Colostrum Proteins in Protection against Therapy-Induced Injuries in Cancer Chemo- and Radiotherapy: A Comprehensive Review
Abstract
:1. Introduction
2. Bovine Colostrum and Its Bioactive Components
3. Bovine Colostrum as Supportive Care in Anticancer Chemotherapy
3.1. Chemotherapy in In Vitro and Animal Models
3.2. Chemotherapy in Clinic
4. Bovine Colostrum as Supportive Care in Radiotherapy
4.1. Radiotherapy in In Vitro and Animal Models
4.2. Radiotherapy in Clinic
Model | Application of Colostrums Proteins | Therapeutic Laboratory or Clinical Effects | Reference |
---|---|---|---|
Chemotherapy in In Vitro and Animal Models | |||
Mice treated with sublethal dose of CP | bLF (1 mg/mouse) per os in 7 doses | Reconstitution of DTH, partial restoration of ConA-induced splenocyte proliferation and leukocytosis, splenocyte T cell and peripheral macrophage content | Artym, J. et al. (2003) [108] |
Mice treated with sublethal dose of CP | 0.5% bLF in drinking water | Partial reconstitution of HIR to SRBC | Artym, J. et al. (2003) [109] |
Mice treated with sublethal dose of CP | 0.5% bLF in drinking water | Increase of CD3+, CD4+ and Ig+ cell level in the spleen and proliferative response of splenocytes to ConA and PWM, normalization of peripheral blood cell type composition | Artym, J. et al. (2004) [110] |
Mice treated with MTX 200 mg/kg b.w. | 0.5% bLF in drinking water | Complete restoration of DTH response to OVA and secondary HIR to SRBC | Artym, J. et al. (2004) [111] |
Mice treated with CP and busulfan followed by BM cell transplant | 0.5% bLF in drinking water | Restoration of HIR to SRBC and DTH to OVA, enhanced lympho-, erythro- and myelopoiesis | Artym, J. et al. (2005) [112] |
CP-induced damage in stomach and intestine in mice | Orally administered low-dose recombinant hLF in a silk sericin hydrogel | Protection of splenic follicles, expression of immunoregulatory mediators, normalization of intestinal flora | Xu, S. et al. (2021) [114] |
Mice injected with 4T1 tumor mammary cells and treated with tamoxifen | LF in the diet + tamoxifen 2 weeks after tumor injection | 4-day delay in tumor development in the combined treatment, lower reduction in body weight and cancer cachexia, serum and intestinal IL-18 and IFN-γ, appearance of infiltrating T, B and NK cells in the tumors | Sun, X. et al. (2012) [115] |
Weaned pigs receiving DOX | BC 3× daily with DOX | Partial prevention of side-effects: decreased food intake, weight gain, diarrhea, vomiting, damage of small intestine, elevated TNF-α, chlorine secretion and sugar uptake | Martin, J. et al. (2014) [116] |
Piglets given a single dose of DOX | The diet enriched with BC and milk and whey proteins | Among side effects only decreased diarrhea | Shen, R.L. et al. (2016) [117] |
5-day old piglets treated with doxorubicin for 5 days | BC versus artificial formula | Decreased intestinal permeability, longer intestinal villi, higher activity of brush border enzymes, lower intestinal IL-8 | Shen, R.L. et al. (2016) [118] |
3-day old piglets given busulfan + CP as a myeloablative procedure | BC versus artificial diet | Less vomiting, higher glucose absorption and brush border enzyme activity, but lower concentration of tissue cytokines, liver enzymes and bilirubin, richer content of Lactobacillus | Pontoppidian, P.E.L. et al. (2015) [119] |
Rats treated with MTX, in vitro tests | bLF (1 g/kg b.w.) orally | Alleviation of drug-induced damage in the intestine, inhibition intestinal epithelial cell proliferation and GLP-2-mediated proliferation of Caco-2 epithelial cells in vitro | Van’t Land, B. et al. (2004) [120] |
Female mice treated with CP | bLF orally (2 % bLF in diet) | Prevention of down-regulation of the ovulation-related Adamts1 gene and partial recovery of follicle depletion | Horiuchi, Y. et al. (2009) [121] |
Rats treated with cisplatin | bLF orally (300 mg/kg b.w.) or i.v. (3, 10 and 30 mg/kg b.w.) | Improvement of renal function, reduction of renal tubular damage, increase in urine volume | Kimoto, Y. et al. (2013) [122] |
Mice with prostate cancer; in vitro tests in prostate cancer cells | Additive effect of conjugates containing DOX and bLF | Better survival rates, a marked reduction in tumor growth and DOX-mediated general toxicity, neurotoxicity and cardiotoxicity, increase in serum levels of TNF-α, IFN-γ, CCL4 and CCL17; in in vitro tests improving internalization and nuclear retention of DOX in cancer cells along with 4× increase in DOX-mediated cytotoxicity, overcoming multi-drug resistance | Shankaranarayanan, J.S. et al. (2016) [127] |
Rats with experimental glioma; in vitro tests in glioma C6 cells | Additive effect of application of biodegradable polymersomes containing DOX, tetrandine and LF | Smaller tumor volumes and longer survival of rats; in in vitro tests highest cytotoxicity against glioma C6 cells and uptake index by the cells | Pang, Z. et al. (2010) [126] |
Mice with HepG2 xenografts; in vitro test in hepatocarcinoma HepG2 cells | Additive effect of application of PEG-modified liposomes containing DOX and LF | Significant inhibition of tumor growth; in in vitro tests improving DOX cellular uptake, associated to the presence of asialoglycoprotein receptors on cancer cell membrane | Wei, M. et al. (2015) [129] |
Mice with metastatic breast cancer; in vitro tests in breast cancer cells | Additive effect of application of nanoparticles containing DOX, mesoporous maghemite and LF | Reduction of tumor growth, increase in targeted drug delivery, antimetastatic effect, increase in body weight; in in vitro tests reduction of cancer cell proliferation | Sharifi, M. et al. (2020) [128] |
In vitro tests in retinoblastoma Y79 cells | Additive effect of application of nanoparticles containing ETP, CTP and LF | Increase in drug uptake, retention, and cytotoxicity of tumor cells | Narayana, R.V.L. et al. (2021) [125] |
Chemotherapy in clinic | |||
Open-label, prospective clinical trial; advanced cancer patients with anemia associated with chemotherapy; n = 148 | Oral bLF given daily (200 mg) for 12 weeks and s.c. administration of rHuEPO versus ferric gluconate i.v. and s.c. administration of rHuEPO as control | Significant hemoglobin increase in both arms, ferritin levels decreased in LF group but increased in the ferric gluconate, control group | Maccio, A. et al. (2010) [130] |
A double-blind parallel RCT; colorectal cancer patients treated with 5-FU and leucovirin calcium; n = 30 | Oral bLF given daily (250 mg) for 3 months versus chemotherapy and calcium leucovorin only as control | Improvement in serum LF level, GST, IFN-γ, tumor marker CEA, blood cells (WBC and RBC) count, renal and hepatic functions, less severe mucositis, lesser rate of infection recurrence and less incidence of fever than in control chemotherapy-treated only group | Moastafa, T.M. et al. (2014) [131] |
Non-randomized clinical study; adolescents and adults with AML after chemotherapy; n = 14 | Oral hLF isolated from milk given daily p.o., 4 (800 mg) for 10 days of neutropenia versus patients no LF-treated as control | Reduction in duration of the first infection, reduction of severity of infections as judged from the course of fever, reduction of incidence of on the whole and Gram”-“ bacteriemia in particular, reduction in consumption of antibiotics | Trumpler, U. et al. (1989) [133] |
