Distal Renal Tubular Acidosis in Patients with Autoimmune Diseases—An Update on Pathogenesis, Clinical Presentation and Therapeutic Strategies
Abstract
:1. Introduction
2. Epidemiology, Clinical Presentation and Diagnosis
3. Pathogenesis
- A.
- Is the paucity or deficiency of the H+-ATPase expression directly correlated to histological damage in patients with autoimmune diseases? Ha Yeon Kim et al., and De Franco et al., reported that a diffuse interstitial inflammatory infiltrate composed by lymphocytes and plasma cells was seen in light microscopy in the renal tissue of two patients with Sjögren’s syndrome and DRTA, one of which also showed lesions of tubulitis [40,41]. When electron microscopy was performed, the ultrastructural features supported the presence of intact intercalated cells [40,42,44]. The absence of the H+-ATPase in immunofluorescence with diffuse interstitial inflammatory infiltrate under light microscopy and the presence of intact intercalated cells on electron microscopy images suggest that the acidification defect may be due the functional lesions of intercalated cells and polarity changes, possibly determined by inflammatory processes, with the lack of expression of H+-ATPase.
- B.
- The second question is whether or not these patients with autoimmune diseases and DRTA have other defects expressing channels/ion pumps/enzymes implicated in urinary acidification (like the anion exchanger 1 (AE1)/band 3 protein, pendrin or type II carbonic anhydrase). Both Walsh et al., and De Franco et al., proved that renal tissue from two patients with Sjögren’s syndrome and DRTA showed complete lack of immunoreactivity for basolateral AE1 and apical H+-ATPase in intercalated cells, although there was reactivity for AE1 in blood cells captured in the tissue sample derived from these patients [41,45]. Ha Yeon Kim et al., also showed that kidneys of patients with Sjögren’s syndrome revealed a weak fluorescence for pendrin compared to normal kidney tissue, which showed a bright distinct red fluorescence reaction [40]. So, these patients with Sjögren’s syndrome and DRTA seem to manifest multiple defects in the expression of protein channels or pumps, which are involved in distal urinary acidification.
- C.
- The third question derived from these observations is that the lack of expression of structures or molecules like H+-ATPase/AE1/pendrin/type II carbonic anhydrase is due to autoantibodies directed against the intercalated cells or directly to these transporters or enzymes involved in distal urinary acidification. Devuyst et al., demonstrated that G immunoglobulins found in the serum of one patient diagnosed with Sjögren’s syndrome and DRTA reacted with intercalated cells in collecting duct profiles of human control kidneys [42]. In return, De Franco et al., and Cohen et al., incubated serum from two patients with Sjögren’s syndrome and DRTA with control kidney tissue samples, and no reactivity was seen [41,44]. Cohen et al., also incubated patient’s serum with his own kidney tissue sample, with no reactivity being seen, in contrast with De Franco et al., who did not perform this procedure; therefore, the authors highlight the fact that even though there was no reactivity of patient’s serum with control kidney sample, a possible reaction with patient’s renal tissue cannot be excluded [41,44]. Also, the authors raise the hypothesis that inflammatory damage to intercalated cells might lead to exposure of intracellular antigens, which stimulates autoantibodies production, which may be just a marker of intercalated cell damage and not actually responsible for the injury to these cells. Chao et al., also demonstrated the presence of antibodies to renal tubular epithelial cells and antibodies to the B1/B2 subunit of H+-ATPase in the serum of 6 out of 11 patients diagnosed with DRTA (ten of them associated Sjögren’s syndrome) [46]. Patients without DRTA, including Sjögren’s syndrome patients and normal control patients, were negative for these autoantibodies [46]. In return, although the patient’s kidney sample in the case reported by Cohen et al., lacked the expression of H+-ATPase, the presence of autoantibodies to H+-ATPase subunits or to intercalated cells was not proved when patient’s serum was incubated with purified bovine kidney vacuolar H+-ATP-ase or with normal human kidney tissue [44]. Interesting data regarding a possible role of autoantibodies in reducing the expression of structures involved in distal renal acidification came from a recent published case with the association of primary biliary cirrhosis and DRTA [35]. First, the authors proved the lack of expression of AE1, B1 and a4 subunits of H+-ATP-ase by immunofluorescence staining of kidney biopsy sections [35]. After that, they incubated kidney sections from healthy donors with either serum from the patient or serum from healthy donors [35]. Reactivity of patient serum with the otherwise healthy tissue was proven using anti-human IgG fluorescent labelled antibodies, which showed specific labeling of the apical pole of AQP2 and AE1 positive collecting duct cells [35]. It is important to mention that this patient associated an active form of tubulointerstitial nephritis [35]. However, the authors state that it is difficult to appreciate whether these autoantibodies directed at collecting duct cells are the cause or consequence of dRTA and tubulointerstitial nephritis, and further studies are necessary to clarify this.
