arthritis. Nat. Rev. Rheumatol. 2020, 16, 145–154. [Google Scholar] [CrossRef]
- Ashtari, F.; Savoj, M.R. Effects of Low Dose Methotrexate on Relapsing-Remitting Multiple Sclerosis in Comparison to Interferon β-1α: A Randomized Controlled Trial. J. Res. Med. Sci. 2011, 16, 457–462. [Google Scholar]
- Cragg, M.S.; Walshe, C.A.; Ivanov, A.O.; Glennie, M.J. The Biology of CD20 and Its Potential as a Target for MAb Therapy. Curr. Dir. Autoimmun. 2005, 8, 140–174. [Google Scholar] [CrossRef]
- Brancati, S.; Gozzo, L.; Longo, L.; Vitale, D.C.; Drago, F. Rituximab in Multiple Sclerosis: Are We Ready for Regulatory Approval? Front. Immunol. 2021, 12, 661882. [Google Scholar] [CrossRef]
- Abushouk, A.I.; Ahmed, H.; Ismail, A.; Elmaraezy, A.; Badr, A.S.; Gadelkarim, M.; Elnenny, M. Safety and Efficacy of Ocrelizumab in Rheumatoid Arthritis Patients with an Inadequate Response to Methotrexate or Tumor Necrosis Factor Inhibitors: A Systematic Review and Meta-Analysis. Rheumatol. Int. 2017, 37, 1053–1064. [Google Scholar] [CrossRef]
- Rigby, W.; Tony, H.-P.; Oelke, K.; Combe, B.; Laster, A.; von Muhlen, C.A.; Fisheleva, E.; Martin, C.; Travers, H.; Dummer, W. Safety and Efficacy of Ocrelizumab in Patients with Rheumatoid Arthritis and an Inadequate Response to Methotrexate: Results of a Forty-Eight-Week Randomized, Double-Blind, Placebo-Controlled, Parallel-Group Phase III Trial. Arthritis Rheum. 2012, 64, 350–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benveniste, E.N.; Liu, Y.; McFarland, B.C.; Qin, H. Involvement of the Janus Kinase/Signal Transducer and Activator of Transcription Signaling Pathway in Multiple Sclerosis and the Animal Model of Experimental Autoimmune Encephalomyelitis. J. Interferon Cytokine Res. 2014, 34, 577–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, Y.; Luo, Y.; O’Shea, J.J.; Nakayamada, S. Janus Kinase-Targeting Therapies in Rheumatology: A Mechanisms-Based Approach. Nat. Rev. Rheumatol. 2022, 18, 133–145. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.H.; Nakamura, M.; Abrouk, M.; Farahnik, B.; Koo, J.; Bhutani, T. Demyelinating Disorders Secondary to TNF-Inhibitor Therapy for the Treatment of Psoriasis: A Review. J. Dermatol. Treat. 2016, 27, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P.C. Biologic and Small Molecules: Do They Work on Pain? Clin. Exp. Rheumatol. 2021, 39, S201. [Google Scholar]
- Filipi, M.; Jack, S. Interferons in the Treatment of Multiple Sclerosis: A Clinical Efficacy, Safety, and Tolerability Update. Int. J. MS Care 2020, 22, 165–172. [Google Scholar] [CrossRef] [Green Version]
- Vervoordeldonk, M.J.; Aalbers, C.J.; Tak, P.P. Interferon Beta for Rheumatoid Arthritis: New Clothes for an Old Kid on the Block. Ann. Rheum. Dis. 2009, 68, 157–158. [Google Scholar] [CrossRef] [Green Version]
Dissemination in Space (DIS) | Dissemination in Time (DIT) |
---|---|
One or more lesions in two or more of the following sites: -Periventricular -Cortical/Iuxtacortical -Infratentorial -Spinal cord | -New T2 and/or contrast enhancing lesion on subsequent MRI with respect to a baseline scan, independently from the timing of the baseline MRI In patients fulfilling DIS criteria but not DIT, in case of the presence of oligoclonal band in cerebrospinal fluid, MS may be diagnosed |
Weakness | 89% |
---|---|
Sensory disturbances | 87% |
Gait disturbance | 82% |
Bladder problems | 71% |
Fatigue | 57% |
Cramps | 52% |
Diplopia | 51% |
Other visual disturbances | 49% |
Bowel disturbances | 42% |
Dysarthria | 37% |
Vertigo | 36% |
Facial pain | 35% |
First Author, Year | Patients | JIA Subset, Disease Duration | Previous Treatment (s) | Ongoing JIA Treatment | MS Subset | MS Treatment |
---|---|---|---|---|---|---|
Ozsahin et al., 2014 [91] | 1 patient (10 y, F) | Oligoarticular JIA, 1 year | Naproxene 250 mg/day | MTX (two weeks) | ADEM | Not specified |
Coskun et al., 2011 [89] | 1 patient (35 y, F) | JIA, 29 years | MTX, 5-ASA, intermittent CCS | None (poor compliance) | Not specified | CCS pulses → IFNβ |
Sicotte et al., 2001 [92] | 1 patient (21 y, F) | Polyarticular JIA, 13 years | Oral and i.m. gold, MTX, SSZ | ETN (9 months), celecoxib | Not specified | CCS pulses → leflunomide → IFNβ |
Kaouther et al., 2011 [93] | 1 patient (21 y, F) | Polyarticular JIA, 5 years | None | LEF 20 mg/day | Not specified | CCS pulses |
Drugs | Mechanism of Action |
---|---|
Interferon-β |
|
Glatiramer acetate [97] |
|
Dimethyl fumarate [98] |
|
Teriflunomide [99] |
|
Fingolimod [100] |
|
Cladribine [101] |
|
Daclizumab [102] |
|
Natalizumab [103] |
|
Ocrelizumab [104] |
|
Alemtuzumab [105] |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chighizola, C.B.; Ferrito, M.; Marelli, L.; Pontikaki, I.; Nucci, P.; Miserocchi, E.; Caporali, R. Juvenile Idiopathic Arthritis, Uveitis and Multiple Sclerosis: Description of Two Patients and Literature Review. Biomedicines 2022, 10, 2041. https://doi.org/10.3390/biomedicines10082041
Chighizola CB, Ferrito M, Marelli L, Pontikaki I, Nucci P, Miserocchi E, Caporali R. Juvenile Idiopathic Arthritis, Uveitis and Multiple Sclerosis: Description of Two Patients and Literature Review. Biomedicines. 2022; 10(8):2041. https://doi.org/10.3390/biomedicines10082041
Chicago/Turabian StyleChighizola, Cecilia Beatrice, Matteo Ferrito, Luca Marelli, Irene Pontikaki, Paolo Nucci, Elisabetta Miserocchi, and Roberto Caporali. 2022. "Juvenile Idiopathic Arthritis, Uveitis and Multiple Sclerosis: Description of Two Patients and Literature Review" Biomedicines 10, no. 8: 2041. https://doi.org/10.3390/biomedicines10082041
APA StyleChighizola, C. B., Ferrito, M., Marelli, L., Pontikaki, I., Nucci, P., Miserocchi, E., & Caporali, R. (2022). Juvenile Idiopathic Arthritis, Uveitis and Multiple Sclerosis: Description of Two Patients and Literature Review. Biomedicines, 10(8), 2041. https://doi.org/10.3390/biomedicines10082041