Non-randomized clinical study; patients with malignant carcinoma, scheduled to chemo- and chemoradiotherapy; n = 150 | hLF isolated from milk, i.v. (Laprot®) and p.o. (Imlac®) for 3 days versus patients not treated with LF as control | Preventive Laprot® and Imlac® caused 20% decrease of the number of the total and local toxic reactions after chemoradiotherapy and reduced their intensity, positive changes in blood biochemical indices (bilirubin level, aminotransferase activity), antioxidizing status and Ne activity correlated to the clinical state of patients, decrease of the period of recovery of patients from toxic reactions in oropharyngeal zone and esophagus versus control patients | Nemtsova, E. et al. (1998) [135] |
Non-randomized clinical study; patients with pyoseptic postoperative complications, also after removal of solid tumors; n = 159 | hLF isolated from milk (Laprot®) i.v.; daily dose 150–500 mg plus standard therapy; local: solution 0.05–0.1%, after surgical cleansing of purulent focus, plus standard therapy | Systemic LF: Stimulation of antioxidant defense (increase of serum Cp, LF and catalase levels), decrease intensity of oxidative process (decreased serum MDA level), normalized the lymphocytic component of immunity (increased levels of lymphocytes in the peripheral blood), normalization hematological (Hb, erytrocytes and leukocytes levels) and biochemical (ALT, AST, creatinine, CRP) parameters in blood, resolution of polyorgan, primarily hepatic failure. Local LF: Regression of local proinflammatory processes | Chissov, V.I. et al. (2008) [134] |
Multicenter, blinded, placebo-controlled phase IIb RCT; adult cancer patients undergoing chemotherapy; n = 197 | Oral medicinal food product ReCharge® ice cream formulation with 2.5% bLF and skim milk powder; daily dose 100 g for 2 weeks before and 6 weeks after starting chemotherapy | Lower numbers of days with CID from patients daily diary, lower proportion of patients reporting CID at the clinic visit, neutropenia and related side effects diagnosed in a lower proportion of patients | Perez, D. et al. (2015) [136] |
2-center, double-blind RCT; children with ALL and gastrointestinal toxicity during induction chemotherapy; n = 62 | Oral BC; daily dose 0.5–1 g/kg b.w. for 4 weeks of induction chemotherapy | Lower symptoms of oral mucositis | Rathe, M. et al. (2020) [137] |
Pilot clinical study; cancer patients with TSA associated with chemotherapy; n = 26 | Daily oral bLF (750 mg) for 30 days | Mitigation of TSA based on a questionnaire survey | Lesser, G.J. et al. (2022) [140] |
Open-label clinical study; cancer patients with TSA associated with chemotherapy; n = 19 | Daily oral bLF (750 mg) for 30 days | Lower TSA scores, decreased salivary iron concentration, increased salivary α-amylase and Zn-α-2-GP, Ig heavy chains, annexin A1, proteinase inhibitor and SPLUNC2 | Wang, A. et al. (2018) [141] |
Open-label randomized clinical study; children with ALL and grade 1 or 2 mucositis during chemotherapy; n = 64 | Bioxtra® toothpaste containing salivary enzymes, proteins and colostrums to brush teeth at least twice a day versus fluoride toothpaste without menthol as control | Some oral health improvement based on the Health Impact Profile questionnaire | Bardellini, E. et al. (2016) [142] |
Open-label non-randomized clinical study; patients (suffering from mammary, pulmonary, hepatic or prostatic carcinoma or osteoporosis) with osteonecrosis of the jaw at stage 2 due to i.v. bisphosphonates therapy; n = 32 | Sterile greasy gauzes soaked with bLf applied on the wounds; orosoluble tablets (GENGI-FOR®) containing 50 mg of bLf until complete wound healing | The positive results in healing wounds, following the surgical treatment of the osteonecrosis site: significantly shorter time of wound closure compared with classical medical treatment | Calvani, F. et al. (2018) [144] |
Radiotherapy in in vitro and animal models | |||
Rats gamma-irradiated with 8 Gr | BC-derived polypeptide s.c. (1 mg/kg b.w.) 1 day before and 4 days after irradiation, versus control | After 90 days production of dienes and dieneketones and cytochrome-c-oxidase in the liver in normal range, that suggest enhanced antioxidative capacity | Mirkhamidova, P. et al. (1993) [147] |
Mice gamma-irradiated with 7.5 Gy | hLF i.p. (4 mg/mouse), immediately and 24 h after irradiation versus control mice | The animal survival increased from 28% to 78%, the mean life expectancy increased from 16 to 26 days, positive effects on body weight loss, blood parameters and histology of the spleen | Kopaeva, M.Y. et al. (2022) [148] |
Mice sublethally X-ray irradiated with 7 Gy | Diet containing 0.1% bLF, 7 days before and 30 days after irradiation | Longer survival time and increased body weight, quicker recovery of leukocyte, erythrocyte and platelet levels, enhanced antioxidant capacity in liver and reduced DNA damage in lymphocytes | Feng, L. et al. (2018) [149] |
Mice X-ray irradiated with 9 Gy; ex vivo mouse submandibular salivary gland cells culture | bLF i.p. (4 mg/mouse), immediately after irradiation; bLF (0.1–1 mg/mL) in culture | Improvement of acinar cell structure and function in irradated mice; stimulation of cell proliferation and cyclin D1-mediated cycle progression regulated via the ERK1/2 and AKT signal transduction pathways | Sakai, M. et al. (2017) [152] |
Mice X-ray irradiated with 6.8 Gy; in vitro hydroxyl radical-scavending test | Diet containing 0.1% bLF from 30 days before irradiation; bLF i.p. (4 mg/mouse), immediately after irradiation; 1% bLF w/w solution in in vitro tests | Improved the survival time and body weight; in in vitro tests hydroxyl radical-scavending activity | Nishimura, Y. et al. (2014) [150] |
Mice X-ray irradiated with 8 Gy | bLF i.p. (2, 4 or 6 mg/mouse), 4 h prior and 1, 2 and 3 days after irradiation | Improved the survival time and histology of small intestinal epithelium (increased villus length and its ratio to crypt depth), decreased serum levels of IL-6 and TNF-α, reduced the radical-induced expression of IKKα/β and NF-κB activity in intestinal tissues | Wei, Y.L. et al. 2019 [151] |
In vitro: Caco-2 human colon cancer cells irradiated with UV light | Bovine lactoferricin(4–14) peptide in cell culture | Decrease of Bax protein expression and cyclin E involved in G1/S transition, lower γ-H2Ax expression, demonstrating decreased cell death and more efficient DNA repair in UV-damaged cells | Freiburghaus, C. et al. (2012) [153] |
UV-irradiated resident skin cells in culture | Colostrum exosomes in cell culture | Prevention of ROS formation in keratinocytes, lower production of melanin in melanocytes, suppressed expression of matrix metalloproteins in fibroblasts, enhanced collagen production | Han, G. et al. (2022) [155] |
Radiotherapy in clinic | |||
Clinical study; adult breast and prostate cancer patients undergoing radiation therapy with moderate-to-mild fatigue; n = 60 | Orally nutraceutical Prother® (mixture of whey proteins, with an high content of cysteine, albumin and LF); daily dose 20 mg for first 10 days of radiation and 10 mg for the following 20 days | Effectiveness in all patients as assessed by the fatigue questionnaire | Barbarino, R. et al. 2013 [156] |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Farber, S.; Diamond, L.K. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. N. Engl. J. Med. 1948, 238, 787–793. [Google Scholar] [CrossRef] [PubMed]