4. Treatment and Outcome
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maripuri, S.; Grande, J.P.; Osborn, T.G.; Fervenza, F.C.; Matteson, E.L.; Donadio, J.V.; Hogan, M.C. Renal Involvement in Primary Sjögren’s Syndrome: A Clinicopathologic Study. Clin. J. Am. Soc. Nephrol. 2009, 4, 1423–1431. [Google Scholar] [CrossRef] [PubMed]
- Kidder, D.; Rutherford, E.; Kipgen, D.; Fleming, S.; Geddes, C.; Stewart, G.A. Kidney biopsy findings in primary Sjögren syndrome. Nephrol. Dial. Transpl. 2015, 30, 1363–1369. [Google Scholar] [CrossRef]
- Jain, A.; Srinivas, B.H.; Emmanuel, D.; Jain, V.K.; Parameshwaran, S.; Negi, V.S. Renal involvement in primary Sjogren’s syndrome: A prospective cohort study. Rheumatol. Int. 2018, 38, 2251–2262. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Wang, W.M.; Chen, X.N.; Zhang, W.; Pan, X.X.; Wang, X.L.; Lin, Y.; Zhang, S.; Chen, N. Renal involvement and followup of 130 patients with primary Sjögren’s syndrome. J. Rheumatol. 2008, 35, 278–284. [Google Scholar] [PubMed]
- Rawla, P.; Thandra, K.C.; Aluru, J.S.; Mageed, S.A.; Sakr, E.E.; Elsayed, G.G.; Zidan, M.; Morra, M.E. Systematic review and case report: Systemic lupus erythematosus with renal tubular acidosis. Clin. Case Rep. 2019, 8, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Din, M.A.U.; Razzouk, G. Renal Tubular Acidosis Causing Acute Hypokalemic Paralysis in Systemic Lupus Erythematosus: Sjogren’s Syndrome Overlap. Cureus 2020, 12, e7555. [Google Scholar] [CrossRef]
- Eren, N.; Gungor, O.; Sarisik, F.N.; Sokmen, F.; Tutuncu, D.; Cetin, G.Y.; Yazici, A.; Bek, S.G.; Altun, E.; Altunoren, O.; et al. Renal Tubular Acidosis in Patients with Systemic Lupus Erythematosus. Kidney Blood Press. Res. 2020, 45, 883–889. [Google Scholar] [CrossRef]
- Coello Torà, I.; Guimerà García, J.; Peraire Lores, M.; Aizpiri Antoñana, L.; Vega Vega, C.A.; Amer Mestre, M.; Guldris García, R.J.; Pieras Ayala, E.C. Nefrocalcinosis como manifestación de la acidosis tubular renal distal [Renal tubular distal acidosis: Nephrocalcinosis as initial diagnosis]. Arch. Esp. Urol. 2021, 74, 261–263. [Google Scholar]
- Makharia, A.; Lakhotia, M.; Gupta, M.; Lalwani, P. Hypokalaemic quadriparesis with respiratory failure due to latent Sjogren syndrome. BMJ Case Rep. 2021, 14, e243057. [Google Scholar] [CrossRef]
- Mbengue, M.; Ouanekpone, C.; Diagne, S.; Niang, A. From Hypokalemic Crisis to Sjogren’s Syndrome: A Case Report and Literature Review. Case Rep. Nephrol. Dial. 2021, 11, 147–151. [Google Scholar] [CrossRef]
- Jackson, I.; Addasi, Y.; Ahmed, M.; Ramadan, B.; Kalian, K.; Addasi, N.; Nayfeh, A.; Taylor, J.; Bashir, K.; Krajicek, B. Hypokalemic Periodic Paralysis Precipitated by Thyrotoxicosis and Renal Tubular Acidosis. Case Rep. Endocrinol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Kielty, J.M.; Ryan, P.; Sexton, D.; Kelly, Y.P. Hypokalaemic paralysis as the initial clinical presentation of Sjogren’s syndrome induced distal renal tubular acidosis. BMJ Case Rep. 2021, 14, e241300. [Google Scholar] [CrossRef] [PubMed]
- Louis-Jean, S.; Ching, P.R.; Wallingford, A. Distal Renal Tubular Acidosis in Sjögren’s Syndrome: A Case Report. Cureus 2020. [Google Scholar] [CrossRef]
- Meena, D.S.; Kumar, D.; Bohra, G.K.; Bhambu, S.K. Hypokalemic paralysis as an initial presentation of Sjogren syndrome. Ann. Afr. Med. 2020, 19, 147–149. [Google Scholar] [CrossRef]
- Berrhoute, L.; Kissani, N.; Essaadouni, L.; Zahlane, M.; Louhab, N. Hypokalaemic periodic paralysis revealing primary Sjogren’s syndrome. Presse Med. 2019, 48, 1342–1344. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, N.; Cao, G.; Luo, Y. Type I renal tubular acidosis caused by Sjögren’s syndrome with hypokalemia as the first symptom: A case report. J. Int. Med. Res. 2019, 48. [Google Scholar] [CrossRef]
