Multilayer Electrospun-Aligned Fibroin/Gelatin Implant for Annulus Fibrosus Repair: An In Vitro and In Vivo Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Purification of Fibroin from Cocoon Silk
2.2. The Preparation of Fibroin/Gelatin Multilayer Scaffold
2.3. Characterization of Fibroin/Gelatin Electrospun Membrane and Fibroin/Gelatin Electrospun Scaffold
2.3.1. Microstructure and Diameter of Electrospun Fibers and Multilayer Electrospun Implant
2.3.2. Tensile Strength Measurements
2.3.3. Swelling Ratio
2.4. In Vitro Analysis
2.4.1. Cell Proliferation
2.4.2. Live and Dead Staining
2.4.3. Cell Adhesion
2.5. In Vivo Analysis
2.5.1. Ethical Aspects and Animals
2.5.2. Surgery and Tissue Harvesting
2.5.3. X-ray Imaging, Magnetic Resonance Imaging (MRI) and Discography
2.5.4. Histological and Immunohistochemical Staining
2.6. Statistical Analysis
3. Results
3.1. Fibroin/Gelatin Scaffold Characterization
3.2. In Vitro Analysis
3.2.1. Scaffold Biocompatibility
3.2.2. Fluorescence-Based Live/Dead Staining
3.2.3. Scaffold Surface Adhesion and Cell Proliferation
3.3. In Vivo Implantation
3.3.1. X-ray Imaging, MRI and Discography
3.3.2. Histological and Immunohistochemical Staining Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharifi, S.; Bulstra, S.K.; Grijpma, D.W.; Kuijer, R. Treatment of the degenerated intervertebral disc; closure, repair and regeneration of the annulus fibrosus. J. Tissue Eng. Regen. Med. 2015, 9, 1120–1132. [Google Scholar] [CrossRef] [PubMed]
- Sloan, S.R.; Lintz, M.; Hussain, I.; Hartl, R.; Bonassar, L.J. Biologic annulus fibrosus repair: A review of preclinical in vivo investigations. Tissue Eng. Part B Rev. 2018, 24, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.S. Pathophysiology of degenerative disc disease. Asian Spine J. 2009, 3, 39–44. [Google Scholar] [CrossRef]
- Cheung, K.M.C.; Karppinen, J.; Chan, D.; Ho, D.W.H.; Song, Y.Q.; Sham, P.; Cheah, K.S.E.; Leong, J.C.; Luk, K.D.K. Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals. Spine 2009, 34, 934–940. [Google Scholar] [CrossRef]
- Singh, K.; Masuda, K.; Thonar, E.J.-M.A.; An, H.S.; Cs-Szabo, G. Age-related changes in the extracellular matrix of nucleus pulposus and anulus fibrosus of human intervertebral disc. Spine 2009, 34, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Shimmer, A.L.; Li, X. The challenge and advancement of annulus fibrosus tissue engineering. Eur. Spine J. 2013, 22, 1090–1100. [Google Scholar] [CrossRef] [PubMed]
- Moriguchi, Y.; Alimi, M.; Khair, T.; Manolarakis, G.; Berlin, C.; Bonassar, L.J.; Härtl, R. Biological treatment approaches for degenerative disk disease: A literature review of in vivo animal and clinical data. Glob. Spine J. 2016, 6, 497–518. [Google Scholar] [CrossRef]
- McGirt, M.J.; Eustacchio, S.; Varga, P.; Vilendecic, M.; Trummer, M.; Gorensek, M.; Ledic, D.; Carragee, E.J. A prospective cohort study of close interval computed tomography and magnetic resonance imaging after primary lumbar discectomy: Factors associated with recurrent disc herniation and disc height loss. Spine 2009, 34, 2044–2051. [Google Scholar] [CrossRef]