- Galmarini, D.; Galmarini, C.M.; Galmarini, F.C. Cancer chemotherapy: A critical analysis of its 60 years of history. Crit. Rev. Oncol. Hematol. 2012, 84, 181–199. [Google Scholar] [CrossRef] [PubMed]
- Morrison, W.B. Cancer chemotherapy: An annotated history. J. Vet. Intern. Med. 2010, 24, 1249–1262. [Google Scholar] [CrossRef] [PubMed]
- Chandra, R.A.; Keane, F.K.; Voncken, F.E.M.; Thomas, C.R., Jr. Contemporary radiotherapy: Present and future. Lancet 2021, 398, 171–184. [Google Scholar] [CrossRef] [PubMed]
- Connell, P.P.; Hellman, S. Advances in radiotherapy and implications for the next century: A historical perspective. Cancer Res. 2009, 69, 383–392. [Google Scholar] [CrossRef] [Green Version]
- Arslan, A.; Kaplan, M.; Duman, H.; Bayraktar, A.; Ertürk, M.; Henrick, B.M.; Frese, S.A.; Karav, S. Bovine Colostrum and Its Potential for Human Health and Nutrition. Front. Nutr. 2021, 8, 651721. [Google Scholar] [CrossRef]
- Mehra, R.; Singh, R.; Nayan, V.; Buttar, H.S.; Kumar, N.; Kumar, S.; Bhardwaj, A.; Kaushik, R.; Kumar, H. Nutritional attributes of bovine colostrum components in human health and disease: A comprehensive review. Food Biosci. 2021, 40, 100907. [Google Scholar] [CrossRef]
- Mehra, R.; Garhwal, R.; Sangwan, K.; Guiné, R.P.F.; Lemos, E.T.; Buttar, H.S.; Visen, P.K.S.; Kumar, N.; Bhardwaj, A.; Kumar, H. Insights into the research trends on bovine colostrum: Beneficial health perspectives with special reference to manufacturing of functional foods and feed supplements. Nutrients 2022, 14, 659. [Google Scholar] [CrossRef]
- Playford, R.J.; Weiser, M.J. Bovine Colostrum: Its Constituents and Uses. Nutrients 2021, 13, 265. [Google Scholar] [CrossRef]
- Sangild, P.T.; Vonderohe, C.; Hebib, V.M.; Burrin, D.G. Potential Benefits of Bovine Colostrum in Pediatric Nutrition and Health. Nutrients 2021, 13, 2551. [Google Scholar] [CrossRef]
- Stelwagen, K.; Carpenter, E.; Haigh, B.; Hodgkinson, A.; Wheeler, T.T. Immune components of bovine colostrum and milk. J. Anim. Sci. 2009, 87 (Suppl. S13), 3–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimecki, M. A proline-rich polypeptide from ovine colostrum: Colostrinin with immunomodulatory activity. Adv. Exp. Med. Biol. 2008, 606, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Bagwe-Parab, S.; Yadav, P.; Kaur, G.; Tuli, H.S.; Buttar, H.S. Therapeutic Applications of Human and Bovine Colostrum in the Treatment of Gastrointestinal Diseases and Distinctive Cancer Types: The Current Evidence. Front. Pharmacol. 2020, 11, 01100. [Google Scholar] [CrossRef] [PubMed]
- Puppel, K.; Gołębiewski, M.; Grodkowski, G.; Slósarz, J.; Kunowska-Slósarz, M.; Solarczyk, P.; Łukasiewicz, M.; Balcerak, M.; Przysucha, T. Composition and Factors Affecting Quality of Bovine Colostrum: A Review. Animals 2019, 9, 1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazimierska, K.; Kalinowska-Lis, U. Milk proteins—Their biological activities and use in cosmetics and dermatology. Molecules 2021, 26, 3253. [Google Scholar] [CrossRef]
- Davis, P.F.; Greenhill, N.S.; Rowan, A.M.; Schollum, L.M. The safety of New Zealand bovine colostrum: Nutritional and physiological evaluation in rats. Food Chem. Toxicol. 2007, 45, 229–236. [Google Scholar] [CrossRef]
- Tamano, S.; Sekine, K.; Takase, M.; Yamauchi, K.; Iigo, M.; Tsuda, H. Lack of chronic oral toxicity of chemopreventive bovine lactoferrin in F344/DuCrj rats. Asian Pac. J. Cancer Prev. 2008, 9, 313–316. [Google Scholar]
- Thiel, A.; Glávits, R.; Murbach, T.S.; Endres, J.R.; Reddeman, R.; Hirka, G.; Vértesi, A.; Béres, E.; Szakonyiné, I.P. Toxicological evaluations of colostrum ultrafiltrate. Regul. Toxicol. Pharmacol. 2019, 104, 39–49. [Google Scholar] [CrossRef]
- Yamauchi, K.; Toida, T.; Nishimura, S.; Nagano, E.; Kusuoka, O.; Teraguchi, S.; Hayasawa, H.; Shimamura, S.; Tomita, M. 13-Week oral repeated administration toxicity study of bovine lactoferrin in rats. Food Chem. Toxicol. 2000, 38, 503–512. [Google Scholar] [CrossRef]
- Kruzel, M.L.; Olszewska, P.; Pazdrak, B.; Krupinska, A.M.; Actor, J.A. New insights into the systemic effects of oral lactoferrin: Transcriptome profiling. Biochem. Cell Biol. 2021, 99, 47–53. [Google Scholar] [CrossRef]
- Kruzel, M.L.; Actor, J.K.; Boldogh, I.; Zimecki, M. Lactoferrin in health and disease. Postepy Hig. Med. Dosw. 2007, 61, 261–267. [Google Scholar]
- Tetens, I. EFSA Panel on Dietetic Products, Nutrition and Allergies: Scientific opinion on bovine lactoferrin. EFSA J. 2012, 10, 2701. [Google Scholar] [CrossRef]
- Sienkiewicz, M.; Szymańska, P.; Fichna, J. Supplementation of Bovine Colostrum in Inflammatory Bowel Disease: Benefits and Contraindications. Adv. Nutr. 2021, 12, 533–545. [Google Scholar] [CrossRef] [PubMed]
- Janusz, M.; Zabłocka, A. Colostral proline-rich polypeptides—Immunoregulatory properties and prospects of therapeutic use in Alzheimer’s disease. Curr. Alzheimer Res. 2010, 7, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Elfstrand, L.; Lindmark-Mansson, H.; Paulsson, M.; Nyberg, L.; Akesson, B. Immunoglobulins, growth factors and growth hormone in bovine colostrum and the effects of processing. Int. Dairy J. 2002, 12, 879–887. [Google Scholar] [CrossRef]
- Gauthier, S.F.; Pouliot, Y.; Maubois, J. Growth factors from bovine milk and colostrum: Composition, extraction and biological activities. Le Lait INRA Ed. 2006, 86, 99–125. [Google Scholar] [CrossRef] [Green Version]
- Chandwe, K.; Kelly, P. Colostrum therapy for human gastrointestinal health and disease. Nutrients 2021, 13, 1956. [Google Scholar] [CrossRef]
- Dziewiecka, H.; Buttar, H.S.; Kasperska, A.; Ostapiuk-Karolczuk, J.; Domagalska, M.; Cichoń, J.; Skarpańska-Stejnborn, A. A Systematic Review of the Influence of Bovine Colostrum Supplementation on Leaky Gut Syndrome in Athletes: Diagnostic Biomarkers and Future Directions. Nutrients 2022, 14, 2512. [Google Scholar] [CrossRef]
- Gomes, R.D.S.; Anay, K.; Galdino, A.B.S.; Oliveira, J.P.F.; Gama, M.A.S.; Medeiros, C.A.; Gavioli, E.C.; Porto, A.L.; Rangel, A.H. Bovine colostrum: A source of bioactive compounds for prevention and treatment of gastrointestinal disorders. NFS J. 2021, 25, 1–11. [Google Scholar] [CrossRef]
- Menchetti, L.; Traina, G.; Tomasello, G.; Casagrande-Proietti, P.; Leonardi, L.; Barbato, O.; Brecchia, G. Potential benefits of colostrum in gastrointestinal diseases. Front. Biosci. 2016, 8, 331–351. [Google Scholar] [CrossRef] [Green Version]
- Pammi, M.; Suresh, G. Enteral lactoferrin supplementation for prevention of sepsis and necrotizing enterocolitis in preterm infants. Cochrane Database Syst. Rev. 2017, 6, CD007137. [Google Scholar] [CrossRef] [PubMed]
- Manzoni, P.; Mostert, M.; Stronati, M. Lactoferrin for prevention of neonatal infections. Curr. Opin. Infect. Dis. 2011, 24, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Razak, A.; Hussain, A. Lactoferrin Supplementation to Prevent Late-Onset Sepsis in Preterm Infants: A Meta-Analysis. Am. J. Perinatol. 2021, 38, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Davison, G. The use of bovine colostrum in sport and exercise. Nutrients 2021, 13, 1789. [Google Scholar] [CrossRef] [PubMed]
- Główka, N.; Durkalec-Michalski, K.; Woźniewicz, M. Immunological outcomes of bovine colostrum supplementation in trained and physically active people: A systematic review and meta-analysis. Nutrients 2020, 12, 1023. [Google Scholar] [CrossRef] [Green Version]