- Ho, K.; Dokouhaki, P.; McIsaac, M.; Prasad, B. Renal tubular acidosis as the initial presentation of Sjögren’s syndrome. BMJ Case Rep. 2019, 12, e230402. [Google Scholar] [CrossRef]
- Vasquez-Rios, G.; Westrich, D.J.; Philip, I.; Edwards, J.C.; Shieh, S. Distal renal tubular acidosis and severe hypokalemia: A case report and review of the literature. J. Med. Case Rep. 2019, 13, 103. [Google Scholar] [CrossRef]
- Sedhain, A.; Acharya, K.; Sharma, A.; Khan, A.; Adhikari, S. Renal Tubular Acidosis and Hypokalemic Paralysis as a First Presentation of Primary Sjögren’s Syndrome. Case Rep. Nephrol. 2018. [Google Scholar] [CrossRef]
- Shahbaz, A.; Shahid, M.F.; Saleem, H.M.K.; Malik, Z.R.; Sachmechi, I. Hypokalemic Paralysis Secondary to Renal Tubular Acidosis Revealing Underlying Sjogren’s Syndrome. Cureus 2018, 10, e3128. [Google Scholar] [CrossRef]
- Sarma, A. Hypokalemic paralysis due to primary Sjogren syndrome. Indian J. Endocrinol. Metab. 2018, 22, 287–289. [Google Scholar] [CrossRef] [PubMed]
- An, J.; Braam, B. Complete Hypokalemic Quadriparesis as a First Presentation of Sjögren Syndrome. Can. J. Kidney Health Dis. 2018, 5. [Google Scholar] [CrossRef] [PubMed]
- Both, T.; Hoorn, E.J.; Zietse, R.; Van Laar, J.A.M.; Dalm, V.A.S.H.; Brkic, Z.; Versnel, M.A.; Van Hagen, P.M.; Van Daele, P.L.A. Prevalence of distal renal tubular acidosis in primary Sjögren’s syndrome. Rheumatology 2014, 54, 933–939. [Google Scholar] [CrossRef] [PubMed]
- Basok, A.B.; Haviv, Y.-S.; Rogachev, B.; Vorobiov, M. Renal Tubular Acidosis Type I with Prominent Hypokalemia and Nephrolithiasis as a Presentation of Sjögren’s/Systemic Lupus Erythematosus Disease. Case Rep. Nephrol. Dial. 2021, 11, 247–253. [Google Scholar] [CrossRef]
- Martínez-Granados, R.; Delgado-García, G.; Wah-Suárez, M.; Contreras-Garza, N.; Galarza-Delgado, D. Primary Sjögren’s Syndrome First Presenting as Hypokalemic Quadriparesis. Arch. Rheumatol. 2017, 32, 257–259. [Google Scholar] [CrossRef]
- Yuvaraj, A.; Ghosh, S.; Shanmugasundaram, L.; Abraham, G. Sjogren’s with distal renal tubular acidosis complicating pregnancy. J. Obstet. Gynaecol. 2018, 38, 429–431. [Google Scholar] [CrossRef]
- Abdulla, M.C.; Zuhara, S.; Parambil, A.A.K.; Ram, N. Pathological fracture in Sjögren’s syndrome due to distal renal tubular acidosis. Int. J. Rheum. Dis. 2017, 20, 2162–2164. [Google Scholar] [CrossRef]
- Jung, S.W.; Park, E.J.; Kim, J.S.; Lee, T.W.; Ihm, C.G.; Lee, S.H.; Moon, J.-Y.; Kim, Y.G.; Jeong, K.H. Renal Tubular Acidosis in Patients with Primary Sjögren’s Syndrome. Electrolytes Blood Press. 2017, 15, 17–22. [Google Scholar] [CrossRef]
- Queiroz, D.M.; Valenzuela, R.G.V.; Marinho, A.W.G.B.; Dos Santos, S.S.B.; Da Silva, D.O.; Dias, M.D.S.; Cruz, L.D.O. Atypical clinical presentation of distal renal tubular acidosis: A case report registered in Amazonas, Brazil. J. Bras. Nefrol. 2020, 42, 380–383. [Google Scholar] [CrossRef]
- Narayan, R.; Abdulla, M.C.; Alungal, J.; Krishnadas, N. Distal renal tubular acidosis in Sjögren’s syndrome. Saudi J. Kidney Dis. Transpl. 2018, 29, 470–473. [Google Scholar] [CrossRef]
- Paliwal, V.K.; Rai, A.S.; Kumar, S.; Verma, R.; Agarwal, V. Proximal Muscle Weakness with Overlying Hypokalemic Periodic Paralysis in Sjögren Syndrome: Report of 6 Cases. JCR. J. Clin. Rheumatol. 2018, 26, 24–27. [Google Scholar] [CrossRef] [PubMed]
- Schilcher, G.; Schwarz, C.; Hermann, J. Successful treatment of renal tubular acidosis and recurrent secondary struvite kidney stones with rituximab in a patient with primary Sjögren’s syndrome. Rheumatology 2016, 56, 498–500. [Google Scholar] [CrossRef] [PubMed]