- Wang, Y.H.; Kuo, T.F.; Wang, J.L. The implantation of non-cell-based materials to prevent the recurrent disc herniation: An in vivo porcine model using quantitative discomanometry examination. Eur. Spine J. 2007, 16, 1021–1027. [Google Scholar] [CrossRef]
- Bron, J.L.; van der Veen, A.J.; Helder, M.N.; van Royen, B.J.; Smit, T.H.; Skeletal Tissue Engineering Group Amsterdam; Research Institute MOVE. Biomechanical and in vivo evaluation of experimental closure devices of the annulus fibrosus designed for a goat nucleus replacement model. Eur. Spine J. 2010, 19, 1347–1355. [Google Scholar] [CrossRef] [Green Version]
- Chiang, C.J.; Cheng, C.K.; Sun, J.S.; Liao, C.J.; Wang, Y.H.; Tsuang, Y.H. The effect of a new anular repair after discectomy in intervertebral disc degeneration: An experimental study using a porcine spine model. Spine 2011, 36, 761–769. [Google Scholar] [CrossRef] [PubMed]
- Bateman, A.H.; Balkovec, C.; Akens, M.K.; Chan, A.H.W.; Harrison, R.D.; Oakden, W.; Yee, A.J.M.; McGill, S.M. Closure of the annulus fibrosus of the intervertebral disc using a novel suture application device-in vivo porcine and ex vivo biomechanical evaluation. Spine J. 2016, 16, 889–895. [Google Scholar] [CrossRef]
- Ahlgren, B.D.; Lui, W.; Herkowitz, H.N.; Panjabi, M.M.; Guiboux, J.P. Effect of anular repair on the healing strength of the intervertebral disc: A sheep model. Spine (Phila Pa 1976) 2000, 25, 2165–2170. [Google Scholar] [CrossRef] [PubMed]
- Chiang, Y.F.; Chiang, C.J.; Yang, C.H.; Zhong, Z.C.; Chen, C.S.; Cheng, C.K.; Tsuang, Y.H. Retaining intradiscal pressure after annulotomy by different annular suture techniques, and their biomechanical evaluations. Clin. Biomech. 2012, 27, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.H.; Chiang, Y.F.; Chen, C.H.; Wu, L.C.; Liao, C.J.; Chiang, C.J. The effect of annular repair on the failure strength of the porcine lumbar disc after needle puncture and punch injury. Eur. Spine J. 2016, 25, 906–912. [Google Scholar] [CrossRef]
- Bowles, R.D.; Setton, L.A. Biomaterials for intervertebral disc regeneration and repair. Biomaterials 2017, 129, 54–67. [Google Scholar] [CrossRef]
- Tavakoli, J.; Diwan, A.D.; Tipper, J.L. Advanced strategies for the regeneration of lumbar disc annulus fibrosus. Int. J. Mol. Sci. 2020, 21, 4889. [Google Scholar] [CrossRef]
- Hahn, B.S.; Ji, G.Y.; Moon, B.; Shin, D.A.; Ha, Y.; Kim, K.N.; Yoon, D.H. Use of annular closure device (Barricaid®) for preventing lumbar disc Reherniation: One-year results of three cases. Korean J. Neurotrauma 2014, 10, 119–122. [Google Scholar] [CrossRef]
- Trummer, M.; Eustacchio, S.; Barth, M.; Klassen, P.D.; Stein, S. Protecting facet joints post-lumbar discectomy: Barricaid annular closure device reduces risk of facet degeneration. Clin. Neurol. Neurosurg. 2013, 115, 1440–1445. [Google Scholar] [CrossRef]
- Ledet, E.H.; Jeshuran, W.; Glennon, J.C.; Shaffrey, C.; Deyne, P.D.; Belden, C.; Kallakury, B.; Carl, A.L. Small intestinal submucosa for anular defect closure: Longterm response in an in vivo sheep model. Spine 2009, 34, 1457–1463. [Google Scholar] [CrossRef]