- Główka, N.; Woźniewicz, M. Potential use of Colostrum Bovinum supplementation in athletes—A review. Acta Sci. Pol. Technol. Aliment. 2019, 18, 115–123. [Google Scholar] [CrossRef]
- Guberti, M.; Botti, S.; Capuzzo, M.T.; Nardozi, S.; Fusco, A.; Cera, A.; Dugo, L.; Piredda, M.; De Marinis, M.G. Bovine Colostrum Applications in Sick and Healthy People: A Systematic Review. Nutrients 2021, 13, 2194. [Google Scholar] [CrossRef]
- Jones, A.W.; March, D.S.; Curtis, F.; Bridle, C. Bovine colostrum supplementation and upper respiratory symptoms during exercise training: A systematic review and meta-analysis of randomised controlled trials. BMC Sports Sci. Med. Rehabil. 2016, 8, 21. [Google Scholar] [CrossRef] [Green Version]
- Rathe, M.; Müller, K.; Sangild, P.T.; Husby, S. Clinical applications of bovine colostrum therapy: A systematic review. Nutr. Rev. 2014, 72, 237–254. [Google Scholar] [CrossRef]
- Ali, A.S.; Hasan, S.S.; Kow, C.S.; Merchant, H.A. Lactoferrin reduces the risk of respiratory tract infections: A meta-analysis of randomized controlled trials. Clin. Nutr. ESPEN 2021, 45, 26–32. [Google Scholar] [CrossRef]
- Brinkworth, G.D.; Buckley, J.D. Concentrated bovine colostrum protein supplementation reduces the incidence of self-reported symptoms of upper respiratory tract infection in adult males. Eur. J. Nutr. 2003, 42, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Muscedere, J.; Maslove, D.M.; Boyd, J.G.; O’Callaghan, N.; Sibley, S.; Reynolds, S.; Albert, M.; Hall, R.; Jiang, X.; Day, A.G.; et al. Prevention of nosocomial infections in critically ill patients with lactoferrin: A randomized, double-blind, placebo-controlled study. Crit. Care Med. 2018, 46, 1450–1456. [Google Scholar] [CrossRef] [PubMed]
- Saad, K.; Abo-Elela, M.G.; El-Baseer, K.A.; Ahmed, A.E.; Ahmad, F.A.; Tawfeek, M.S.K.; El-Houfey, A.A.; Aboul Khair, M.D.; Abdel-Salam, A.M.; Abo-Elgheit, A.; et al. Effects of bovine colostrum on recurrent respiratory tract infections and diarrhea in children. Medicine 2016, 95, e4560. [Google Scholar] [CrossRef] [PubMed]
- Guntupalli, K.; Dean, N.; Morris, P.E.; Bandi, V.; Margolis, B.; Rivers, E.; Levy, M.; Lodato, R.F.; Ismail, P.M.; Reese, A.; et al. TLF LF-0801 Investigator Group. A phase 2 randomized, double-blind, placebo-controlled study of the safety and efficacy of talactoferrin in patients with severe sepsis. Crit. Care Med. 2013, 41, 706–716. [Google Scholar] [CrossRef]
- Nappi, R.E.; Benedetto, C.; Campolo, F.; Martella, S.; Tosti, C.; Cianci, A.; Caruso, S.; Guaschino, S.; Grimaldi, E.; Bagolan, M.; et al. Efficacy, tolerability and safety of a new medical device, Monurelle Biogel® vaginal gel, in the treatment of vaginal dryness: A randomized clinical trial in women of reproductive age. Eur. J. Obstet. Gynecol. Reprod. Biol. 2016, 203, 82–88. [Google Scholar] [CrossRef]
- Schiavi, M.C.; Di Tucci, C.; Colagiovanni, V.; Faiano, P.; Giannini, A.; D’Oria, O.; Prata, G.; Perniola, G.; Monti, M.; Zullo, M.A.; et al. A medical device containing purified bovine colostrum (Monurelle Biogel) in the treatment of vulvovaginal atrophy in postmenopausalwomen: Retrospective analysis of urinary symptoms, sexual function, and quality of life. Low Urin. Tract Symptoms 2019, 11, O11–O15. [Google Scholar] [CrossRef]
- Bierut, T.; Duckworth, L.; Grabowsky, M.; Ordiz, M.I.; Laury, M.L.; Callaghan-Gillespie, M.; Maleta, K.; Manary, M.J. The effect of bovine colostrum/egg supplementation compared with corn/soy flour in young Malawian children: A randomized, controlled clinical trial. Am. J. Clin. Nutr. 2021, 113, 420–427. [Google Scholar] [CrossRef]
- Panahi, Y.; Falahi, G.; Falahpour, M.; Moharamzad, Y.; Khorasgani, M.R.; Beiraghdar, F.; Naghizadeh, M.M. Bovine colostrum in the management of nonorganic failure to thrive: A randomized clinical trial. J. Pediatr. Gastroenterol. Nutr. 2010, 50, 551–554. [Google Scholar] [CrossRef]
- Kim, J.H.; Jung, W.S.; Choi, N.J.; Kim, D.O.; Shin, D.H.; Kim, Y.J. Health-promoting effects of bovine colostrum in Type 2 diabetic patients can reduce blood glucose, cholesterol, triglyceride and ketones. J. Nutr. Biochem. 2009, 20, 298–303. [Google Scholar] [CrossRef]
- Mohamed, W.A.; Schaalan, M.F. Antidiabetic efficacy of lactoferrin in type 2 diabetic pediatrics; controlling impact on PPAR-γ, SIRT-1, and TLR4 downstream signaling pathway. Diabetol. Metab. Syndr. 2018, 10, 89. [Google Scholar] [CrossRef] [Green Version]
- Hassoun, L.A.; Sivamani, R.K. A systematic review of lactoferrin use in dermatology. Crit. Rev. Food Sci. Nutr. 2017, 57, 3632–3639. [Google Scholar] [CrossRef] [PubMed]
- Takayama, Y.; Aoki, R. Roles of lactoferrin on skin wound healing. Biochem. Cell. Biol. 2012, 90, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Cutone, A.; Rosa, L.; Ianiro, G.; Lepanto, M.S.; Bonaccorsi di Patti, M.C.; Valenti, P.; Musci, G. Lactoferrin’s Anti-Cancer Properties: Safety, Selectivity, and Wide Range of Action. Biomolecules 2020, 10, 456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramirez-Rico, G.; Drago-Serrano, M.E.; Leon-Sicairos, N.; de la Garza, M. Lactoferrin: A nutraceutical with activity against colorectal cancer. Front. Pharmacol. 2022, 13, 855852. [Google Scholar] [CrossRef] [PubMed]
- Artym, J.; Zimecki, M.; Kruzel, M.L. Lactoferrin for Prevention and Treatment of Anemia and Inflammation in Pregnant Women: A Comprehensive Review. Biomedicines 2021, 9, 898. [Google Scholar] [CrossRef]
- El Amrousy, D.; El-Afify, D.; Elsawy, A.; Elsheikh, M.; Donia, A.; Nassar, M. Lactoferrin for iron-deficiency anemia in children with inflammatory bowel disease: A clinical trial. Pediatr. Res. 2022, 92, 762–766. [Google Scholar] [CrossRef]
- El-Khawaga, A.; Abdelmaksoud, H. Effect of Lactoferrin Supplementation on Iron Deficiency Anemia in Primary School Children. Int. J. Med. Arts 2019, 1, 48–52. [Google Scholar] [CrossRef]
- Artym, J.; Zimecki, M. Beneficial effect of lactoferrin on the microbiota from gastrointestinal tract. Adv. Microbiol. 2020, 59, 277–290. [Google Scholar] [CrossRef]
- Artym, J.; Zimecki, M. Antimicrobial and Prebiotic Activity of Lactoferrin in the Female Reproductive Tract: A Comprehensive Review. Biomedicines 2021, 9, 1940. [Google Scholar] [CrossRef]
- Artym, J. A remedy against obesity? The role of lactoferrin in the metabolism of glucose and lipids. Postepy Hig. Med. Dosw. 2012, 66, 937–953. [Google Scholar] [CrossRef]
- Zapata, R.C.; Singh, A.; Pezeshki, A.; Nibber, T.; Chelikani, P.K. Whey Protein Components—Lactalbumin and Lactoferrin—Improve Energy Balance and Metabolism. Sci. Rep. 2017, 7, 9917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmadinia, K.; Yan, D.; Ellman, M.; Im, H.J. The anti-catabolic role of bovine lactoferricin in cartilage. Biomol. Concepts 2013, 4, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Antoshin, A.A.; Shpichka, A.I.; Huang, G.; Chen, K.; Lu, P.; Svistunov, A.A.; Lychagin, A.V.; Lipina, M.M.; Sinelnikov, M.Y.; Reshetov, I.V.; et al. Lactoferrin as a regenerative agent: The old-new panacea? Pharmacol. Res. 2021, 167, 105564. [Google Scholar] [CrossRef] [PubMed]
- Icriverzi, M.; Dinca, V.; Moisei, M.; Evans, R.W.; Trif, M.; Roseanu, A. Lactoferrin in Bone Tissue Regeneration. Curr. Med. Chem. 2020, 27, 838–853. [Google Scholar] [CrossRef]
- Trybek, G.; Jedliński, M.; Jaroń, A.; Preuss, O.; Mazur, M.; Grzywacz, A. Impact of lactoferrin on bone regenerative processes and its possible implementation in oral surgery—A systematic review of novel studies with metanalysis and metaregression. BMC Oral Health 2020, 20, 232. [Google Scholar] [CrossRef]