- Du, T.; Liu, X.; Ye, W.; Ye, W.; Li, C. Primary Sjögren syndrome-associated acute interstitial nephritis and type 3 renal tubular acidosis in a patient with thin basement membrane nephropathy: A case report. Medicine 2020, 99, e21644. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Dai, S. Premature onset of Sjögren’s syndrome is prone to be complicated with renal tubular acidosis. Int. J. Rheum. Dis. 2020, 23, 1421–1425. [Google Scholar] [CrossRef]
- Elitok, S.; Sidler, M.; Bieringer, M.; Mohebbi, N.; Schneider, W.; Wagner, C.A. A patient with chronic kidney disease, primary biliary cirrhosis and metabolic acidosis. Clin. Kidney J. 2019, 13, 463–467. [Google Scholar] [CrossRef]
- Dong, K.-H.; Fang, Y.-N.; Wen, X.-Y.; Jin, Q.-L. Primary biliary cirrhosis with refractory hypokalemia: A case report. Medicine 2018, 97, e13172. [Google Scholar] [CrossRef]
- Silveira, M.A.D.; Seguro, A.C.; Gomes, S.A.; Vaisbich, M.H.; Andrade, L. Distal Renal Tubular Acidosis Associated with Autoimmune Diseases: Reports of 3 Cases and Review of Mechanisms. Am. J. Case Rep. 2021, 23, e933957. [Google Scholar] [CrossRef] [PubMed]
- Bruns, N.; Finkelberg, I.; Al-Attrach, I.; Hoyer, P.F.; Büscher, R. Unusual Presentation of Polyautoimmunity and Renal Tubular Acidosis in an Adolescent with Hashimoto’s Thyroiditis and Central Pontine Myelinolysis. Front. Endocrinol. 2020, 11, 548877. [Google Scholar] [CrossRef]
- Wang, Y.-B.; Wang, O.; Nie, M.; Jiang, Y.; Li, M.; Xia, W.-B.; Xing, X.-P. Characterization of the clinical and genetic spectrum of autoimmune polyendocrine syndrome type 1 in Chinese case series. Orphanet J. Rare Dis. 2021, 16, 1–8. [Google Scholar] [CrossRef]
- Kim, H.Y.; Kim, S.S.; Bae, E.H.; Ma, S.K.; Kim, S.W. Decreased Renal Expression of H+-ATPase and Pendrin in a Patient with Distal Renal Tubular Acidosis Associated with Sjögren’s Syndrome. Intern. Med. 2015, 54, 2899–2904. [Google Scholar] [CrossRef]
- DeFranco, P.E.; Haragsim, L.; Schmitz, P.G.; Bastani, B. Absence of vacuolar H(+)-ATPase pump in the collecting duct of a patient with hypokalemic distal renal tubular acidosis and Sjögren’s syndrome. J. Am. Soc. Nephrol. 1995, 6, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Devuyst, O.; Lemaire, M.; Mohebbi, N.; Wagner, C.A. Autoantibodies against intercalated cells in Sjögren’s syndrome. Kidney Int. 2009, 76, 229. [Google Scholar] [CrossRef] [PubMed]
- Han, J.S.; Kim, G.-H.; Kim, J.; Jeon, U.S.; Joo, K.W.; Na, K.Y.; Ahn, C.; Kim, S.; Lee, S.E.; Lee, J.S. Secretory-Defect Distal Renal Tubular Acidosis Is Associated with Transporter Defect in H+-ATPase and Anion Exchanger-1. J. Am. Soc. Nephrol. 2002, 13, 1425–1432. [Google Scholar] [CrossRef] [PubMed]
- Cohen, E.P.; Bastani, B.; Cohen, M.R.; Kolner, S.; Henriken, P.; Gluck, S.L. Absence of H+-ATPase in cortical collecting tubules of a patient with Sjogren’s syndrome and distal renal tubular acidosis. JASN 1992, 3, 264–271. [Google Scholar] [CrossRef]
- Walsh, S.; Turner, C.M.; Toye, A.; Wagner, C.; Jaeger, P.; Laing, C.; Unwin, R. Immunohistochemical comparison of a case of inherited distal renal tubular acidosis (with a unique AE1 mutation) with an acquired case secondary to autoimmune disease. Nephrol. Dial. Transpl. 2007, 22, 807–812. [Google Scholar] [CrossRef]
- Xu, C.; Li, Y.; Ying, H.; Pan, Y.; Shi, R.; Lin, X.; Gao, L. Presence of serum autoantibodies to vacuolar H+ -ATPase in patients with renal tubular acidosis. Int. J. Rheum. Dis. 2019, 22, 805–814. [Google Scholar] [CrossRef]
- Takemoto, F.; Hoshino, J.; Sawa, N.; Tamura, Y.; Tagami, T.; Yokota, M.; Katori, H.; Yokoyama, K.; Ubara, Y.; Hara, S.; et al. Autoantibodies against carbonic anhydrase II are increased in renal tubular acidosis associated with Sjögren syndrome. Am. J. Med. 2005, 118, 181–184. [Google Scholar] [CrossRef]