- Xin, L.; Zhang, C.; Zhong, F.; Fan, S.; Wang, W.; Wang, Z. Minimal invasive annulotomy for induction of disc degeneration and mplantation of poly (lactic-co-glycolic acid) (PLGA) plugs for annular repair in a rabbit model. Eur. J. Med. Res. 2016, 21, 7. [Google Scholar] [CrossRef] [PubMed]
- Pirvu, T.; Blanquer, S.B.G.; Benneker, L.M.; Grijpma, D.W.; Richards, R.G.; Alini, M.; Eglin, D.; Grad, S.; Li, Z. A combined biomaterial and cellular approach for annulus fibrosus rupture repair. Biomaterials 2015, 42, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Wismer, N.; Grad, S.; Fortunato, G.; Ferguson, S.J.; Alini, M.; Eglin, D. Biodegradable electrospun scaffolds for Annulus fibrosus tissue engineering: Effect of scaffold structure and composition on Annulus fibrosus cells in vitro. Tissue Eng. Part A 2014, 20, 672–682. [Google Scholar] [CrossRef]
- Johnson, W.; Wootton, A.; El Haj, A. Topographical guidance of intervertebral disc cell growth in vitro: Towards the development of tissue repair strategies for the anulus fibrosus. Eur. Spine J. 2006, 15, S389–S396. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, J.; Hiltner, A.; Baer, E. Hierarchical structure of the intervertebral disc. Connect. Tissue Res. 1989, 23, 75–88. [Google Scholar] [CrossRef] [PubMed]
- Chu, G.; Shi, C.; Wang, H.; Zhang, W.; Yang, H.; Li, B. Strategies for Annulus fibrosus regeneration: From biological therapies to tissueengineering. Front. Bioeng. Biotechnol. 2018, 6, 90. [Google Scholar] [CrossRef] [PubMed]
- Nerurkar, N.L.; Elliott, D.M.; Mauck, R.L. Mechanical design criteria for intervertebral disc tissue engineering. J. Biomech. 2010, 43, 1017–1030. [Google Scholar] [CrossRef]
- Nam, J.; Johnson, J.; Lannutti, J.J.; Agarwal, S. Modulation of embryonic mesenchymal progenitor cell differentiation via control over pure mechanical modulus in electrospun nanofibers. Acta Biomater. 2011, 7, 1516–1524. [Google Scholar] [CrossRef]
- Tambralli, A.; Blakeney, B.; Anderson, J.; Kushwaha, M.; Andukuri, A.; Dean, D.; Ho-Wook Jun, H.W. A hybrid biomimetic scaffold composed of electrospun polycaprolactone nanofibers and self-assembled peptide amphiphile nanofibers. Biofabrication 2009, 1, 025001. [Google Scholar] [CrossRef]
- Coburn, J.M.; Gibson, M.; Monagle, S.; Zachary Patterson, Z.; Elisseeff, J.H. Bioinspired nanofibers support chondrogenesis for articular cartilage repair. Proc. Natl. Acad. Sci. USA 2012, 109, 10012–10017. [Google Scholar] [CrossRef] [Green Version]
- Kang, R.; Li, H.; Xi, Z.; Ringgard, S.; Baatrup, A.; Rickers, K.; Sun, M.; Le, D.Q.S.; Wang, M.; Xie, L.; et al. Surgical repair of annulus defect with biomimetic multilamellar nano/microfibrous scaffold in a porcine model. J. Tissue Eng. Regenerat. Med. 2018, 12, 164–174. [Google Scholar] [CrossRef]
- Gullbrand, S.E.; Ashinsky, B.G.; Bonnevie, E.D.; Kim, D.H.; Engiles, J.B.; Smith, L.J.; Elliott, D.M.; Schaer, T.P.; Smith, H.E.; .Mauck, R.L. Long-term mechanical function and integration of an implanted tissue-engineered intervertebral disc. Sci. Transl. Med. 2018, 10, eaau0670. [Google Scholar] [CrossRef] [PubMed]