- Krupińska, A.M.; Bogucki, Z. Clinical aspects of the use of lactoferrin in dentistry. J. Oral Biosci. 2021, 63, 129–133. [Google Scholar] [CrossRef]
- Rosa, L.; Lepanto, M.S.; Cutone, A.; Ianiro, G.; Pernarella, S.; Sangermano, R.; Musci, G.; Ottolenghi, L.; Valenti, P. Lactoferrin and oral pathologies: A therapeutic treatment. Biochem. Cell Biol. 2021, 99, 81–90. [Google Scholar] [CrossRef]
- Singh, J.; Sharma, M.; Jain, N.; Aftab, I.; Vikram, N.; Singh, T.P.; Sharma, P.; Sharma, S. Lactoferrin and its nano-formulations in rare eye diseases. Indian J. Ophthalmol. 2022, 70, 2328–2334. [Google Scholar] [CrossRef]
- Velliyagounder, K.; Bahdila, D.; Pawar, S.; Fine, D.H. Role of lactoferrin and lactoferrin-derived peptides in oral and maxillofacial diseases. Oral Dis. 2019, 25, 652–669. [Google Scholar] [CrossRef]
- Artym, J.; Zimecki, M. Milk-derived proteins and peptides in clinical trials. Postep. Hig. Med. Dosw. 2013, 67, 800–816. [Google Scholar] [CrossRef]
- Godinez-Chaparro, B.; Guzman-Mejia, F.; Elisa Drago-Serrano, M. Lactoferrin and Its Potential Impact for the Relief of Pain: A Preclinical Approach. Pharmaceuticals 2021, 14, 868. [Google Scholar] [CrossRef] [PubMed]
- Guzman-Mejia, F.; Vega-Bautista, A.; Molotla-Torres, D.E.; Aguirre-Garrido, J.F.; Drago-Serrano, M.E. Bovine lactoferrin as a Modulator of Neuroendocrine Components of Stress. Curr. Mol. Pharmacol. 2021, 14, 1037–1045. [Google Scholar] [CrossRef] [PubMed]
- Manzanares, P.; Salom, J.B.; García-Tejedor, A.; Fernández-Musoles, R.; Ruiz-Giménez, P.; Gimeno-Alcañíz, J.V. Unraveling the mechanisms of action of lactoferrin-derived antihypertensive peptides: ACE inhibition and beyond. Food Funct. 2015, 6, 2440–2452. [Google Scholar] [CrossRef] [Green Version]
- Shinjo, T.; Sakuraba, K.; Nakaniida, A.; Ishibashi, T.; Kobayashi, M.; Aono, Y.; Suzuki, Y. Oral lactoferrin influences psychological stress in humans: A single-dose administration crossover study. Biomed. Rep. 2018, 8, 426–432. [Google Scholar] [CrossRef] [PubMed]
- Zimecki, M.; Kruzel, M.L. Milk-derived proteins and peptides of potential therapeutic and nutritive value. J. Exp. Ther. Oncol. 2007, 6, 89–106. [Google Scholar] [PubMed]
- Li, Y.Q.; Guo, C. A Review on Lactoferrin and Central Nervous System Diseases. Cells 2021, 10, 1810. [Google Scholar] [CrossRef]
- Liu, H.; Wu, H.; Zhu, N.; Xu, Z.; Wang, Y.; Qu, Y.; Wang, J. Lactoferrin protects against iron dysregulation, oxidative stress, and apoptosis in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson’s disease in mice. J. Neurochem. 2020, 152, 397–415. [Google Scholar] [CrossRef] [PubMed]
- Schirmbeck, G.H.; Sizonenko, S.; Sanches, E.F. Neuroprotective Role of Lactoferrin during Early Brain Development and Injury through Lifespan. Nutrients 2022, 14, 2923. [Google Scholar] [CrossRef]
- Afzal, I.; Khan, A.A.; Khaliq, T.; Hamadani, H.; Shafi, M.; Raja, T.A. Effect of Bovine Colostrum Supplemented Diets on Performance of Broiler Chicken. Indian J. Poult. Sci. 2017, 52, 157–160. [Google Scholar] [CrossRef]
- da Cruz, T.M.P.; Moretti, D.B.; Nordi, W.M.; Cyrino, J.E.P.; Machado-Neto, R. Dietary Lyophilized Colostrum Alters Distribution of Goblet Cells and the Intestinal Epithelium of Piaractus Mesopotamicus. Aquaculture 2017, 468, 286–292. [Google Scholar] [CrossRef]
- Fenger, C.K.; Tobin, T.; Caseyc, P.J.; Roualdesd, E.A.; Langemeiera, J.L.; Cowlese, R.; Haines, D.M. Enhanced bovine colostrum supplementation shortens the duration of respiratory disease in thoroughbred yearlings. J. Equine Vet. Sci. 2016, 42, 77–81. [Google Scholar] [CrossRef] [Green Version]
- Artym, J.; Zimecki, M. The effects of lactoferrin on myelopoiesis: Can we resolve the controversy? Postepy Hig. Med. Dosw. 2007, 61, 129–150. [Google Scholar]
- Bagwe, S.; Tharappel, L.J.P.; Kaur, G.; Buttar, H.S. Bovine colostrum: An emerging nutraceutical. J. Complement. Integr. Med. 2015, 12, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Bukowska-Osko, I.; Sulejczak, D.; Kaczynska, K.; Kleczkowska, P.; Kramkowski, K.; Popiel, M.; Wietrak, E.; Kowalczyk, P. Lactoferrin as a Human Genome “Guardian”—An Overall Point of View. Int. J. Mol. Sci. 2022, 23, 5248. [Google Scholar] [CrossRef]
- Drago-Serrano, M.E.; Campos-Rodríguez, R.; Carrero, J.C.; de la Garza, M. Lactoferrin: Balancing Ups and Downs of Inflammation Due to Microbial Infections. Int. J. Mol. Sci. 2017, 18, 501. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Iacucci, M. Diverse immune effects of bovine colostrum and benefits in human health and disease. Nutrients 2021, 13, 3798. [Google Scholar] [CrossRef]
- Gruden, S.; Ulrih, N.P. Diverse mechanisms of antimicrobial activities of lactoferrins, lactoferricins, and other lactoferrin-derived peptides. Int. J. Mol. Sci. 2021, 22, 11264. [Google Scholar] [CrossRef]
- Hao, L.; Shan, Q.; Wei, J.; Ma, F.; Sun, P. Lactoferrin: Major Physiological Functions and Applications. Curr. Protein Pept. Sci. 2019, 20, 139–144. [Google Scholar] [CrossRef]
- Kowalczyk, P.; Kaczyńska, K.; Kleczkowska, P.; Bukowska-Ośko, I.; Kramkowski, K.; Sulejczak, D. The Lactoferrin Phenomenon—A Miracle Molecule. Molecules 2022, 27, 2941. [Google Scholar] [CrossRef]
- Kruzel, M.L.; Zimecki, M.; Actor, J.K. Lactoferrin in a Context of Inflammation-Induced Pathology. Front. Immunol. 2017, 8, 1438. [Google Scholar] [CrossRef]
- Lepanto, M.S.; Rosa, L.; Paesano, R.; Valenti, P.; Cutone, A. Lactoferrin in Aseptic and Septic Inflammation. Molecules 2019, 24, 1323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGrath, B.A.; Fox, P.F.; McSweeney, P.L.; Kelly, A.L. Composition and properties of bovine colostrum: A review. Dairy Sci. Technol. 2015, 96, 133–158. [Google Scholar] [CrossRef] [Green Version]
- Alsayed, A.R.; Hasoun, L.Z.; Khader, H.A.; Basheti, I.A.; Permana, A.D. Bovine Colostrum Treatment of Specific Cancer Types: Current Evidence and Future Opportunities. Molecules 2022, 27, 8641. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wang, Y.; He, J.; Zhu, W. Antibacterial properties of lactoferrin: A bibliometric analysis from 2000 to early 2022. Front. Microbiol. 2022, 13, 947102. [Google Scholar] [CrossRef]
- Presti, S.; Manti, S.; Parisi, G.F.; Papale, M.; Barbagallo, I.A.; Li Volti, G.; Leonardi, S. Lactoferrin: Cytokine modulation and application in clinical practice. J. Clin. Med. 2021, 10, 5482. [Google Scholar] [CrossRef]
- Sinopoli, A.; Isonne, C.; Santoro, M.M.; Baccolini, V. The effects of orally administered lactoferrin in the prevention and management of viral infections: A systematic review. Rev. Med. Virol. 2022, 32, e2261. [Google Scholar] [CrossRef]
- Beijers, A.J.; Jongen, J.L.; Vreugdenhil, G. Chemotherapy-induced neurotoxicity: The value of neuroprotective strategies. Neth J. Med. 2012, 70, 18–25. [Google Scholar]
- Emadi, A.; Jones, R.J.; Brodsky, R.A. Cyclophosphamide and cancer: Golden anniversary. Nat. Rev. Clin. Oncol. 2009, 6, 638–647. [Google Scholar] [CrossRef]
- Hauner, K.; Maisch, P.; Retz, M. Side effects of chemotherapy. Urologe A 2017, 56, 472–479. [Google Scholar] [CrossRef]
- Blohmer, J.U.; Dunst, J.; Harrison, L.; Johnston, P.; Khayat, D.; Ludwig, H.; O’Brien, M.; Van Belle, S.; Vaupel, P. Cancer-related anemia: Biological findings, clinical implications and impact on quality of life. Oncology 2005, 68 (Suppl. S1), 12–21. [Google Scholar] [CrossRef]