- Botrè, F.; Botrè, C.; Podestà, E.; Podda, M.; Invernizzi, P. Effect of Anti-Carbonic Anhydrase Antibodies on Carbonic Anhydrases I and II. Clin. Chem. 2003, 49, 1221–1223. [Google Scholar] [CrossRef]
- Murdaca, G.; Colombo, B.M.; Puppo, F. The role of Th17 lymphocytes in the autoimmune and chronic inflammatory diseases. Intern. Emerg. Med. 2011, 6, 487–495. [Google Scholar] [CrossRef]
- Murdaca, G.; Greco, M.; Tonacci, A.; Negrini, S.; Borro, M.; Puppo, F.; Gangemi, S. IL-33/IL-31 Axis in Immune-Mediated and Allergic Diseases. Int. J. Mol. Sci. 2019, 20, 5856. [Google Scholar] [CrossRef]
- Goules, A.; Geetha, D.; Arend, L.J.; Baer, A.N. Renal involvement in primary Sjögren’s syndrome: Natural history and treatment outcome. Clin. Exp. Rheumatol. 2019, 37 (Suppl. S118), 123–132. [Google Scholar] [PubMed]
- Evans, R.D.R.; Laing, C.M.; Ciurtin, C.; Walsh, S.B. Tubulointerstitial nephritis in primary Sjögren syndrome: Clinical manifestations and response to treatment. BMC Musculoskelet. Disord. 2016, 17, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Jasiek, M.; Karras, A.; Le Guern, V.; Krastinova, E.; Mesbah, R.; Faguer, S.; Jourde-Chiche, N.; Fauchais, A.-L.; Chiche, L.; Dernis, E.; et al. A multicentre study of 95 biopsy-proven cases of renal disease in primary Sjögren’s syndrome. Rheumatology 2016, 56, 362–370. [Google Scholar] [CrossRef]
- Shen, Y.; Xie, J.; Lin, L.; Li, X.; Pan, X.; Ren, H.; Chen, N. Combination Cyclophosphamide/Glucocorticoids Provide Better Tolerability and Outcomes versus Glucocorticoids Alone in Patients with Sjogren’s Associated Chronic Interstitial Nephritis. Am. J. Nephrol. 2017, 46, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Gadour, E.; Mohamed, T.; Hassan, Z.; Hassan, A. Meta-Analysis and Systematic Review of Primary Renal Tubular Acidosis in Patients with Autoimmune Hepatitis and Alcoholic Hepatitis. Cureus 2021, 13, e15287. [Google Scholar] [CrossRef]
- Rafael-Vidal, C.; Perez, S.G.; Altabás, I.; Garcia, S.; Pego-Reigosa, J.M. Blocking IL-17: A Promising Strategy in the Treatment of Systemic Rheumatic Diseases. Int. J. Mol. Sci. 2020, 21, 7100. [Google Scholar] [CrossRef]
Nr. | Author–Year of Publication | Gender | Age [Years] | Diagnosis | Presentation | Blood pH | Serum HCO3− [mmol/L] | Serum K+ [mmol/L] | Creatinine [mg/dL]; eGFR [mL/min/1.73 m2] | Urine pH | Kidney Biopsy | Treatment | Outcome |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Abdulla et al.–2017 [27] | F | 57 | Sjögren syndrome | SICCA, Fracture, hypocalcemia, anemia (9.8 g/dL) | NS | 13 | 2.8 | 1.1; 56 | 6.5 | - | K+, HCO3− supplements; HCQ | K+ correction |
2 | Ammad Ud Din et al.–2020 [6] | F | 44 | SLE | Hypokalemic paralysis, SICCA, proteinuria | 7.21 | 10 | 1.6 | 0.8; 90 | 6.5 | TIN | K+, HCO3− supplements; Prednisone 20 → 40 mg/day, HCQ | K+ correction; Proteinuria remission |
3 | Basok et al.–2021 [24] | F | 32 | Sjögren syndrome + SLE | Hypokalemic paralysis with respiratory failure, SICCA, hypocalcemia, lithiasis, nephrocalcinosis, miscarriages | 7.26 | 8.1 | 1.6 | 1.04; 71 | 6.5 | - | K+, HCO3− supplements; HCQ, prednisone, AZA | No improvement of acidosis |
4 | Berrhoute et al.–2019 [15] | F | 30 | Sjögren syndrome | Hypokalemic paralysis, hypocalcemia, proteinuria (1.57 g/24 h) | NS | 20 | 1.5 | 1.43; 49 | 6.5 | TIN | K+, HCO3− supplements; HCQ, CS | NS |
5 | Jackson et al.–2021 [11] | F | 38 | Sjögren syndrome | Hypokalemic paralysis, SICCA, hyperthyroidism (Graves disease) | 7.25 | NS | 1.6 | 0.92; 79 | 8 | - | K+, HCO3− supplements; HCQ | Acidosis and K+ correction (no need for supplements) |
6 | Jung et al.–2017 [28] | F | 60 | Sjögren syndrome | Fracture, associated Fanconi syndrome | 7.3 | 17.2 | 2.7 | 1.6; 35 | 7 | TIN | K+, HCO3− supplements; HCQ | Acidosis and K+ correction; creatinine increase |