- Gluais, M.; Clouet, J.; Fusellier, M.; Decante, C.; Moraru, C.; Dutilleul, M.; Veziers, J.; Lesoeur, J.; Dumas, D.; Abadie, J.; et al. In vitro and in vivo evaluation of an electrospun-aligned microfibrous implant for Annulus fibrosus repair. Biomaterials 2019, 205, 81–93. [Google Scholar] [CrossRef] [PubMed]
- Hakimi, O.; Knight, D.P.; Vollrath, F.; Vadgama, P. Spider and mulberry silkworm silks as compatible biomaterials. Compos. Part B Eng. 2007, 38, 324–337. [Google Scholar] [CrossRef]
- Qi, Y.; Wang, H.; Wei, K.; Yang, Y.; Zheng, R.Y.; Kim, I.S.; Zhang, K.Q. A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures. Int. J. Mol. Sci. 2017, 18, 237. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.W.; Tabata, Y.; Ikada, Y. Fabrication of porous gelatin scaffolds for tissue engineering. Biomaterials 1999, 20, 1339–1344. [Google Scholar] [CrossRef]
- Olsen, D.; Yang, C.; Bodo, M.; Chang, R.; Leigh, S.; Baez, J.; Carmichae, D.; Perälä, M.; Hämäläinen, E.-R.; Jarvinen, M.; et al. Recombinant collagen and gelatin for drug delivery. Adv. Drug Deliv. Rev. 2003, 55, 1547–1567. [Google Scholar] [CrossRef]
- Li, D.; Xia, Y. Electrospinning of nanofibers: Reinventing the wheel? Adv. Mater. 2004, 16, 1151–1170. [Google Scholar] [CrossRef]
- Mondal, K.; Sharma, A. Recent advances in electrospun metal-oxide nanofiber based interfaces for electrochemical biosensing. RSC Adv. 2016, 6, 94595–94616. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, X.; Ding, F.; Zhang, P.; Liu, J.; Gu, X. Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro. Biomaterials 2007, 28, 1643–1652. [Google Scholar] [CrossRef]
- Marelli, B.; Alessandrino, A.; Farè, S.; Freddi, G.; Mantovani, D.; Tanzi, M.C. Compliant electrospun silk fibroin tubes for small vessel bypass grafting. Acta Biomater. 2010, 6, 4019–4026. [Google Scholar] [CrossRef] [PubMed]
- Rockwood, D.N.; Preda, R.C.; Yücel, T.; Wang, X.; Lovett, M.L. Kaplan, D.L. Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 2011, 6, 1612–1631. [Google Scholar] [CrossRef] [PubMed]
- Nam, J.; Park, Y.H. Morphology of regenerated silk fibroin: Effects of freezing temperature, alcohol addition, and molecular weight. J. Appl. Polym. Sci. 2001, 81, 3008–3021. [Google Scholar] [CrossRef]
- Yokoyama, K.; Nio, N.; Kikuchi, Y. Properties and applications of microbial transglutaminase. Appl. Microbiol. Biotechnol. 2004, 64, 447–454. [Google Scholar] [CrossRef]
- Choi, Y.S.; Hong, S.R.; Lee, Y.M.; Song, K.W.; Park, M.H.; Nam, Y.S. Studies on gelatin-containing artificial skin: II. Preparationand characterization of cross-linked gelatin-hyaluronate sponge. J. Biomed. Mater. Res. 1999, 48, 631–639. [Google Scholar] [CrossRef]
- Masuda, K.; Aota, Y.; Muehleman, C.; Imai, Y.; Okuma, M.; Thonar, E.J.; Andersson, G.B.; An, H.S. A novel rabbit model of mild, reproducible disc degeneration by an annulus needle puncture: Correlation between the degree of disc injury and radiological and histological appearances of disc degeneration. Spine 2005, 30, 5–14. [Google Scholar] [CrossRef]