- Bruera, E. ABC of palliative care. Anorexia, cachexia, and nutrition. BMJ 1997, 315, 1219–1222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cherny, N.I. The pharmacologic management of cancer pain. Oncology 2004, 18, 1499–1515. [Google Scholar] [PubMed]
- Crawford, J.; Dale, D.C.; Lyman, G.H. Chemotherapy-induced neutropenia: Risks, consequences, and new directions for its management. Cancer 2004, 100, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Morrow, G.R.; Shelke, A.R.; Roscoe, J.A.; Hickok, J.T.; Mustian, K. Management of cancer-related fatigue. Cancer Investig. 2005, 23, 229–239. [Google Scholar] [CrossRef]
- Rubenstein, E.B.; Peterson, D.E.; Schubert, M.; Keefe, D.; McGuire, D.; Joel Epstein, J.; Elting, L.S.; Fox, P.C.; Cooksley, C.; Sonis, S.T. Mucositis Study Section of the Multinational Association for Supportive Care in Cancer; International Society for Oral Oncology. Clinical practice guidelines for the prevention and treatment of cancer therapy-induced oral and gastrointestinal mucositis. Cancer 2004, 100 (Suppl. S9), 2026–2046. [Google Scholar] [CrossRef]
- van Oort, S.; Kramer, E.; de Groot, J.W.; Visser, O. Taste alterations and cancer treatment. Curr. Opin. Support. Palliat. Care 2018, 12, 162–167. [Google Scholar] [CrossRef]
- Chabner, B.A.; Allerga, C.J.; Curt, G.A.; Calabresi, P. The Pharmacological Basis of Therapeutics, 9th ed.; Mc Graw-Hill: New York, NY, USA, 1996; pp. 1233–1287. [Google Scholar]
- Artym, J.; Zimecki, M.; Kruzel, M.L. Reconstitution of the cellular immune response by lactoferrin in cyclophosphamide-treated mice is correlated with renewal of T cell compartment. Immunobiology 2003, 207, 197–205. [Google Scholar] [CrossRef]
- Artym, J.; Zimecki, M.; Paprocka, M.; Kruzel, M.L. Orally administered lactoferrin restores humoral immune response in immunocompromised mice. Immunol. Lett. 2003, 89, 9–15. [Google Scholar] [CrossRef]
- Artym, J.; Zimecki, M.; Kruzel, M. Normalization of peripheral blood cell composition by lactoferrin in cyclophosphamide-treated mice. Med. Sci. Monit. 2004, 10, BR84–BR89. [Google Scholar]
- Artym, J.; Zimecki, M.; Kruzel, M.L. Effect of lactoferrin on the methotrexate-induced suppression of the cellular and humoral immune response in mice. Anticancer Res. 2004, 24, 3831–3836. [Google Scholar]
- Artym, J.; Zimecki, M.; Kuryszko, J.; Kruzel, M.L. Lactoferrin accelerates reconstitution of the humoral and cellular immune response during chemotherapy-induced immunosuppression and bone marrow transplant in mice. Stem Cells Dev. 2005, 14, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Artym, J.; Zimecki, M.; Kruzel, M.L. Enhanced clearance of Escherichia coli and Staphylococcus aureus in mice treated with cyclophosphamide and lactoferrin. Int. Immunopharmacol. 2004, 4, 1149–1157. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Tan, H.; Yang, Q.; Wang, R.; Tian, C.; Ji, Y.; Zhao, P.; Xia, Q.; Wang, F. Fabrication of a Silk Sericin Hydrogel System Delivering Human Lactoferrin Using Genetically Engineered Silk with Improved Bioavailability to Alleviate Chemotherapy-Induced Immunosuppression. ACS Appl. Mater. Interfaces 2021, 13, 45175–45190. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Jiang, R.; Przepiorski, A.; Reddy, S.; Palmano, K.P.; Krissansen, G.W. “Iron-saturated” bovine lactoferrin improves the chemotherapeutic effects of tamoxifen in the treatment of basal-like breast cancer in mice. BMC Cancer 2012, 12, 591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, J.; Howard, S.C.; Pillai, A.; Vogel, P.; Naren, A.P.; Davis, S.; Ringwald-Smith, K.; Buddington, K.; Buddington, R.K. The weaned pig as a model for Doxorubicin-induced mucositis. Chemotherapy 2014, 60, 24–36. [Google Scholar] [CrossRef]
- Shen, R.L.; Rathe, M.; Jiang, P.; Pontoppidan, P.E.L.; Heegaard, P.M.H.; Müller, K.; Sangild, P.T. Doxorubicin-Induced Gut Toxicity in Piglets Fed Bovine Milk and Colostrum. J. Pediatr. Gastroenterol. Nutr. 2016, 63, 698–707. [Google Scholar] [CrossRef]
- Shen, R.L.; Pontoppidan, P.E.L.; Jiang, R.M.P.; Hansen, C.F.; Buddington, R.K.; Heegaard, P.M.H.; Müller, K.; Sangild, P.T. Milk diets influence doxorubicin-induced intestinal toxicity in piglets. Am. J. Physiol. Gastrointest. Liver Physiol. 2016, 311, G324–G333. [Google Scholar] [CrossRef] [Green Version]
- Pontoppidan, P.E.L.; Shen, R.L.; Cilieborg, M.S.; Jiang, P.; Kissow, H.; Petersen, B.L.; Thymann, T.; Heilmann, C.; Müller, K.; Sangild, P.T. Bovine Colostrum Modulates Myeloablative Chemotherapy-Induced Gut Toxicity in Piglets. J. Nutr. 2015, 145, 1472–1480. [Google Scholar] [CrossRef] [Green Version]
- Van’t Land, B.; van Beek, N.M.A.; van den Berg, J.J.M.; M’Rabet., L. Lactoferrin reduces methotrexate-induced small intestinal damage, possibly through inhibition of GLP-2-mediated epithelial cell proliferation. Dig. Dis. Sci. 2004, 49, 425–433. [Google Scholar] [CrossRef]
- Horiuchi, Y.; Higuchi, T.; Tatsumi, K.; Takakura, K.; Fujii, S.; Konishi, I. Lactoferrin is associated with a decrease in oocyte depletion in mice receiving cyclophosphamide. Fertil. Steril. 2009, 91 (Suppl. S5), 2069–2078.e1. [Google Scholar] [CrossRef] [Green Version]
- Kimoto, Y.; Nishinohara, M.; Sugiyama, A.; Haruna, A.; Takeuchi, T. Protective effect of lactoferrin on Cisplatin-induced nephrotoxicity in rats. J. Vet. Med. Sci. 2013, 75, 159–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elzoghby, A.O.; Abdelmoneem, M.A.; Hassanin, I.A.; Abd Elwakil, M.M.; Elnaggar, M.A.; Mokhtar, S.; Fang, J.Y.; Elkhodairy, K.A. Lactoferrin, a multi-functional glycoprotein: Active therapeutic, drug nanocarrier & targeting ligand. Biomaterials 2020, 263, 120355. [Google Scholar] [CrossRef] [PubMed]
- Kondapi, A.K. Targeting cancer with lactoferrin nanoparticles: Recent advances. Nanomedicine 2020, 15, 2071–2083. [Google Scholar] [CrossRef] [PubMed]
- Narayana, R.V.L.; Jana, P.; Tomar, N.; Prabhu, V.; Nair, R.M.; Manukonda, R.; Kaliki, S.; Coupland, S.E.; Alexander, J.; Kalirai, H.; et al. Carboplatin- and Etoposide-Loaded Lactoferrin Protein Nanoparticles for Targeting Cancer Stem Cells in Retinoblastoma In Vitro. Investig. Ophthalmol. Vis. Sci. 2021, 62, 13. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.; Feng, L.; Hua, R.; Chen, J.; Gao, H.; Pan, S.; Jiang, X.; Zhang, P. Lactoferrin-conjugated biodegradable polymersome holding doxorubicin and tetrandrine for chemotherapy of glioma rats. Mol. Pharm. 2010, 7, 1995–2005. [Google Scholar] [CrossRef] [PubMed]
- Shankaranarayanan, J.S.; Kanwar, J.R.; Al-Juhaishi, A.J.; Kanwar, R.K. Doxorubicin Conjugated to Immunomodulatory Anticancer Lactoferrin Displays Improved Cytotoxicity Overcoming Prostate Cancer Chemo resistance and Inhibits Tumour Development in TRAMP Mice. Sci. Rep. 2016, 6, 32062. [Google Scholar] [CrossRef]
- Sharifi, M.; Jafari, S.; Hasan, A.; Paray, B.A.; Gong, G.; Zheng, Y.; Falahati, M. Antimetastatic Activity of Lactoferrin-Coated Mesoporous Maghemite Nanoparticles in Breast Cancer Enabled by Combination Therapy. ACS Biomater. Sci. Eng. 2020, 6, 3574–3584. [Google Scholar] [CrossRef]
- Wei, M.; Guo, X.; Tu, L.; Zou, Q.; Li, Q.; Tang, C.; Chen, B.; Xu, Y.; Wu, C. Lactoferrin-modified PEGylated liposomes loaded with doxorubicin for targeting delivery to hepatocellular carcinoma. Int. J. Nanomed. 2015, 10, 5123–5137. [Google Scholar] [CrossRef] [Green Version]