7 | Jung et al.–2017 [28] | F | 19 | Sjögren syndrome | Muscular weakness, hypocalcemia | 7.37 | 7.5 | 1.7 | 0.7; 126 | 7.5 | - | K+, HCO3− supplements; HCQ, CS | Acidosis and K+ correction (no need for supplements) |
8 | Ho et al.–2019 [17] | F | 44 | Sjögren syndrome | SICCA | 7.29 | 16 | 2.8 | 1.31; 50 | 6.5 | Severe TIN | K+, HCO3− supplements; MMF 750 mg × 3/day, prednisone 1 mg/kg | Initial increase in creatinine (1.95 mg/dl), with subsequent decrease after CS and MMF initiation; long term need for supplements. |
9 | Louis-Jean et al.–2020 [13] | F | 19 | Sjögren syndrome | Hypokalemic paralysis, SICCA, proteinuria | 7.21 | 17 | 2.1 | NS | 7 | - | K+, HCO3− supplements; | Repeated episodes of hypokalemia and paralysis |
10 | Martinez-Granados et al.–2017 [25] | F | 38 | Sjögren syndrome | Hypokalemic paralysis, respiratory failure, nephrocalcinosis | 7.12 | 12 | 1.9 | In normal range | 8 | - | K+, HCO3− supplements; HCQ | NS |
11 | Mbengue et al.–2021 [10] | F | 20 | Sjögren syndrome | Hypokalemic paralysis (tetraparesis), nephrocalcinosis | NS | 15.69 | 1.4 | 0.7; 125 | 7.5 | - | K+, HCO3− supplements; HCQ, CS | Acidosis and K+ correction |
12 | Monteiro Queiroz et al.–2020 [29] | F | 24 | Sjögren syndrome | Hypokalemic paralysis, nephrocalcinosis, lithiasis with hydronephrosis, purpura, SICCA | 7.16 | 9.8 | 1.4 | 1.34; 55 | 7.5 | - | K+ citrate; prednisone 40 mg/day | K+ correction |
13 | Narayan et al.–2018 [30] | F | 25 | Sjögren syndrome | Bleeding diathesis, severe thrombocytopenia (10,000/µL), severe anemia (6.8 g/dL) | NS | NS (nAGMA) | 2.4 | 1; 78 | 7.5 | - | K+ supplements; HCQ, CS | Thrombocytopenia and K+ correction |
14 | Narayan et al.–2018 [30] | F | 28 | Sjögren syndrome | Thrombocytopenia, anemia | NS | NS (nAGMA) | 2.6 | In normal range | 7 | - | K+ supplements; HCQ, CS | Thrombocytopenia and K+ correction |
15 | Narayan et al.–2018 [30] | F | 30 | Sjögren syndrome | Hypokalemic paralysis (tetraparesis), SICCA | NS | NS (nAGMA) | 1.9 | In normal range | 6.5 | - | K+, HCO3− supplements; prednisone | Muscular weakness improvement |
16 | Paliwal et al.–2018 [31] | M | 29 | Sjögren syndrome + SLE | Hypokalemic paralysis, SICCA, malar rash, proteinuria (2.1 g/24 h), lithiasis, fever | 7.28 | 8.3 | 1.8 | NS | 7.5 | TIN | K+, HCO3− and Ca2+ supplements; prednisone | Improvement of proteinuria |
17 | Paliwal et al.–2018 [31] | F | 16 | Sjögren syndrome | Hypokalemic paralysis, nephrocalcinosis, lithiasis, SICCA | 7.26 | 12 | 2.1 | NS | 7 | - | K+, HCO3− and Ca2+ supplements; | K+ correction |
18 | Paliwal et al.–2018 [31] | M | 25 | Sjögren syndrome | Hypokalemic paralysis, SICCA | 7.35 | 22 | 2.53 | NS | 6.5 | - | K+, HCO3− and Ca2+ supplements; | Acidosis and K+ value improvement |
19 | Paliwal et al.–2018 [31] | F | 27 | Sjögren syndrome | Hypokalemic paralysis, SICCA, proteinuria (0.64 g/24 h) | 7.24 | 10.2 | 2.7 | NS | 6 | - | K+, HCO3− and Ca2+ supplements; | Acidosis improvement |
20 | Paliwal et al.–2018 [31] | F | 20 | Sjögren syndrome + SLE | Hypokalemic paralysis, nephrocalcinosis, SICCA, proteinuria (1.44 g/24 h) | 7.15 | 13.1 | 1.8 | NS | 7 | - | K+, HCO3− supplements; | Acidosis improvement |
21 | Paliwal et al.–2018 [31] | F | 20 | Sjögren syndrome | Hypokalemic paralysis (tetraparesis), fractures, SICCA, proteinuria (0.641 g/24 h) | 7.22 | 11 | 2.9 | NS | 8 | - | K+, HCO3− and Ca2+ supplements; | Muscular weakness improvement |
22 | Schilcher et al.–2017 [32] | F | 51 | Sjögren syndrome | Hypokalemic paralysis, lithiasis with hydronephrosis, urinary infection, SICCA, proteinuria (0.48 g/24 h) | 7.21 | 10.4 | 1.6 | NS; 46 | 8 | - | Initial treatment: K+ supplements, prednisone 25 mg/day, AZA 2.5 mg/kg/day, HCQ Outcome: no amelioration of dRTA Treatment after 9 months: Replacement of AZA with RTX (1 g–day 0 and day 14; followed by courses administered every 6 months) Outcome: eGFR improvement to 71 mL/min/1.73 m2 and dRTA correction, with no need for K+ supplements anymore | |