- Han, B.; Zhu, K.; Li, F.C.; Xiao, Y.X.; Feng, J.; Shi, Z.L.; Lin, M.; Wang, J.; Chen, Q.X. A simple disc degeneration model induced by percutaneous needle puncture in the rat tail. Spine 2008, 33, 1925–1934. [Google Scholar] [CrossRef]
- Hu, M.H.; Yang, K.C.; Chen, Y.J.; Sun, Y.H.; Lin, F.H.; Yang, S.H. Optimization of puncture injury to rat caudal disc for mimicking early degeneration of intervertebral disc. J. Orthop. Res. 2018, 36, 202–211. [Google Scholar] [CrossRef]
- Agorastides, I.D.; Lam, K.S.; Freeman, B.J.; Robert C Mulholland, R.C. The Adams classification for cadaveric discograms: Inter- and intra-observer error in the clinical setting. Eur. Spine J. 2002, 11, 76–79. [Google Scholar] [CrossRef]
- Holzapfel, G.A.; Schulze-Bauer, C.A.J.; Feigl, G.; Regitnig, P. Single lamellar mechanics of the human lumbar anulus fibrosus. Biomech. Model. Mechanobiol. 2005, 3, 125–140. [Google Scholar] [CrossRef]
- Fusellier, M.; Clouet, J.; Gauthier, O.; Le Visage, C.; Guicheux, J. Animal models andimaging of intervertebral disc degeneration. In Book Gene and Cell Delivery for Intervertebral Disc Degeneration; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Guterl, C.C.; See, E.Y.; Blanquer, S.B.G.; Pandit, A.; Ferguson, S.J.; Benneker, L.M.; Grijpma, D.W.; Sakai, D.; Eglin, D.; Alini, M.; et al. Challenges and strategies in the repair of ruptured Annulus fibrosus. Eur. Cell. Mater. 2013, 25, 1–21. [Google Scholar] [CrossRef] [PubMed]
Young’s Modulus (MPa) | UTS (MPa) | Elongation (%) | Toughness (MJ/m3) | |
---|---|---|---|---|
native AF tissue (dorsal internal) | 3.8 | 1.2 | 21 | 0.052 |
native AF tissue (dorsal external) | 8.01 | 2.2 | 7.5 | 0.04 |
scaffold (along orientation) n=10 | 6.70 ± 2.59 | 1.81 ± 0.47 | 90.27 ± 18.36 | 1.103 ± 0.322 |
scaffold (normal to orientation) n=10 | 3.18 ± 1.22 | 0.96 ± 0.23 | 59.93 ± 9.88 | 0.311 ± 0.063 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, M.-H.; Yang, K.-C.; Chen, C.-W.; Chu, P.-H.; Chang, Y.-L.; Sun, Y.-H.; Lin, F.-H.; Yang, S.-H. Multilayer Electrospun-Aligned Fibroin/Gelatin Implant for Annulus Fibrosus Repair: An In Vitro and In Vivo Evaluation. Biomedicines 2022, 10, 2107. https://doi.org/10.3390/biomedicines10092107
Hu M-H, Yang K-C, Chen C-W, Chu P-H, Chang Y-L, Sun Y-H, Lin F-H, Yang S-H. Multilayer Electrospun-Aligned Fibroin/Gelatin Implant for Annulus Fibrosus Repair: An In Vitro and In Vivo Evaluation. Biomedicines. 2022; 10(9):2107. https://doi.org/10.3390/biomedicines10092107
Chicago/Turabian StyleHu, Ming-Hsiao, Kai-Chiang Yang, Chih-Wei Chen, Po-Han Chu, Yun-Liang Chang, Yuan-Hui Sun, Feng-Huei Lin, and Shu-Hua Yang. 2022. "Multilayer Electrospun-Aligned Fibroin/Gelatin Implant for Annulus Fibrosus Repair: An In Vitro and In Vivo Evaluation" Biomedicines 10, no. 9: 2107. https://doi.org/10.3390/biomedicines10092107
APA StyleHu, M. -H., Yang, K. -C., Chen, C. -W., Chu, P. -H., Chang, Y. -L., Sun, Y. -H., Lin, F. -H., & Yang, S. -H. (2022). Multilayer Electrospun-Aligned Fibroin/Gelatin Implant for Annulus Fibrosus Repair: An In Vitro and In Vivo Evaluation. Biomedicines, 10(9), 2107. https://doi.org/10.3390/biomedicines10092107