- Maccio, A.; Madeddu, C.; Gramignano, G.; Mulas, C.; Sanna, E.; Mantovani, G. Efficacy and safety of oral lactoferrin supplementation in combination with rHuEPO-beta for the treatment of anemia in advanced cancer patients undergoing chemotherapy: Open-label, randomized controlled study. Oncologist 2010, 15, 894–902. [Google Scholar] [CrossRef] [Green Version]
- Moastafa, T.M.; El-Sissy, A.E.-D.E.; El-Saeed, G.K.; Koura, M.S.E.-D. Study on the Therapeutic Benefit on Lactoferrin in Patients with Colorectal Cancer Receiving Chemotherapy. Int. Sch. Res. Not. 2014, 2014, 184278. [Google Scholar] [CrossRef]
- van der Velden, W.J.; van Iersel, T.M.; Blijlevens, N.M.; Donnelly, J.P. Safety and tolerability of the antimicrobial peptide human lactoferrin 1-11 (hLF1-11). BMC Med. 2009, 7, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trumpler, U.; Straub, P.W.; Rosenmund, A. Antibacterial prophylaxis with lactoferrin in neutropenic patients. Eur. J. Clin. Microbiol. Infect. Dis. 1989, 8, 310–313. [Google Scholar] [CrossRef] [PubMed]
- Chissov, V.I.; Yakubovskaia, R.I.; Nemtsova, E.R.; Osipova, N.A.; Edeleva, N.V.; Utkin, M.M.; Zviagin, A.A. Antioxidants treatment of severe post-operative pyoinflammatory and septic complications. Khirurgiia 2008, 11, 14–19. [Google Scholar]
- Nemtsova, E.; Sergeeva, T.; Ivanova, L.; Demidova, L.; Teleus, T.; Boyko, A.; Yakubovskaya, R. Human milk lactoferrin preparations as protective agents for chemo- and chemoradiotherapy of patients with malignant neoplasms. Ann. Oncol. 1998, 9 (Suppl. S2), 53–57. [Google Scholar]
- Perez, D.; Sharples, K.J.; Broom, R.; Jeffery, M.; Proctor, J.; Hinder, V.; Pollard, S.; Edwards, J.; Simpson, A.; Scott, J.; et al. A randomised phase IIb trial to assess the efficacy of ReCharge ice cream in preventing chemotherapy-induced diarrhoea. Supp. Care Cancer 2015, 23, 3307–3315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rathe, M.; De Pietri, S.; Wehner, P.S.; Frandsen, T.L.; Grell, K.; Schmiegelow, K.; Sangild, P.T.; Husby, S.; Müller, K. Bovine Colostrum Against Chemotherapy-Induced Gastrointestinal Toxicity in Children With Acute Lymphoblastic Leukemia: A Randomized, Double-Blind, Placebo-Controlled Trial. JPEN J. Parenter. Enteral Nutr. 2020, 44, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Epstein, J.B.; Barasch, A. Taste disorders in cancer patients: Pathogenesis, and approach to assessment and management. Oral Oncol. 2010, 46, 77–81. [Google Scholar] [CrossRef]
- Epstein, J.B.; Villines, D.; Epstein, G.L.; Smutzer, G. Oral examination findings, taste and smell testing during and following head and neck cancer therapy. Support. Care Cancer 2020, 28, 4305–4311. [Google Scholar] [CrossRef]
- Lesser, G.J.; Irby, M.B.; Taylor, R.C.; Snavely, A.; Case, D.; Wang, A.; Dietrich, A.; Duncan, S. Lactoferrin supplementation for taste and smell abnormalities among patients receiving cancer chemotherapy. Support. Care Cancer 2022, 30, 2017–2025. [Google Scholar] [CrossRef]
- Wang, A.; Duncan, S.E.; Lesser, G.J.; Ray, W.K.; Dietrich, A.M. Effect of lactoferrin on taste and smell abnormalities induced by chemotherapy: A proteome analysis. Food Funct. 2018, 9, 4948–4958. [Google Scholar] [CrossRef]
- Bardellini, E.; Amadori, F.; Majorana, A. Oral hygiene grade and quality of life in children with chemotherapy-related oral mucositis: A randomized study on the impact of a fluoride toothpaste with salivary enzymes, essential oils, proteins and colostrum extract versus a fluoride toothpaste without menthol. Int. J. Dent. Hyg. 2016, 14, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Gonegandla, G.S. Bisphosphonate-Induced Osteonecrosis of the Jaws (BIONJ). J. Maxillofac. Oral Surg. 2020, 19, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Calvani, F.; Cutone, A.; Lepanto, M.S.; Rosa, L.; Valentini, V.; Valenti, P. Efficacy of bovine lactoferrin in the post-surgical treatment of patients suffering from bisphosphonate-related osteonecrosis of the jaws: An open-label study. Biometals 2018, 31, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Wu, J.J.; Ma, Q.; Cui, T.; Andreopoulos, F.M.; Gil, J.; Valdes, J.; Davis, S.C.; Li, J. Human lactoferrin stimulates skin keratinocyte function and wound re-epithelialization. Br. J. Dermatol. 2010, 163, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Allen, C.; Her, S.; Jaffray, D.A. Radiotherapy for Cancer: Present and Future. Adv. Drug Deliv. Rev. 2017, 109, 1–2. [Google Scholar] [CrossRef]
- Mirkhamidova, P.; Mirakhmedov, A.K.; Bekanov, K.M.; Filatova, L.S.; Aripdzhanov, A.A.; Khamidov, D.K.; Zbarskiĭ, I. [Effect of colostrum polypeptide on structure and lipid peroxidation in liver nuclei of rats late after gamma-irradiation] (article in Russian). Radiats Biol. Radioecol. 1993, 33, 861–866. [Google Scholar]
- Kopaeva, M.Y.; Alchinova, I.B.; Cherepov, A.B.; Demorzhi, M.S.; Nesterenko, M.V.; Zarayskaya, I.Y.; Karganov, M.Y. New Properties of a Well-Known Antioxidant: Pleiotropic Effects of Human Lactoferrin in Mice Exposed to Gamma Irradiation in a Sublethal Dose. Antioxidants 2022, 11, 1833. [Google Scholar] [CrossRef]
- Feng, L.; Li, J.; Qin, L.; Guo, D.; Ding, H.; Deng, D. Radioprotective effect of lactoferrin in mice exposed to sublethal X-ray irradiation. Exp. Ther. Med. 2018, 16, 3143–3148. [Google Scholar] [CrossRef] [Green Version]
- Nishimura, Y.; Homma-Takeda, S.; Kim, H.-S.; Kakuta, I. Radioprotection of mice by lactoferrin against irradiation with sublethal X-rays. J. Radiat. Res. 2014, 55, 277–282. [Google Scholar] [CrossRef]
- Wei, Y.L.; Xu, J.Y.; Zhang, R.; Zhang, Z.; Zhao, L.; Qin, L.Q. Effects of lactoferrin on X-ray-induced intestinal injury in Balb/C mice. Appl. Radiat. Isot. 2019, 146, 72–77. [Google Scholar] [CrossRef]
- Sakai, M.; Matsushita, T.; Hoshino, R.; Ono, H.; Ikai, K.; Sakai, T. Identification of the protective mechanisms of Lactoferrin in the irradiated salivary gland. Sci. Rep. 2017, 7, 9753. [Google Scholar] [CrossRef] [PubMed]
- Freiburghaus, C.; Lindmark-Mansson, H.; Paulsson, M.; Oredsson, S. Reduction of ultraviolet light-induced DNA damage in human colon cancer cells treated with a lactoferrin-derived peptide. J. Dairy Sci. 2012, 95, 5552–5560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drago-Serrano, M.E.; Rafael Campos-Rodriguez, R.; Carrero, J.C.; de la Garza, M. Lactoferrin and Peptide-derivatives: Antimicrobial Agents with Potential Use in Nonspecific Immunity Modulation. Curr. Pharm. Des. 2018, 24, 1067–1078. [Google Scholar] [CrossRef] [PubMed]
- Han, G.; Kim, H.; Kim, D.E.; Ahn, Y.; Kim, J.; Jang, Y.J.; Kim, K.; Yang, Y.; Kim, S.H. The Potential of Bovine Colostrum-Derived Exosomes to Repair Aged and Damaged Skin Cells. Pharmaceutics 2022, 14, 307. [Google Scholar] [CrossRef]
- Barbarino, R.; Janniello, D.; Morelli, P.; Falco, M.D.; Cicchetti, S.; Di Murro, L.; Tortorelli, G.; Bagala, P.; Di Cristino, D.; Murgia, A.; et al. Fatigue in patients undergoing radiation therapy: An observational study. Minerva Med. 2013, 104, 185–191. [Google Scholar]
- Hałasa, M.; Maciejewska-Markiewicz, D.; Baśkiewicz-Hałasa, M.; Safranow, K.; Stachowska, E. Post-Delivery Milking Delay Influence on the Effect of Oral Supplementation with Bovine Colostrum as Measured with Intestinal Permeability Test. Medicina 2020, 56, 495. [Google Scholar] [CrossRef]