23 | Shahbaz et al.–2018 [20] | F | 28 | Sjögren syndrome | Hypokalemic paralysis, respiratory failure | 7.04 | 12 | 1.5 | NS | 6.5 | - | K+ supplements, CS | Muscular weakness improvement and K+ correction |
24 | Tian Du et al.–2020 [33] | F | 37 | Sjögren syndrome | Hypokalemic paralysis, Fanconi syndrome, proteinuria 0.69 g/24 h | 7.36 | 20.7 | 1.7 | 1.3; 53 | 7.5 | TIN | Initial treatment: K+ supplements, prednisone 30 mg/day, MMF 1.5 g/day Outcome: no amelioration of creatinine Treatment change: increasing prednisone dose to 50 mg/day, adding CYC 100 mg/day Outcome: amelioration of creatinine (0.9 mg/dl), K+ correction | |
25 | Vasquez-Rios et al.–2019 [18] | F | 57 | Sjögren syndrome | Hypokalemic paralysis, SICCA | 7.29 | 16 | 2.5 | 1.3; 46 | 7 | TIN | K+, HCO3− supplements; Amiloride, HCQ, AZA 50–100 mg, Prednisone | Persistent hypokalemia and acidosis, despite receiving supplements, with severe relapse when supplements are withdrawn |
26 | Wang et al.–2020 [34] | F | 38 | Sjögren syndrome | Hypokalemic paralysis, hypocalcemia, fractures, purpura | 7.33 | 21.7 | 2.8 | 0.62; 115 | 7.5 | - | K+ and Ca2+ supplements; Prednisone 1 mg/kg/day, CYC 0.5 g/m2 IV monthly | NS |
27 | Wang et al.–2020 [34] | F | 36 | Sjögren syndrome | Hypokalemic paralysis (since 16 years old), SICCA, fractures, purpura, anemia, proteinuria | 7.19 | 15.2 | 2.9 | 2.56; 23 | 7 | - | NS | NS |
28 | Wang et al.–2020 [34] | F | 25 | Sjögren syndrome | Hypokalemic paralysis (since 16 years old), SICCA, anemia, thrombocytopenia, hypocalcemia | 7.03 | 9.9 | 2.5 | 1.57; | 6.5 | - | NS | NS |
29 | Wang et al.–2020 [34] | F | 28 | Sjögren syndrome | Fatigue, SICCA | 7.13 | 15.6 | 2.9 | 1.14; 66 | 7.5 | - | NS | NS |
30 | Yuvaraj et al.–2018 [26] | F | 33 | Sjögren syndrome | Hypokalemic paralysis (onset after first pregnancy), PREGNANT, SICCA, lithiasis, hypocalcemia, nephrocalcinosis | NS | 14 | 2.4 | 0.55; 124 | 8 | - | K+, HCO3− supplements | Preterm labor (36 weeks), fetal bradyarrhythmia, fetal growth retardation |
31 | Zhou et al.–2019 [16] | F | 29 | Sjögren syndrome | Hypokalemic paralysis, SICCA, anemia, STILLBIRTH, lithiasis | 7.28 | 10.6 | 2.1 | 1.34; 54 | 6 | - | K+ supplements | NS |
32 | Elitok et al.–2020 [35] | F | 60 | Primary biliary cirrhosis | Progressive chronic kidney disease, leukocyturia | 7.23 | 11.1 | 3.3 | 1.93; 28 | 7 | TIN | NS | NS |
33 | Dong et al.–2018 [36] | F | 32 | Primary biliary cirrhosis | Biliary lithiasis, nephrocalcinosis, fatigue | 7.34 | 17.7 | 2.42 | 0.79; 99 | 7.5 | - | K+ supplements | NS |
34 | Duarte Silveira et al.–2022 [37] | F | 29 | Autoimmune hepatitis | Renal lithiasis | 7.30 | 17 | 3.4 | 1.03; 74 | 7 | - | K+ supplements | NS |
35 | Duarte Silveira et al.–2022 [37] | F | 67 | Rheumatoid arthristis | Peripheral arterial disease, hypomagnesemia | 7.38 | 15.8 | 3.1 | 0.51; 100 | 6.5 | - | K+ supplements | NS |
36 | Duarte Silveira et al.–2022 [37] | F | 30 | Sjögren syndrome | Recurrent arthritis | 7.36 | 17 | 3.3 | 0.70; 117 | 7 | - | K+ supplements | NS |
37 | Bruns et al.–2020 [38] | F | 17 | Sjögren syndrome | Recurrent muscular weakness, Hashimoto’s thyroiditis, celiac disease, central pontine myelinolysis, proteinuria | NS | 13.3 | 1.8 | NS | 7 | TIN | K+ supplements; Prednisone 60 mg/day, tapered in 2 months | Remission of proteinuria; long term need for supplements |
A. Treatment and Outcome of Patients with TIN Associated with Sjögren’s Syndrome | ||||
---|---|---|---|---|
Author | No. of Patients | Presentation (N) | Immunosuppressive Treatment (N; %) | Outcome (N; % of Treatment Subcategory) |
Maripuri et al.–2009 [1] | 19 | PRF (1) AKI (4) CKD (12) ESRD (2) | Corticosteroids (9–47.3%) | Stable renal function (3; 33.3%) ↑ eGFR with > 25% (4; 44.5%) ESRD (1; 11.1%) NS (1; 11.1%) |
Corticosteroids + other immunosuppressive therapy (9–47.3%): HCQ/HCQ, RTX/RTX/PE/CYC/CYC, MMF | Stable renal function (3; 33.3%) ↑ eGFR with > 25% (3; 33.3%) ↓ eGFR with > 25% (2; 22.3%) ESRD (1; 11.1%) | |||
None (1) | Stable renal function | |||
Kidder et al.–2015 [2] | 15 | PRF (1) AKI (8) CKD (6) | Corticosteroids (7–46.6%) | Stable renal function (2; 28.57%) ↑ eGFR with > 25% (2; 28.57%) ESRD (3; 48.86%) |
Corticosteroids + other immunosuppressive therapy (3–20%): AZA/MMF/HCQ | Stable renal function (1; 33.34%) ↑ eGFR with > 25% (2; 66.66%) | |||
None (5–33.34%) | ↑ eGFR with > 25% (3; 60%) ↓ eGFR with > 25% (1; 20%) ESRD (1; 20%) | |||
Goules et al.–2019 [51] | 8 | PRF (1) CKD (6) | Corticosteroids + other immunosuppressive therapy (6–75%): +MMF/AZA, MMF, RTX/HCQ, MMF, MTX/MTX, infliximab, adalimumab, certolizumab | Stable renal function (3; 37.5%) ↑ eGFR with > 25% (2; 25%) ↓ eGFR with > 25% (3; 37.5%) |
MMF (2–25%) | ||||
Jasiek et al.–2016 [53] | 64 | NS | Corticosteroids | ↑ eGFR from 39.8 mL/min/1.73 m2 to 49.3 mL/min/1.73 m2 after 6 months of follow-up (p < 0.001) *, **: no significant difference compared to corticosteroids administered alone regarding the outcome (↑ eGFR with at least 20%); p = 0.9, respectively p = 0.5 |
Corticosteroids + other immunosuppressive therapy (*) | ||||
RTX (**) | ||||
Shen et al.–2017 [54] | 70 | NS | Corticosteroids (56–80%) | ↑ eGFR with 21.35 ± 19.63 mL/min/1.73 m2 vs. 2.72 ± 19.11 mL/min/1.73 m2 after 12 months of follow-up (p < 0.001) in the group receiving CYC |
Corticosteroids + CYC (14–20%) | ||||
B. Treatment and outcome of patients with DRTA associated with Sjögren’s syndrome and TIN | ||||
Maripuri et al.–2009 [1] | 7 | CKD (2), AKI (1), NF (1) | Corticosteroids (4; 57.14%) | Stable renal function (1; 25%), ↑ eGFR with > 25% (2; 50%) NS (1; 25%) |
CKD (1) | Corticosteroids + RTX (1; 14.28%) | ↑ eGFR with > 25% | ||
CKD (1) | Corticosteroids + HCQ (1; 14.28%) | ↓ eGFR with > 25% | ||
CKD (1) | PE (1; 14.28%) | Stable renal function | ||
Evans et al.–2016 [52] | 8 | NS | MMF + HCQ (1; 12.5%) | ↑ eGFR |
Corticosteroids + MMF (3; 37.5%) | Stable renal function (1; 33.33%), ↑ eGFR (2; 66.67%) | |||
Corticosteroids + MMF + HCQ (3; 37.5%) | Stable renal function (1; 33.33%), ↑ eGFR (1; 33.33%), ↓ eGFR (1; 33.33%) | |||
AZA (1; 12.5%) | Stable renal function | |||
Kidder et al.–2015 [2] | 2 | AKI (1) | Corticosteroids | ESRD |
CKD (1) | None | ↓ eGFR with > 25% | ||
Goules et al.–2019 [51] | 1 | PRF | Corticosteroids + MMF + HCQ + MTX | ↓ eGFR with > 25% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ungureanu, O.; Ismail, G. Distal Renal Tubular Acidosis in Patients with Autoimmune Diseases—An Update on Pathogenesis, Clinical Presentation and Therapeutic Strategies. Biomedicines 2022, 10, 2131. https://doi.org/10.3390/biomedicines10092131
Ungureanu O, Ismail G. Distal Renal Tubular Acidosis in Patients with Autoimmune Diseases—An Update on Pathogenesis, Clinical Presentation and Therapeutic Strategies. Biomedicines. 2022; 10(9):2131. https://doi.org/10.3390/biomedicines10092131
Chicago/Turabian StyleUngureanu, Oana, and Gener Ismail. 2022. "Distal Renal Tubular Acidosis in Patients with Autoimmune Diseases—An Update on Pathogenesis, Clinical Presentation and Therapeutic Strategies" Biomedicines 10, no. 9: 2131. https://doi.org/10.3390/biomedicines10092131
APA StyleUngureanu, O., & Ismail, G. (2022). Distal Renal Tubular Acidosis in Patients with Autoimmune Diseases—An Update on Pathogenesis, Clinical Presentation and Therapeutic Strategies. Biomedicines, 10(9), 2131. https://doi.org/10.3390/biomedicines10092131