- Playford, R.J.; Cattell, M.; Marchbank, T. Marked variability in bioactivity between commercially available bovine colostrum for human use; implications for clinical trials. PLoS ONE 2020, 15, e0234719. [Google Scholar] [CrossRef]
- Rosa, L.; Cutone, A.; Lepanto, M.S.; Scotti, M.L.; Conte, M.P.; Paesano, R.; Valenti, P. Physico-chemical properties influence the functions and efficacy of commercial bovine lactoferrins. Biometals 2018, 31, 301–312. [Google Scholar] [CrossRef]
- Paulsson, M.A.; Svensson, U.; Kishore, A.R.; Naidu, A.S. Thermal Behavior of Bovine Lactoferrin in Water and Its Relation to Bacterial Interaction and Antibacterial Activity. J. Dairy Sci. 1993, 76, 3711–3720. [Google Scholar] [CrossRef]
Ingredient | Concentration /Source | Main Biological Functions | References |
---|---|---|---|
Proteins and Peptides | |||
Total protein | 7.1–22 g/100 mL | Arslan, A. et al. (2021) [6] Playford, R.J. and Weiser, M.J. (2021) [9] Sangild, P.T. et al. (2021) [10] Sienkiewicz, M. et al. (2021) [23] | |
Caseins (αs1, αs2, β, κ, γ) | 4.8 g/100 mL | Nutritional (constructive, energetic), regulatory, and defensive functions | |
Whey proteins | 6–12 g/100 mL | Nutritional (onstructive, energetic), regulatory, and defensive functions | |
α-lactoalbumin (α-LA) | 0.15–0.2 g/100 mL | ||
β-LG | 1.5 g/100 mL | ||
Immunoglobulins (Igs) | 50–150 mg/mL | Defensive functions, protection against pathogens | |
IgG | 32–113 mg/mL | ||
IgM | 4.3–4.9 mg/mL | ||
IgA | 1.6–4.4 mg/mL | ||
Lactoferrin (LF) | 0.3–2.2 mg/mL | Protection against infection, enhancement/inhibition of the immune system activity, regulation of iron acquisition, lipid and carbohydrate metabolism, pro- and antioxidative, inhibition of tumor generation and metastasis | |
Lactoperoxidase (LPO) | 11–45 mg/mL | Defense, protection against pathogens | |
Lysozyme (LY) | 0.3–0.8 ng/ml | Defense, protection against pathogens | |
Colostrinin (proline-rich polypeptide, PRP) | 0.4–0.8 mg/mL (in sheep colostrum, <6 h) | Promotion of T cell maturation, regulation of cytokine and ROS production, suppression of autoimmune disease, neuroprotection, procognitive functions | Janusz, M. and Zabłocka, A. (2010) [24] |
Lipids | |||
Total lipids | 5.35–6.7 g/100 mL | Playford, R.J. amd Weiser, M.J. (2021) [9] Sangild, P.T. et al. (2021) [10] Sienkiewicz, M. et al. (2021) [23] | |
Saturated lipid acids | 2.45–3.06 g/100 mL | Nutritional (constructive, energetic), protective, regulatory function | |
Monosaturated lipid acids | 2.35–2.95 g/100 mL | ||
Polysaturated lipid acids | 0.55–0.69 g/100 mL | ||
Choline | 0.02–0.04 g/100 mL | Constructive function, component of cell membranes, substrate for synthesis of myelin sheath of neurons, acetylocholine neurotransmitter, regulator of gene expression in epigenetic mechanism | |
Sugars | |||
Lactose | 2.03–2.5 g/100 mL | Energetic function, regulation of osmotic pressure of milk, prebiotic function, enhancement of absorption of mineral ingredients | Arslan, A. et al. (2021) [6] Sangild, P.T. et al. (2021) [10] Sienkiewicz, M. et al. (2021) [23] |
Oligosaccharides | 70–120 mg/100 mL | Defense function, protection against infection, prebiotic action | |
Vitamins | |||
Vitamin A | 0.25 μg/mL | Regulation of numerous metabolic processes, essentials for proper function of all cells, tissues and organs including immune, nervous, endocrine and gastrointestinal systems | Arslan, A. et al. (2021) [6] Playford, R.J. and Weiser, M.J. (2021) [9] Puppel, K. et al. (2019) [14] |
Vitamin D | 0.89–1.81 IU/g of lipids | ||
Vitamin E | 2.92–5.63 μg/g | ||
Vitamin B1 | 0.58–0.90 μg/mL | ||
Vitamin B2 | 4.55–4.83 μg/mL | ||
Vitamin B3 (PP) | 0.34–0.96 μg/mL | ||
Vitamin B12 | 0.05–0.60 μg/mL | ||
Minerals | |||
Calcium (Ca) | 2.6–4.7 g/kg | Construction and regulatory functions, maintenance of pH balance, ensuring a proper function of the immune, nervous, endocrine systems, bones and muscles, ingredients of enzymes and hormones | Arslan, A. et al. (2021) [6] Playford, R.J. and Weiser, M.J. (2021) [9] Puppel, K. et al. (2019) [14] Sienkiewicz, M. et al. (2021) [23] |
Phosphorus (P) | 4.5 g/kg | ||
Potassium (K) | 1.4–2.8 g/kg | ||
Sulfur (S) | 2.6 g/kg | ||
Sodium (Na) | 0.7–1.1 g/kg | ||
Magnesium (Mg) | 0.4–0.7 g/kg | ||
Zinc (Zn) | 11.6–38.1 mg/kg | ||
Iron (Fe) | 21.2 mg/kg | ||
Cuprum (Cu) | 0.3–0.6 mg/kg | ||
Manganese (Mn) | 0.1 mg/kg | ||
Growth factors | |||
Epidermal growth factor (EGF) | Produced by many tissues 324 μg/L (day 3) | Stimulation of epidermal, epithelial and embrional cells proliferation, promotion wound healing and bone resorption, act as differentiation factors for some cell types, inhibit secretion of stomach acid, regulate synthesis of some hormones | Playford, R.J. and Weiser, M.J. (2021) [9] Elfstrand, L. et al. (2002) [25] Gauthier, S.F. et al. (2006) [26] |
Betacellulin (BTC) | Produced by many tissues 2.3 μg/L (<day 3) | ||
Insulin-like growth factor 1 (IGF-1) | Synthesized mainly by liver 248–1850 μg/L (day 0) | Stimulation of cell proliferation, anabolic action, increases synthesis of muscle proteins | |
Insulin-like growth factor 2 (IGF-2) | Produced by many tissues 400–600 μg/L (day 0) | Stimulation of proliferation and differentiation of predominantly embryonic cells, induces hypoglycemia, regulates kidney function and nitrogen balance, lowers levels of cholesterol and potassium | |
Transforming growth factor β (TGF-β) | Produced by platelets and other cells TGF-β1: 12–43 μg/L (day 0) TGF-β2: 150–1150 μg/L (day 0) | Stimulates cell growth, in particular connective tissue, inhibits lymphocyte and epithelial cells proliferation, essential role in embryogenesis, wound healing, bone and cartilage formation, regulates the immune system function | |
Platelet-derived growth factor (PDGF) | Produced by platelets and other cells | Role in embryonic development, stimulation of mesenchymal cell proliferation, angiogenesis and wound healing | |
Fibroblast growth factor 2 (FGF2) | Produced by various cells | Regulation of proliferation, differentiation and survival of many cells, regulation of angiogenesis, promotion of wound healing and hematopoiesis | |
Hormones | |||
Growth factor (GH) | Produced by the pituitary gland <1 μg/L | Activates growth processes, synthesis and storage of body proteins, storage of glycogen and lipids, increases body weight, regulates function of the gastrointestinal tract | Playford, R.J. and Weiser, M.J. (2021) [9] Bagwe-Parab, S. et al. (2020) [13] Elfstrand, L. et al. (2002) [25] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Artym, J.; Zimecki, M. Colostrum Proteins in Protection against Therapy-Induced Injuries in Cancer Chemo- and Radiotherapy: A Comprehensive Review. Biomedicines 2023, 11, 114. https://doi.org/10.3390/biomedicines11010114
Artym J, Zimecki M. Colostrum Proteins in Protection against Therapy-Induced Injuries in Cancer Chemo- and Radiotherapy: A Comprehensive Review. Biomedicines. 2023; 11(1):114. https://doi.org/10.3390/biomedicines11010114
Chicago/Turabian StyleArtym, Jolanta, and Michał Zimecki. 2023. "Colostrum Proteins in Protection against Therapy-Induced Injuries in Cancer Chemo- and Radiotherapy: A Comprehensive Review" Biomedicines 11, no. 1: 114. https://doi.org/10.3390/biomedicines11010114
APA StyleArtym, J., & Zimecki, M. (2023). Colostrum Proteins in Protection against Therapy-Induced Injuries in Cancer Chemo- and Radiotherapy: A Comprehensive Review. Biomedicines, 11(1), 114. https://doi.org/10.3390/biomedicines11010114